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Mechanics of capacity fade in lithium-ion batteries  Naow

Laboratories
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Hypothesis: Capacity fade occurs due to structural damage to electrode network

Choi et al (2002); Wilson et al (2011); Images courtesy of Farid El Gabaly, Sandia National Labs



Previous research into mechanical degradation ) hea
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fracture. Barai and Mukherjee stress concentrators. in SN0 anodes, swelling 250%.
(2013) Malave et al (2014) Xu et al. (2016)

Microstructural details can have a significant effect on particle network degradation




Outline 71| Netora

= |maging and reconstruction of cathode microstructures
= Conformal Decomposition Finite Element Method (CDFEM)
= Verification: Mesh and domain size requirements
= Representing the active binder

= Effective electrode properties

= Coupled electrochemical-mechanical simulations

=  Summary and a look forward




Computational approach: CDFEM 7| Netora

= Sijerra/Aria (Sandia’s Multiphysics Finite Element Method code)
= Allows segregated or monolithic solves
= Meshing complex microstructure very difficult
= Conformal mesh required for interface/surface physics
= Conformal Decomposition Finite Element Method (CDFEM)
Begins with a regular or arbitrary background mesh

= Decomposes mesh along interfaces (STL microstructure description)
= Additional features:

= Adaptive mesh refinement for detailed interface representation

= Support for multiple phases (required for binder)

= Arbitration of overlapping

= Guaranteed mesh quality (coming soon!)

e R

CDFEM as a method for automated meshing of complex shapes

Noble (2013); Malave (2014)



Imaging battery cathodes 7| Netora

LCO with binder from FIB/SEM, NMC from XRCT, LCO from XRCT,
35 nm resolution, 370 nm resolution, 64 nm resolution,

20 pm domain. 757 um domain. 22 um domain.

Hutzenlaub et al (2012) Ebner et al (2013) Yan et al (2012)

Imaging reveals complex networks; binder can be difficult to detect at scale




CDFEM for mesh generation

7| Netora

 Binarize and label individual particles, surface mesh to STL files (Avizo software)

Ebner (2013)

* CDFEM creates level-set field, cuts background mesh to create conformal mesh

I

|~




CDFEM for mesh generation
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Efficient algorithm to go from images to conformal, multi-phase mesh




Multiple level-set fields for particle resolution
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| &= Single - 5% Overlap
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* Single level-set field (upper-left) introduces
significant errors in high-curvature regions S 102
v
* Labeled particles and multiple level-set fields ';E 102
(upper-right): *
* Enable additional physics (anisotropic 10
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* Improve mesh convergence (right) 10 b
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Labeled particles critical for accuracy, physics
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Roberts et al, submitted to J. Comp. Phys. 9



Mesh convergence: Simple sphere geometry

7| Netorw

(b) Surface Area

(c) Contact Area
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. Sandia
Mesh convergence: Image-based microstructure Y Natorat
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Roberts et al, submitted to J. Comp. Phys.



Impact of adaptive mesh refinement (AMR) ) et
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AMR can drastically lower element counts
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Domain size / RVE requirements
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What about the active (conductive) binder? 7| Netora

Laboratories

* Resolving the location of active binder (PVDF + CB) is much - NMC/AB
more difficult than particle image segmentation. CB/PVDF wt % | Volume Ratio
* Binder is often neglected, assuming non-active void space is 2-2 Wt?’ 9.62
entirely electrolyte. 3-3 wt% 6.23
o ) ) . ) . 4-4 wt% 4.61
Limited imaging results can hint at binder location 5.5 Wt% 361

CB = carbon black
AB = active binder =

PVDF + CB
(b) e graphite
A TOF-SIMS for
graphite anode
.~ / (Tony Ohlhausen)
- : /_’_,"
o fobrke Red: PVDF

Green: Carbon
Blue: Epoxy (Voids)

Superposition of
carbon & fluorine map

Jaiser et al. (2017)

How are electrode-scale properties affected by inclusion of binder?

Jaiser et al (2017); Tony Ohlhausen




Modeling the active binder 7| Netora
(a) (c)

Multiple binder approaches:

(a) Raw: No binder, just particles

(b) Expanded: Expand particles
to give correct porosity

(c) Coating: Coat particles with
uniform binder layer to give
(b) (d) correct porosity

RNANNN

(d) Contacts: Novel algorithm to
place binder near particle
contacts, giving correct
porosity

New contact method gives binder morphology most similar to imaging

-
Trembacki et al, J. Electrochem. Soc.




Modeling the active binder 7| Netora
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e Visualization of the effect of parameters O and S on two synthetic particles.
* Overlaid red line represents
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Systematic, synthetic method for creating realistic binder morphology

-
Trembacki et al, J. Electrochem. Soc.




NMC has lithiation-dependent properties 7| Netora
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Active binder has lithiation-dependent properties
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Active binder has important electro-mechanical effects

Trembacki et al, J. Electrochem. Soc.; Data from Grillet et al (2016)




Active binder impacts: Mechanical stresses
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Binder significantly mitigates stress vs. hard particle contacts

Trembacki et al, J. Electrochem. Soc.



Active binder impacts: Electrical conductivity ) it
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Trembacki et al, J. Electrochem. Soc.



Electrochemical mathematical model 7| Netora

In the particle

__ «— In the electrolyte

= Ohm’s Law

V- (oVgs) =0 V- [F (lLﬁ — lPFEﬂ =0

= |ntercalated Li conservation

=  Current conservation

= Nernst-Planck fluxes

ICL; chem stress I
o + V- [-MCLY (u5h .+ pii =) =0 Ji=-D; (Zz'Ci ﬁZCbl -+ ZCZ-)
At the interface = Li+ conservation
= Butler-Volmer reaction rate aCaItJiJr +V - -Jr =0
a. F (gb L QSI L qb ) = Electroneutrality
J-n=jo [eXp< e eq)
RT CPFg = Cpi+
— exp (_Och (QSS — QSI — d)eq))“
RT

Well-defined mathematical model at the mesoscale

Mendoza et al (2016) 21



Electrochemistry with non-ideal lithium transport - LCO ) hea

» Ideal transport (Fickian) model:

Potential ~ SOC=0.0000  Fickian ~ Jy; = —DVCy; 4
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Mendoza et al (2016)



Mechanical mathematical model 7| Netora

= |ntercalation-induced swelling causes a volumetric strain

E=E

—elastic = —swelling

— K .+ gACLi

—elastic

= For a linear elastic constitutive behavior, swelling is converted to stress
= Analogous to standard “coefficient of thermal expansion” (e.g. Vegard’s law)

g — ; Eelastlc
= g B — g aACL1
=0 E— BACY;

= We treat volumetric strain is isotropic

=052

= Stress governed by guasi-static momentum conservation

V.o+F =0

Well-defined mathematical model at the mesoscale

Mendoza et al (2016) 23



Electrochemistry results - LCO
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Particle confinement leads to 100x higher stress than observed in isolated particles




Electrode breathing: Effect of flexible boundaries - LCO ) N

=  Pouch cell boundary conditions can allow macroscopic swelling (breathing) while
jellyrolls can be more constraining, squishing separator (Rubino et al 2001)

=  Mimic this effect by controlling stiffness of upper boundary (collector)
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Allowing electrode breathing changes volume partitioning and reduces stress by 1/3

Mendoza et al (2016)




Summary and path forward 7| Netora

= Conclusions
= Lithiation-induced swelling can lead to significant mechanical forces, degradation
= Polymeric active binder plays a critical role in electrical transports, stress generation
= Effective property calculations provide useful links to battery-scale models

=  Future work
= Coupled electrochemical-mechanical simulations in large NMC domains with binder
= Upscaling results into table look-ups or curve fits for battery-scale models
= Direct integration into battery-scale models; multi-scale approach
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