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Multivariate Statistical Analysis (spectroscopy) 

Multivariate Processing: 

• Scale data for Poisson counting statistics 

• Determine the number, p, of components to keep 

• Factor the data matrix (D) into C and S 

• Inverse scale the components 
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 Kotula, P.G., Keenan, M.R. & Michael, J.R. 

(2003). Microsc Microanal 9, 1–17.  



Multivariate Statistical Analysis (diffraction) 

Multivariate Processing: 

• Scale data for noise…do we know this? 

• Determine the number, p, of components to keep 

• Factor the data matrix (D) into C and S 

• Inverse scale the components 
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What are the basic steps of MSA for spectroscopic 

data? 
• Scale data for non-uniform noise* 

– Assumption here-we know the noise structure in these counting 
experiments 

– Down-weights large variations in intense spectral or image features 
which are due to noise 

– Rank 1 approximation to the noise 
• In the image domain divide by the square-root of the mean image (G) 

• In the spectral domain divide by the square-root of the mean spectrum (H) 

• Essentially the same answer as maximum likelihood methods with but far 
less computational complexity** 

 

• Factor the data: Keenan, M.R., Multivariate analysis of spectral images 
composed of count data, in Techniques and applications of hyperspectral 
image analysis, H. Grahn and P. Geladi, Editors. 2007, John Wiley & 
Sons: Chinchester. 

 

• Inverse-scale for noise 

 

• For diffraction data we don’t necessarily know the noise a priori 

*M.R. Keenan and P.G. Kotula, Surf. Int. Anal. 36 (2004) 203-212 

**M.R. Keenan, J. Vac. Sci. Tech. A 23 [4] (2005) 746-750  

𝐃 = 𝐆𝐃𝐇 



Paliney 7, electrical 

contact material 

nanometer-scale 

spinodal decomposition.  

1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

X-ray Energy [kV] 

N
o
rm

a
liz

e
d
 C

o
u
n
ts

 

Ti grid 

Cu 

Cu 

Zn 

Pt 

Pt 

Pt 

Au 

Au 
Au 

Pd 

Ag 

Red = Cu-Pd-Pt-Zn 

Green = Ag-Pd-Au 

20 nm 20 nm 

7 minutes at 

0.5nm/pixel with the 

new AC-STEM 

120 minutes at 

2nm/pixel Tecnai. 

The new AEM is at least 70x better than our older AEM 

(Philips/FEI Tecnai F30-ST) 

Sub-nm microanalysis of electrical contact materials 

Titan G2 80-200 Cs 

probe corrected 

with ChemiSTEM 

(SuperX) 

MSA analysis 

D.F. Susan, Z. Ghanbari, P.G. Kotula, J.R. Michael & M.A. Rodriguez, 

Metall. and Mat. Trans. A 45A (2014). DOI: 10.1007/s11661-014-2334-x 



FWTM enrichment at the 

boundary less than 2nm 

Analysis of Mn-doped STO S=13 Boundary 

Quantitative EDS and EELS 

Mn+2 at boundary 

Mn+4 in bulk near boundary 

(substitutional with Ti) 

∑13 (510)/[001] 

H. Yang, P.G. Kotula, Y. Sato, Y. Ikuhara, N.D. Browning. Materials 

Research Letters (2013). DOI: 10.1080/21663831.2013.856815 



EBSD/MSA* 

L.N. Brewer, P.G. Kotula, J.R. Michael, (2008) Ultramicroscopy 108, 567-578. 

Fm3m (NiO) distinguished from Fd3m (NiAl2O4) Fine  Al grains 

*Hough transforms used for 

MSA versus the raw patterns 



Direct Electron camera: 

Re-thinking a STEM detector 

H. Ryll, et al., (2016) “A pnCCD-based, fast direct single electron 

imaging camera for TEM and STEM.” J. Inst. 

http://dx.doi.org/10.1088/1748-0221/11/04/P04006 

A B 

1 msec (1 frame) 20 msec 

(replicates summed) 

STEM CBED patterns  

Traditional STEM detectors are annular (LADF/HAADF) or round (BF) 

http://dx.doi.org/10.1088/1748-0221/11/04/P04006
http://dx.doi.org/10.1088/1748-0221/11/04/P04006
http://dx.doi.org/10.1088/1748-0221/11/04/P04006


STEM-CBED and MSA…A Tale of Big Data 

• Titan G2 80-200 STEM 

• pnCCD mounted below 

the projection chamber 

• 4.8 mrad convergence 

angle in probe with 30 pA 

• 256x256 real-space pixels 

• 264x264 reciprocal-space 

pixels 

• 4x109 data elements as 

summed 

• No “small” dimension 

A B 

1 msec (1 frame) 20 msec 

(replicates summed) 

STEM CBED patterns  



STEM-CBED and MSA…A Tale of Big Data 

• Data set is 182.7 Gbytes 

– 256x256 real-space 

pixels 

– 264x264 reciprocal-

space pixels 

– 20 msec/pixel total 

recorded as 20, 1msec 

diffraction patterns 

– Stored as 2-byte signed 

integers on a SSD 

– We used the replicate 

diffraction patterns to 

determine the noise 

variance for scaling the 

data prior to MSA 

HAADF 

Region of diffraction image 

Arltunga meteorite*, Fe-Ni particle 

Reconstructed 

BF-STEM 

image 

Kamacite 
Taenite 

Kamacite 

*Sample courtesy Joe Goldstein (dec) 



• The covariance matrix is 65536x65536! 

– We typically solve very large problems but one dimension (spectral) is small and 

therefore calculating the covariance matrix is efficient 

• 16M pixels by 4096 channels has more data elements 

• Brute force, this can be solved with a ~$14k computer (~$5k today) 

– Intel XEON 2, two 28-core 

processors with 192 Gbytes 

RAM, Matlab 2016A (64-bit) 

– ~2 hours total calculation time 

– Reading data and calculating 

the variance images, 93 min. 

– Calculating the covariance 

matrix, 13 minutes 

– Eigenanalysis, 21 minutes. 

PCA-Varimax (rank=8) 45 sec. 

– Data read time could be 

optimized greatly (e.g., HDF-5) 

STEM-CBED MSA about 2 hours (non-optimized) 

Covariance matrix calculation 

topped out at 144Gb RAM 

Most of the cores are active 



STEM-CBED and MSA…Real-space simplicity 

Clear break 

at rank-8 

Red = 1+5 (fcc) 

Green = 2+8 (fcc) 

Blue = 3 (fcc) 

Cyan = 4+6 (bcc) 

Yellow = 7 (bcc) 

38 Gbyte in, 9 Mbyte after MSA, Compression factor of ~21000 
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First-pass MSA breaks out largely by crystallographic phase/orientation 
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9-component model 

Component 4 Component 6 

Both BCC near [001] slightly different orientations 

(011) 

[001] 

(-200) 

(011) 

[001] 

(-200) 

Top BCC phase described by at just two factors 



45-component model 

Out45-Pure14 Out45-Pure27 Out45-Pure11 Out45-Pure22 Out45-Pure10 Out45-Pure34 

Top BCC phase described by at lease six factors 

Red = 14 

Green = 27 

Blue = 11 

Cyan = 22 

Magenta = 10 

Yellow = 34 



Red = 14 

Green = 27 

Blue = 11 

Cyan = 22 

Magenta = 10 

Yellow = 34 

10 22 

Kikuchi Band shift  of 4 pixels corresponds to 0.03° tilt of the crystal  



Conclusions 

• Data analytics makes it possible to make sense of large, 
noisy redundant data sets by reducing their dimensionality 

• Relatively straight forward for spectral images 

• More complicated for image or diffraction series 

• Direct electron cameras can replace conventional STEM 
detectors and allow for retrospective analysis. 
– Replicate diffraction patterns allow us to determine the noise 

variance from the data itself  

– Rank estimation determines the level of detail (8 versus 45 shown) 
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