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%/l‘ultivariate Statistical Analysis (spectroscopy)
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Kotula, P.G., Keenan, M.R. & Michael, J.R. |
(2003). Microsc Microanal 9, 1-17. Unfolded Spatial
spectral components
Multivariate Processing: image cube

« Scale data for Poisson counting statistics

 Determine the number, p, of components to keep

« Factor the data matrix (D) into C and S |

* Inverse scale the components @]Fﬁfﬂfﬁgm
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* Multivariate Statistical Analysis (diffraction)
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Multivariate Processing: image cube
« Scale data for noise...do we know this?

« Determine the number, p, of components to keep

 Factor the data matrix (D) into C and S
* Inverse scale the components
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A
%t are the basic steps of MSA for spectroscopic

data?

» Scale data for non-uniform noise*

— Assumption here-we know the noise structure in these counting
experiments

— Down-weights large variations in intense spectral or image features
which are due to noise
— Rank 1 approximation to the noise
* In the image domain divide by the square-root of the mean image (G)
 In the spectral domain divide by the square-root of the mean spectrum (H)

« Essentially the same answer as maximum likelihood methods with but far
less computational complexity** 5 — GDH

- Factor the data: Keenan, M.R., Multivariate analysis of spectral images
composed of count data, in Techniques and applications of hyperspectral

image analysis, H. Grahn and P. Geladi, Editors. 2007, John Wiley &
Sons: Chinchester.

* |nverse-scale for noise

« For diffraction data we don’t necessarily know the noise a priori

*M.R. Keenan and P.G. Kotula, Surf. Int. Anal. 36 (2004) 203-212 @ SR,
**M.R. Keenan, J. Vac. Sci. Tech. A 23 [4] (2005) 746-750

Laboratories



Sub-nm microanalysis of electrical contact materials
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The new AEM is at least 70x better than our older AEM
(Philips/FEI Tecnai F30-ST)
Sandia

D.F. Susan, Z. Ghanbari, P.G. Kotula, J.R. Michael & M.A. Rodriguez, National
Metall. and Mat. Trans. A 45A (2014). DOI: 10.1007/s11661-014-2334-x
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Analysis of Mn-doped STO X=13 Boundary
Y13 (510)/[001]
Quantitative EDS and EELS
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boundary less than 2nm  Research Letters (2013). DOI: 10.1080/21663831.2013.856815 il

FWTM enrichment at the H. Yang, P.G. Kotula, Y. Sato, Y. Ikuhara, N.D. Browning. Materials @ Sandia
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EBSD/MSA*

Fm3m (NiO) distinguished from Fd3m (NiAl,O,) Fine Al grains
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*Hough transforms used for
MSA versus the raw patterns
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4 ' Direct Electron camera:
Re-thinking a STEM detector

Traditional STEM detectors are annular (LADF/HAADF) or round (BF)

STEM CBED patterns
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H. Ryll, et al., (2016) “A pnCCD-based, fast direct single electron
imaging camera for TEM and STEM.” J. Inst. @ Sandia

http://dx.doi.org/10.1088/1748-0221/11/04/P04006 National
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#TEM-CBED and MSA...A Tale of Big Data

» Titan G2 80-200 STEM

 pnCCD mounted below
the projection chamber

« 4.8 mrad convergence
angle in probe with 30 pA

« 256x256 real-space pixels

« 264x264 reciprocal-space
pixels
* 4x10° data elements as.
summed
Sandia

 No “small” dimension 1 msec (1 frame) 20 msec @National

(replicates summe Lohoratnties
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STEM-CBED and MSA...A Tale of Big Data

Arltunga meteorite*, Fe-Ni particle

Data set is 182.7 Gbytes

— 256x256 real-space
pixels

— 264x264 reciprocal-
space pixels

— 20 msec/pixel total
recorded as 20, 1msec
diffraction patterns ——

— Stored as 2-byte signed t:m ' "?’
integers on a SSD

— We used the replicate
diffraction patterns to
determine the noise
variance for scaling the
data prior to MSA

- HAADF @
*Sample courtesy Joe Goldstein (dec)
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STEM-CBED MSA about 2 hours (non-optimized)

* The covariance matrix iIs 65536x65536!

— We typically solve very large problems but one dimension (spectral) is small and
therefore calculating the covariance matrix is efficient

« 16M pixels by 4096 channels has more data elements
« Brute force, this can be solved with a ~$14k computer (~$5k today)

Intel XEON 2, two 28-core
processors with 192 Gbytes
RAM, Matlab 2016A (64-bit)

~2 hours total calculation time

Reading data and calculating
the variance images, 93 min.

Calculating the covariance
matrix, 13 minutes

Eigenanalysis, 21 minutes.
PCA-Varimax (rank=8) 45 sec.

Data read time could be
optimized greatly (e.g., HDF-5)
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TEM-CBED and MSA...Real-space simplicity

38 Gbyte in, 9 Mbyte after MSA, Compression factor of ~21000

Red = 1+5 (fcc)
Green = 2+8 (fcc)
Blue = 3 (fcc)
Cyan = 4+6 (bcc)
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First-pass MSA breaks out largely by crystallographic phase/orientation
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9-component model

Top BCC phase described by at just two factors

Component 4 Component 6

Both BCC near [001] slightly different orientations
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45-component model

Top BCC phase described by at lease six factors

Out45-Purel4 Out45-Pure27 Out45-Pure34

Red =14
Green = 27
Blue = 11
Cyan = 22
Magenta = 10

Yellow = 34 @
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Kikuchi Band shift of 4 pixels corresponds to 0.03° tilt of the c
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% ' Conclusions

 Data analytics makes it possible to make sense of large,
noisy redundant data sets by reducing their dimensionality

* Relatively straight forward for spectral images
« More complicated for image or diffraction series

* Direct electron cameras can replace conventional STEM
detectors and allow for retrospective analysis.

— Replicate diffraction patterns allow us to determine the noise
variance from the data itself

— Rank estimation determines the level of detail (8 versus 45 shown)
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