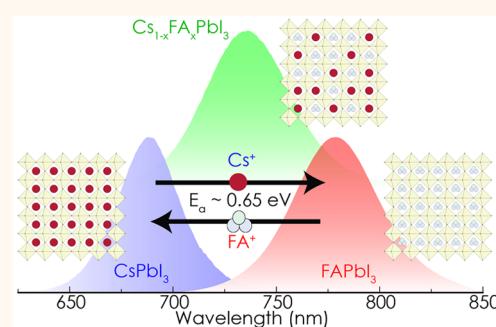


1 Perovskite Quantum-Dot Photovoltaic 2 Materials beyond the Reach of Thin Films: 3 Full-Range Tuning of A-Site Cation 4 Composition

5 Abhijit Hazarika,^{†,ID} Qian Zhao,^{†,‡} E. Ashley Gaulding,[†] Jeffrey A. Christians,^{†,ID} Benja Dou,^{†,§}
6 Ashley R. Marshall,[†] Taylor Moot,[†] Joseph J. Berry,^{†,ID} Justin C. Johnson,^{†,ID} and Joseph M. Luther*,^{†,ID}

7 [†]National Renewable Energy Laboratory, Golden, Colorado 80401, United States


8 [‡]College of Chemistry, Nankai University, Tianjin 300071, China

9 [§]Department of Electrical and Computer Engineering, University of Colorado, Boulder, Colorado 80309, United States

10 Supporting Information

11 **ABSTRACT:** We present a cation-exchange approach for tunable A-site
12 alloys of cesium (Cs^+) and formamidinium (FA^+) lead triiodide
13 perovskite nanocrystals that enables the formation of compositions
14 spanning the complete range of $\text{Cs}_{1-x}\text{FA}_x\text{PbI}_3$, unlike thin-film alloys or
15 the direct synthesis of alloyed perovskite nanocrystals. These materials
16 show bright and finely tunable emissions in the red and near-infrared
17 range between 650 and 800 nm. The activation energy for the miscibility
18 between Cs^+ and FA^+ is measured (~ 0.65 eV) and is shown to be higher
19 than reported for X-site exchange in lead halide perovskites. We use these
20 alloyed colloidal perovskite quantum dots to fabricate photovoltaic
21 devices. In addition to the expanded compositional range for
22 $\text{Cs}_{1-x}\text{FA}_x\text{PbI}_3$ materials, the quantum-dot solar cells exhibit high open-
23 circuit voltage (V_{OC}) with a lower loss than the thin-film perovskite devices of similar compositions.

24 **KEYWORDS:** perovskites, quantum dots, cation exchange, solar cells, nanocrystals, A-site alloying, lead halide

25 **W**ith a record efficiency of $\sim 23.3\%$,¹ solution-
26 processable lead halide perovskite solar cells are
27 fast approaching the efficiency of commercial wafer-
28 based silicon photovoltaic technology.^{2–15} Chemical substitu-
29 tion or alloying on A, B, and X sites allows one to fine-tune
30 various properties of perovskites and, most importantly, to
31 improve their stability.^{16–20} Depending on the relative sizes of
32 the ions, ABX_3 materials can adopt different crystallographic
33 structures. The Goldschmidt tolerance factor (GTF), which is
34 expressed as $\text{GTF} = \frac{r_{\text{A}} + r_{\text{X}}}{\sqrt{2}(r_{\text{B}} + r_{\text{X}})}$, where r_{v} , the effective ionic
35 radius of the individual species, is a geometric formalism often
36 used for simple predictions of the most-likely crystal structure
37 for ABX_3 materials.²¹ The general rule of thumb is that a GTF
38 value between 0.9 and 1.0 tends to result in an ideal cubic
39 perovskite structure (α -phase) with undistorted corner-shared
40 octahedra in APbX_3 compounds, while GTF values of 0.8–0.9
41 still lead to perovskite structures but with the tilting of the BX_6
42 octahedra in either one or multiple dimensions (β and γ
43 phases, respectively).^{16,22–25} Slightly above $\text{GTF} \approx 1.0$, non-
44 perovskite structures tend to form such as the hexagonal δ_{h}
45 phase with face-shared octahedra, and below 0.8, the edge-

sharing orthorhombic δ_{o} phase is common. Although the GTF⁴⁶
fails to explain the formability and stability of perovskites with⁴⁷
ideal and tilted corner-shared octahedra,²⁶ it acts as good⁴⁸
starting point to design perovskite materials of interest. For⁴⁹
example, A-site alloying allows for the facile tuning of the GTF,⁵⁰
which can improve perovskite-phase stability at room temper-⁵¹
ature.¹⁶ Tuning GTF by A-site alloying allows for some control⁵²
of the band gap (E_{G}), a necessity for the development of⁵³
tandem solar cell architecture; in contrast to methods based on⁵⁴
the X-site alloying in which the V_{OC} deficit (defined as the⁵⁵
difference between the theoretical limit of open circuit voltage⁵⁶
and the observed voltage in real devices) tends to increase with⁵⁷
 E_{G} because of halide segregation, A-site alloying can sometimes⁵⁸
increase E_{G} without increasing the V_{OC} deficit.^{27,28}

Despite their interest and proven utility, alloys of lead halide⁶⁰
perovskites in arbitrary compositions have remained challeng-⁶¹
ing, specifically those alloys in which there exist significantly⁶²

Received: July 23, 2018

Accepted: September 20, 2018

ACS Publications

© XXXX American Chemical Society

A

DOI: 10.1021/acsnano.8b05555
ACS Nano XXXX, XXX, XXX-XXX

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted
manuscript. The published version of the article is available from the relevant publisher.

63 different crystallization temperatures for the pure-component 64 perovskite phases. For example, FAPbI_3 deposited from 65 solution is typically annealed at 130 °C,²⁹ while for CsPbI_3 , 66 the phase-transition temperature to reach the perovskite phase 67 is around 330 °C.¹⁶ The ideal crystallization temperature for 68 many of the alloys of $\text{Cs}_{1-x}\text{FA}_x\text{PbI}_3$ likely lies between those of 69 these two pure-phase compositions, yet alloy formation is 70 complicated because the organic A-site cations are typically 71 thermally unstable at temperatures above ~ 200 °C.³⁰ The 72 reported synthesis of the perovskite $\text{Cs}_{1-x}\text{FA}_x\text{PbI}_3$ thin films 73 (across the achievable compositions typically with less than 74 50% Cs) has an annealing temperature of 170 °C, which is the 75 same as that of pure FAPbI_3 thin films.¹⁶ However, above this 76 threshold value of Cs incorporation, 170 °C is not adequate to 77 crystallize the perovskite structure and increasing the temper- 78 ature further results in FA decomposition. Thus, not all 79 compositions of $\text{Cs}_{1-x}\text{FA}_x\text{PbI}_3$ have been realized in the 80 perovskite phase at room temperature from molecular 81 precursors, and it has been demonstrated in a few studies 82 that only compositions with less than 50% Cs can be achieved 83 in the pure α phase (perovskite) without a trace of the 84 undesirable δ phase.^{16,19} These reports rely on XRD to detect 85 the phase purity of the alloyed perovskites; however, recently 86 cesium-133 solid-state nuclear magnetic resonance studies 87 reveal that only 15% Cs is actually incorporated in pure 88 perovskite phase, and a higher percentage of Cs incorporation 89 leads to instability of the alloys.³¹ In single crystals, even with 90 only 10% Cs, the alloys eventually expel Cs^+ over time.³² 91 Interestingly, when considering average A-site cation size, all 92 compositions of $\text{Cs}_{1-x}\text{FA}_x\text{PbI}_3$ fall within the ideal region of 93 the GTF for corner-shared perovskite structures, a discrepancy 94 arising because the GTF does not take into account the 95 temperature needed to crystallize the proper phase. Moreover, 96 it is also unclear how the perovskite structure is influenced by 97 strain, an effect overlooked by GTF analysis with average 98 cation size, arising in the lattice due to the mixing of ions like 99 Cs^+ and FA^+ , with substantially different ionic radii.

100 Post-synthetic ion-exchange transformations often allow 101 access to compositions and structures not achievable by direct 102 synthesis,^{33–40} but it is not straightforward to use bulk or thin- 103 film metal halide precursors for such ion exchanges because of 104 their solubility in most polar solvents. Colloidal lead halide 105 perovskite nanocrystals (NCs) or quantum dots (QDs) with a 106 “soft” lattice, dynamic surface ligands and a high surface-to- 107 volume ratio are a good platform for ion exchanges. Cation 108 exchanges in chalcogenide and pnictide NCs are well-known 109 and have been demonstrated for a variety of systems like CdE , 110 PbE (E = S, Se, or Te), and InP .^{33–38,41} While anion exchanges 111 in traditional chalcogenide NCs are rare, such exchange 112 reactions are known to be more common in perovskite NCs 113 due to fast halide ion movement within the perovskite lattice as 114 well as fast exchange dynamics in solution. For example, 115 reacting CsPbBr_3 NCs with alkyl ammonium iodide or 116 chloride precursors can easily and reversibly be transformed 117 to CsPbI_3 and CsPbCl_3 NCs via ion exchange.^{42–46} It has been 118 observed and reported that even simply mixing two types of 119 perovskite NCs in solution (for example, combining CsPbI_3 120 and CsPbBr_3 NCs in toluene) can lead to homogeneously 121 alloyed compositions.^{42,47} Perovskite NCs are of tremendous 122 importance because of their defect tolerant nature and unique 123 optoelectronic properties like near-unity photoluminescence 124 quantum yield (PLQY) even without epitaxial overcoating 125 with higher-band-gap materials.^{48–63} All-inorganic CsPbI_3

126 NCs, unlike their bulk and thin-film counterpart, can be 127 stabilized in the perovskite phase at room temperature in 128 ambient conditions for extended period of time and has been 129 demonstrated as efficient light harvesters in solar cell devices 130 and LEDs.^{56,64,65} Apart from the mostly sought-after all- 131 inorganic CsPbX_3 NCs, recently colloidal FAPbI_3 NCs have 132 also shown potential as near-infrared emitters.²⁶

133 Like halide perovskite thin films, the problem of 134 inaccessibility of some stable alloy compositions still remains 135 even in the case of NCs. Attempts have been made to directly 136 alloy on the A site during synthesis.^{26,66} For example, it was 137 recently reported that the 700–800 nm emission range (from 138 pure CsPbI_3 to pure FAPbI_3) in monohalide $\text{Cs}_{1-x}\text{FA}_x\text{PbI}_3$ 139 NCs cannot be achieved just by varying the A-site cation 140 precursor amount via direct NC synthesis due to differences in 141 precursor reactivity. It was then stated that the only way to 142 achieve the tunability (emission between 710 and 750 nm) is 143 to exploit the quantum confinement effect, which is not the 144 most-suitable way in terms of the stability of the final alloyed 145 products.⁶⁶

146 Herein, we report the synthesis of $\text{Cs}_{1-x}\text{FA}_x\text{PbI}_3$ colloidal 147 alloyed NCs by post-synthetic cation exchange. Cation 148 exchange, as opposed to anion exchange, in perovskite 149 materials is more rare.^{42–46,67} However, by combining colloidal 150 solutions of CsPbI_3 and FAPbI_3 NCs in appropriate 151 proportions along with modest heating allows the cross- 152 exchange between the A-site cations to result in desired alloy 153 compositions retaining their crystallographic framework (as 154 schematically depicted in Figure 1A). We can thus fine-tune 155 across the whole composition range, obtaining stable perov-

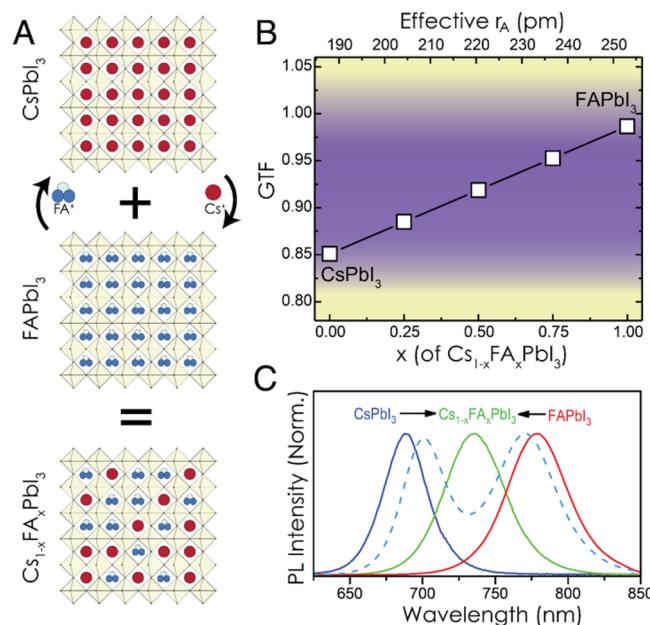
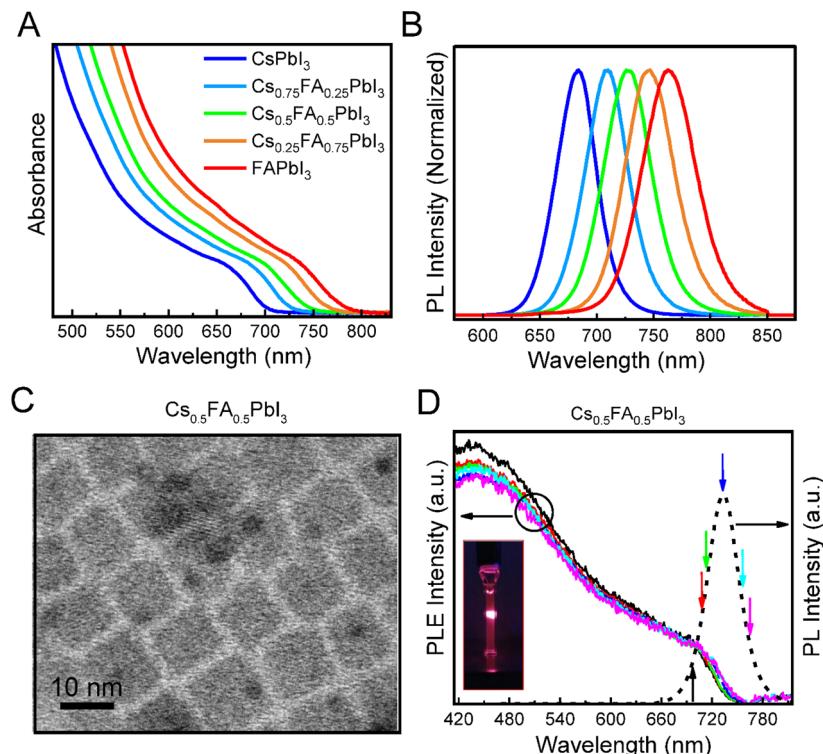
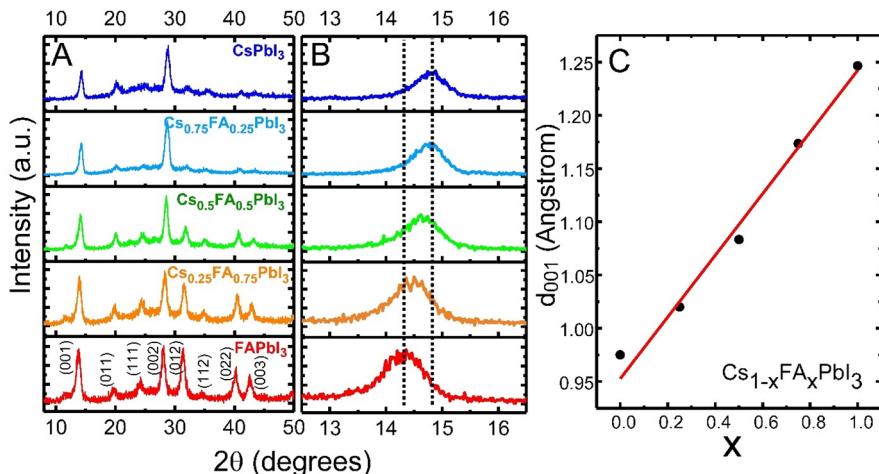



Figure 1. A-site ion exchange to form phase stable $\text{Cs}_{1-x}\text{FA}_x\text{PbI}_3$ NCs. (A) Schematic diagram showing the cross-exchange of Cs^+ and FA^+ ions between CsPbI_3 and FAPbI_3 perovskite NCs. (B) Goldschmidt tolerance factor as a function of FA^+ ion concentration shows that all compositions are expected to be phase-stable (the purple region in the plot). Top axis shows the effective or average A-site radius. (C) PL emission spectra depicting how CsPbI_3 and FAPbI_3 NCs convert into alloyed NCs; the dashed curve indicates the emission profile of one of the early stages of alloying.

Figure 2. Optical and TEM characterization of the $\text{Cs}_{1-x}\text{FA}_x\text{PbI}_3$ NCs. (A) UV-vis absorption and (B) PL emission spectra of the alloyed NCs showing tunability over ~ 650 – 800 nm range. (C) TEM image of $\text{Cs}_{0.5}\text{FA}_{0.5}\text{PbI}_3$ NCs. (D) Photoluminescence excitation spectra of $\text{Cs}_{0.5}\text{FA}_{0.5}\text{PbI}_3$ NCs (the corresponding PL emission spectrum is shown with a dashed line) at different emission energies shows the absence of substantial inhomogeneous broadening of the PL emission due to alloying; the PLE spectra were collected at emission wavelengths indicated by the color-coded vertical arrows. The inset in panel D shows a photograph of the luminescence from $\text{Cs}_{0.5}\text{FA}_{0.5}\text{PbI}_3$ NCs under UV illumination.


skite phases (see Figure 1B), which otherwise have not been achieved via direct synthesis, or in large-grain thin-film perovskite for the reasons stated above. Controllable and tunable emission in ~ 650 – 800 nm range in lead iodide perovskite NCs can thus be realized with the A-site cation composition as the only variable. We utilized the individual CsPbI_3 and FAPbI_3 NCs as “precursors” to yield a homogeneous alloy NC solution via continuous A-site cation exchange between them (Figure 1C). Photoluminescence (PL) kinetics at various alloying temperatures reveal that the interchange process is slower than the X-site ion exchange, and the activation energy related to this process is ~ 0.65 eV. We applied the alloyed $\text{Cs}_{1-x}\text{FA}_x\text{PbI}_3$ QDs in solar cell devices that show more-optimal V_{OC} deficits compared with large-grain film-based devices of similar composition and E_{G} . The $\text{Cs}_{1-x}\text{FA}_x\text{PbI}_3$ QD devices also show low hysteresis and a power-conversion efficiency of $\sim 10\%$.

RESULTS AND DISCUSSION

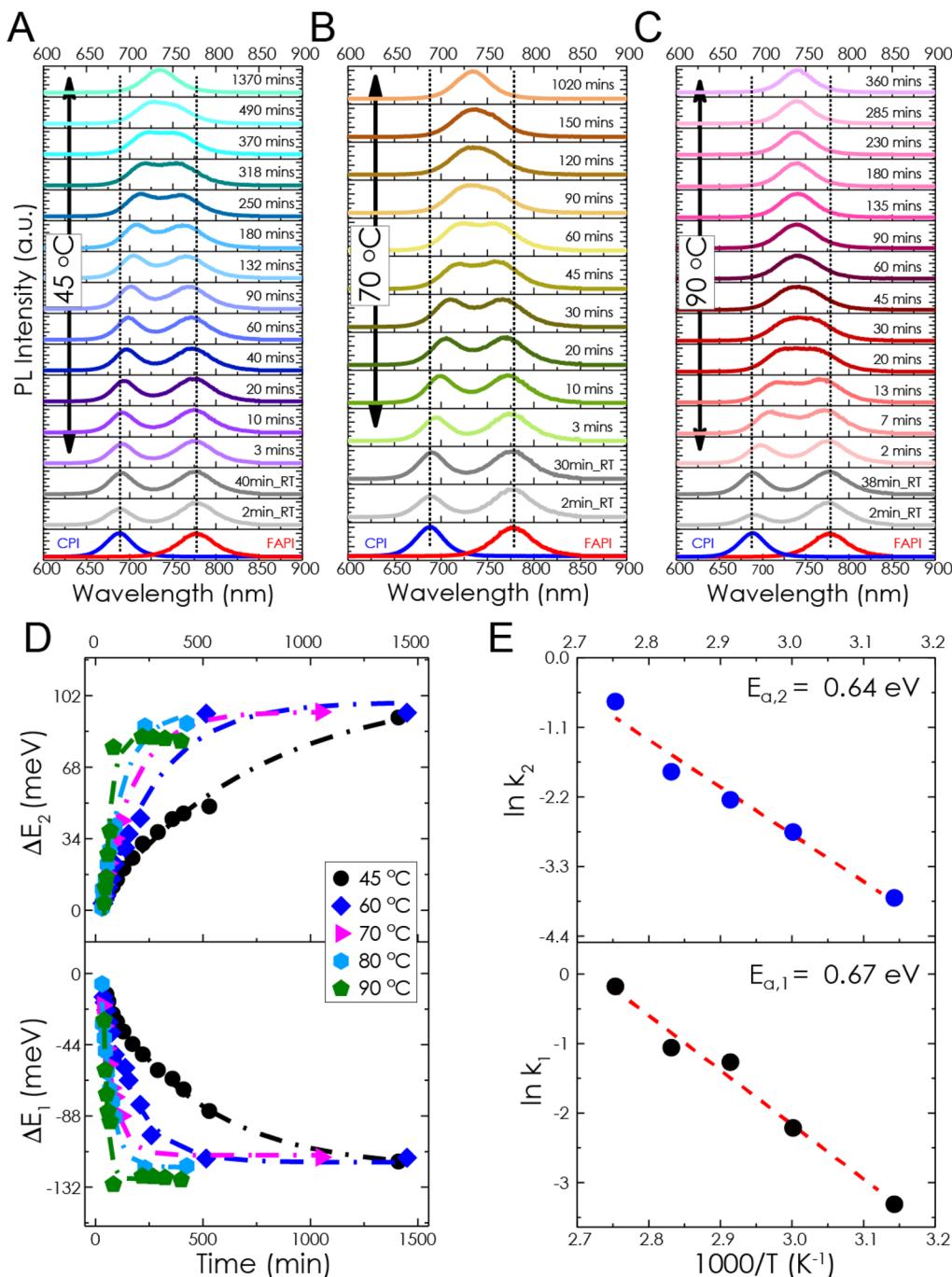
To obtain the alloy compositions of $\text{Cs}_{1-x}\text{FA}_x\text{PbI}_3$, colloidal NCs of CsPbI_3 and FAPbI_3 are first synthesized using the hot-injection method. The individual colloidal solutions are then mixed in controlled ratios. Figure 2 shows the optical data of the resulting alloy NCs. As can be seen from Figure 2A,B, the absorption onset and the PL emission peak positions can be continuously tuned from pure CsPbI_3 to pure FAPbI_3 within the range of ~ 650 – 800 nm. The time-resolved photoluminescence measurements reveal multiexponential PL decay behavior with average lifetimes in the range of 23–55 ns, with the FAPbI_3 exhibiting the slowest decay (see Figure

S1). The as-prepared NCs show a quantum yield (QY) of ~ 60 – 70% ; after repeated cleaning with methyl acetate for the purpose of applying in the solar cells, and the NC solutions show QY of $\sim 40\%$. The transmission electron microscope (TEM) images (Figure 2C) show that the alloy NCs retain their original size and shape (also see Figure S2 for additional TEM images). Furthermore, when we alloy NCs of different sizes (*i.e.*, small CsPbI_3 NCs with PL maximum at ~ 660 nm and larger FAPbI_3 NCs with PL maximum at ~ 770 nm), we observe an asymmetric absorption with a bimodal distribution of particles and an asymmetric PL emission spectrum that can be deconvoluted with two Gaussians with peak maximum at ~ 680 and ~ 728 nm (see Figure S3A–C). This indicates that the NCs retain their original size, with the final composition being tuned by the relative amounts of Cs^+ to FA^+ total ions.

Photoluminescence emission (PLE) spectroscopy is often used to study inhomogeneous broadening of PL emission in NCs^{68–71} and was employed here to examine the alloying in the $\text{Cs}_{1-x}\text{FA}_x\text{PbI}_3$ NCs. Figure 2D shows the PL of the $\text{Cs}_{0.5}\text{FA}_{0.5}\text{PbI}_3$ NCs and corresponding PLE spectra collected at different emission energies, as dictated by the color-coded arrow on the emission spectrum. The overlap of all of the PLE spectra indicate that they are independent of emission energies, and there is no significant inhomogeneous broadening of the PL emission due to alloying. PLE measurements on the other compositions also point to the absence of significant inhomogeneity in alloying (see Figure S4). However, the PLE spectra collected at different emission energies in case of the alloys resulted from intentionally mixing smaller CsPbI_3 and larger FAPbI_3 NCs clearly shows two distinct transitions at

Figure 3. XRD of the $\text{Cs}_{1-x}\text{FAXPbI}_3$ NCs. (A) Wide-angle XRD patterns of the alloyed NCs show the NCs retain their black, corner-sharing perovskite phase after alloying. The diffraction peaks for the FAPbI_3 NCs were indexed following Protesescu et al.²⁶ (B) Zoomed-in view of the (001) diffraction peak showing continuous shift from pure FAPbI_3 to pure CsPbI_3 . (C) Vegard's law demonstrated by showing the linear shift of the d_{001} peak with composition.

215 ~ 670 and ~ 700 nm (see Figure S3D), a result of either two
 216 alloy compositions or, more likely, homogeneous alloy
 217 composition with bimodal size distribution. The alloyed NCs
 218 retain their absorption and PL emission shape as well as their
 219 perovskite phase for months after the ion exchange procedure,
 220 indicating that the alloyed NCs reach equilibrium (see Figure
 221 S5).


222 Figure 3A shows the powder XRD patterns of the alloy NCs.
 223 As can be seen from the XRD patterns, all the alloy
 224 compositions retain their perovskite structure with prominent
 225 (001) and (002) peaks. The diffraction peaks shift monotonically
 226 between the patterns obtained with pure CsPbI_3 and
 227 FAPbI_3 NCs [see Figure 3B for a zoomed-in view of the XRD
 228 pattern showing the shift of the (001) peak]. It is to be noted
 229 here that previous studies have shown CsPbI_3 in bulk can have
 230 more than one perovskite phase with corner-shared octahedra.
 231 For example, neutron powder diffraction studies reveal that
 232 room temperature nonperovskite δ phase of CsPbI_3
 233 (orthorhombic, $Pnma$) can be converted into cubic α phase
 234 (with undistorted corner shared $[\text{PbI}_6]^{4-}$ octahedra, $Pm-3m$)
 235 upon heating above 360 °C.^{72,73} There can be two more
 236 perovskite phases of CsPbI_3 at temperatures lower than 360 °C
 237 depending upon the amount of tilting of the $[\text{PbI}_6]^{4-}$
 238 octahedra: the β phase (260 °C) and the γ phase (175
 239 °C).⁷³ These kinetically stabilized perovskite phases convert
 240 into the nonperovskite δ phase at room temperature in
 241 ambient conditions. However, FAPbI_3 has been shown to exist
 242 in the trigonal phase (space group $P3m1$) at room temper-
 243 ature,^{14,73} although the ideal cubic perovskite phase with space
 244 group $Pm-3m$ has also been reported in multiple stud-
 245 ies.^{17,74–76} We generated the powder X-ray diffraction patterns
 246 using the reported crystallographic information to compare
 247 with our CsPbI_3 and FAPbI_3 NCs (see Figure S6). We note
 248 here that both of them are stabilized in the perovskite phase at
 249 room temperature under ambient conditions,^{26,56} although it is
 250 difficult to identify the exact amount of octahedral tilting and
 251 associated space group due to Scherrer broadening of the XRD
 252 peaks.

253 To obtain a particular composition of $\text{Cs}_{1-x}\text{FAXPbI}_3$, it is
 254 necessary to know the starting concentration of CsPbI_3 and
 255 FAPbI_3 NCs in the colloidal solution. However, this is not

256 straightforward without knowledge of the size-dependent 256
 257 molar extinction coefficient. While the size-dependent molar 257
 258 extinction coefficient for CsPbBr_3 NCs was recently 258
 259 published,⁷⁷ similar studies on CsPbI_3 and FAPbI_3 have not 259
 260 yet been reported. However, the energy levels of valence band 260
 261 maxima and conduction band minima in lead halide perov- 261
 262 skites are formed from lead and halide s and p atomic 262
 263 orbitals,^{78–80} and the density of states (DOS) near the band 263
 264 edges are similar for different APbX_3 perovskites if X is the 264
 265 same.⁸¹ It is therefore reasonable to assume that colloidal 265
 266 solutions of similarly sized CsPbI_3 and FAPbI_3 NCs with 266
 267 similar optical density near the band gap will have similar 267
 268 concentration of NCs in the component solutions. With this 268
 269 assumption, we mix the individual CsPbI_3 and FAPbI_3 NC 269
 270 solutions with similar absorbance near the band edge (see 270
 271 Figure S7 for the raw absorption data) in different ratios. The 271
 272 XRD patterns and the PL emission spectra of all the 272
 273 compositions vary linearly with the presumed compositions 273
 274 (see Figures 3C and S8) validating our approximation of 274
 275 concentration.

276 To closely monitor the A-site cation cross-exchange between 276
 277 CsPbI_3 and FAPbI_3 NCs, we performed the mixing at various 277
 278 temperatures in the range of 45 to 90 °C. Unlike the X-site 278
 279 exchange, which occurs rapidly (time scale of 2 min),⁴² the A- 279
 280 site exchange does not spontaneously occur at room 280
 281 temperature. The time-dependent PL measurements show 281
 282 that the two initial emission peaks merge into a single peak 282
 283 over time (the higher energy peak, referred to as E_1 , 283
 284 corresponds to the Cs-rich composition, and the lower energy 284
 285 peak, referred to as E_2 , corresponds to the FA-rich 285
 286 composition). As can be seen from Figure 4A–C (also 286 f4
 287 shown in Figure S9), these two peaks do not move 287
 288 substantially from the original positions of CsPbI_3 and 288
 289 FAPbI_3 at room temperature at least up to ~ 40 min. The 289
 290 exchange is temperature-dependent; the high-energy and the 290
 291 low-energy peaks merge more rapidly at elevated solution 291
 292 temperature. For example, if we look at the PL emission 292
 293 spectral profile after 60 min at three different temperatures, the 293
 294 emission spectrum has two distinct peaks at 45 °C that have 294
 295 merged into a single peak at 90 °C. The emission energies of 295
 296 E_1 and E_2 over time are plotted in Figure S10A. If we assume 296
 297

D

Figure 4. Temperature-dependent kinetics of A-site alloying. The evolution of PL emission peaks with time at reaction temperatures of (A) 45 °C, (B) 70 °C, and (C) 90 °C; the bottom-most spectra in these three figures show individual emission from CsPbI₃ (CPI, in blue) and FAPbI₃ (FAPI, in red). The next two spectra (shown in light and dark gray) are emissions at room temperature showing relatively stable peak positions. The remainder of the emission spectra are shown for the temporal evolution at elevated temperatures as labeled. (D) Shift in emission energy from their original position, depicting how the high-energy peak (E_1) is red-shifting from pure CsPbI₃ due to the incorporation of FA⁺ and how the low-energy peak (E_2) is blue-shifting from pure FAPbI₃ due to incorporation of Cs⁺ over time. The dotted lines are exponential fits to the experimental data. (E) Arrhenius plot showing the rates of conversion of CsPbI₃ (k_1 , bottom panel) and FAPbI₃ (k_2 , top panel) into Cs_{1-x}FA_xPbI₃ against 1/T (T being the absolute temperature). The dotted lines are linear fits to extract the activation energies ($E_{a,1}$ and $E_{a,2}$, respectively) for these processes.

that the change in PL peak position is linear with respect to composition, then the rate at which these peaks shift from emission energies of pure CsPbI₃ and FAPbI₃ can be related to how fast Cs⁺ and FA⁺ ions leave the starting NC and diffuse into the other NC. It remains experimentally difficult to decouple and monitor these two processes separately.

Nonetheless, we observe that the rate of shift of the high-energy (ΔE_1) and the low-energy peaks (ΔE_2) can be reasonably fitted with single exponentials, indicating a first-order process, as shown in Figure 4D (also see Figure S10B in the SI for zoomed-in version). These rates can be used to extract the activation energy (E_a) related to the alloying

309 process. Fitting these rates with the Arrhenius eq (Figure 4E) 310 yields an activation energy of ~ 0.65 eV (see the Supporting 311 Information for methods). This activation energy is higher 312 than that reported for I^- diffusion in methylammonium and 313 formamidinium lead iodide perovskites or Br^- and Cl^- 314 interdiffusion in $\text{CsPbCl}_x\text{Br}_{1-x}$ nanowires (~ 0.45 eV).^{82,83} 315 However, it has been reported in theoretical studies that 316 vacancy mediated diffusion of FA^+ ions has a surprisingly 317 similar activation barrier of ~ 0.6 eV in bulk FAPbI_3 .⁸² The A- 318 site alloying reported in this study is likely to be more 319 complicated, involving multiple mechanisms potentially 320 involving the NC surface ligands.

321 $\text{Cs}_{1-x}\text{FA}_x\text{PbI}_3$ NCs were used to fabricate photovoltaic 322 devices with the device architecture shown in Figure 5. There

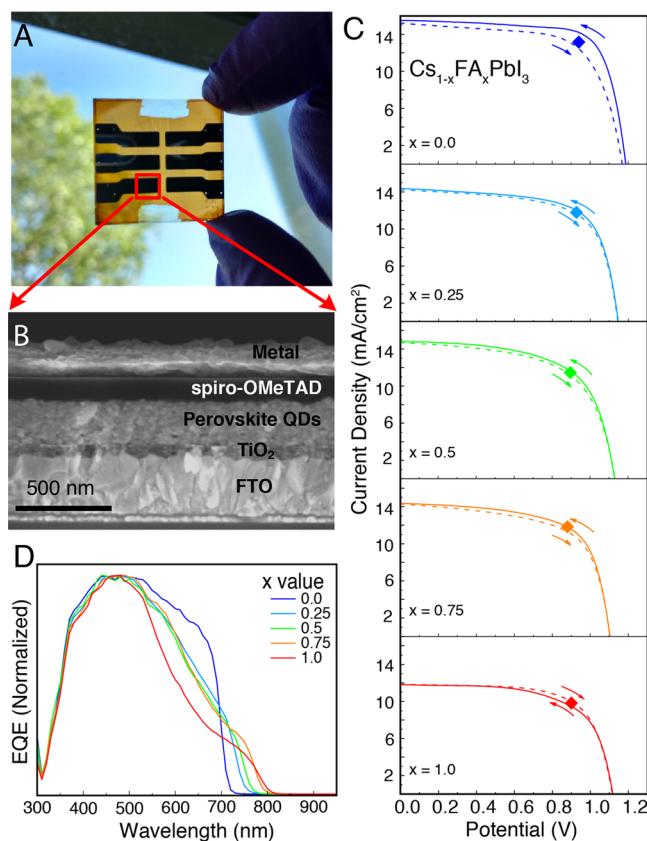


Figure 5. Solar-cell device performance of FAPbI_3 and the alloyed NCs. (A) Photograph of one of the solar cell devices. (B) The corresponding cross-sectional scanning electron microscopy image. (C) J – V curves for $\text{Cs}_{1-x}\text{FA}_x\text{PbI}_3$ QD devices; bottom to top: pure FAPbI_3 , $\text{Cs}_{0.25}\text{FA}_{0.75}\text{PbI}_3$, $\text{Cs}_{0.50}\text{FA}_{0.50}\text{PbI}_3$, $\text{Cs}_{0.75}\text{FA}_{0.25}\text{PbI}_3$, pure CsPbI_3 ; the solid and dotted lines represent reverse and forward scans, respectively; the solid squares on the J – V curves show the SPO values. (D) Normalized EQE scans for each composition showing the tunable onset position depending on the QD composition.

323 are several potential advantages to using perovskite QDs in 324 photovoltaic devices over large-grain perovskites. One main 325 advantage is the phase stabilization of metastable 326 CsPbI_3 .^{56,84,85} Second, ink for thin films is in the form of 327 molecular precursors, and the homogeneity of the multicrystal- 328 line absorber layer on the device depends on the substrate and 329 other parameters like solvent evaporation and temperature, 330 during crystallization.⁸⁶ Using colloidal crystalline NC inks

331 removes the substrate effects from the crystallization process 332 (because it occurs previously in solution during synthesis), 333 thus eliminating the need to precisely control the film 333 morphology, crystallinity, and homogeneity. As reported 334 previously, we used formamidinium iodide (FAI) as a surface 335 treatment to replace the long-chain oleylammonium li- 336 gands.^{64,85} The devices show stabilized power output (SPO) 337 efficiencies of 8.8–10.9% with low hysteresis and up to $\sim 75\%$ 338 external quantum efficiency (EQE) (see Figure 5C,D and 339 Table 1 for a summary).

To directly compare the V_{OC} of QD solar cells to the more- 341 traditional large-grain perovskite devices, we fabricated both 342 types of solar cells. The V_{OC} for both perovskite NCs devices 343 and large grain devices are compared as a function of the E_{G} 344 and of the A-site composition (fraction of FA) and are shown 345 in Figure 6 (also in Figure S12). The E_{G} values were extracted 346 from the onset of the EQE spectra. For the large-grain devices, 347 the A-site composition was tuned with a Cs fraction of 0 to 0.3 348 because of the previously mentioned challenge in crystal- 349 lization of compositions with higher amounts of Cs. We 350 obtained V_{OC} up to ~ 1.17 V in the QD devices, as compared 351 to the previously mentioned 1.0 V in bulk $\text{Cs}_{1-x}\text{FA}_x\text{PbI}_3$ 352 devices. All of our thin-film perovskite devices exhibit near 353 state-of-the art V_{OC} (see also Table S1) compared to the 354 literature for similar compositions and device architectures. 355

The quantum confinement effect in the NCs slightly 356 increases the E_{G} of a particular composition, so it is more 357 reasonable to compare the observed V_{OC} to that of the 358 thermodynamic limit for the determined E_{G} (the dashed line in 359 Figure 6A). We have plotted $V_{\text{OC}}/V_{\text{OC}}^{\text{MAX}}$ against E_{G} in Figure 360 6B and against fraction of FA in Figure S12B. Here, V_{OC} is the 361 observed open-circuit voltage, while $V_{\text{OC}}^{\text{MAX}}$ is the maximum 362 available open-circuit voltage for a single junction solar cell 363 with the given bandgap energy as determined by the 364 Shockley–Queisser (SQ) theoretical analysis.⁸⁷ This gives a 365 comparative estimate of voltage loss in the devices. As seen in 366 Figure 6, the V_{OC} loss is lower than that of the bulk perovskite 367 devices at any particular composition or bandgap value. 368 Another important finding to note here is that although the 369 pure FAPbI_3 QD devices have somewhat lower efficiency, they 370 exhibit the lowest V_{OC} loss, retaining approximately 89% of the 371 voltage thermodynamically available for the given E_{G} . 372

CONCLUSIONS

In conclusion, we have demonstrated a methodology with 374 which to synthesize colloidal $\text{Cs}_{1-x}\text{FA}_x\text{PbI}_3$ alloyed NCs via a 375 post-synthetic A-site cation cross-exchange between CsPbI_3 376 and FAPbI_3 NCs. This method allows us to synthesize NCs 377 with compositions that cannot be attained by direct synthesis 378 or in the bulk. The activation energy related to the alloying 379 process has been estimated to be ~ 0.65 eV, which is higher 380 than that associated with halide exchange. The solar-cell 381 performance with these alloyed NC inks shows increased 382 voltage approaching the SQ limit compared with the bulk 383 perovskite devices. We demonstrate the opportunity to expand 384 the library of tunable perovskite NCs via cation exchanges. We 385 postulate that a similar approach may also be applied to 386 perform B-site cation exchange in the future that may lead to 387 stable and tunable infrared-absorbing perovskite NCs. 388

METHODS

Materials. Cesium carbonate (Cs_2CO_3 ; 99.9%), oleic acid (OA; 390 technical grade, 90%), oleylamine (OlAm; technical grade, 70%), 1- 391

Table 1. Solar-Cell Device Parameters of the $\text{Cs}_{1-x}\text{FA}_x\text{PbI}_3$ QD Devices

	reverse				forward				SPO(%)
	V_{OC} (V)	J_{SC} (mA/cm ²)	FF	PCE (%)	V_{OC} (V)	J_{SC} (mA/cm ²)	FF	PCE (%)	
FAPbI_3	1.12	11.81	0.64	8.52	1.12	11.85	0.68	9.01	8.83
$\text{Cs}_{0.25}\text{FA}_{0.75}\text{PbI}_3$	1.1	14.37	0.66	10.41	1.11	14.35	0.63	10.05	10.41
$\text{Cs}_{0.5}\text{FA}_{0.5}\text{PbI}_3$	1.13	14.8	0.62	10.42	1.13	14.7	0.6	10.05	10.26
$\text{Cs}_{0.75}\text{FA}_{0.25}\text{PbI}_3$	1.15	14.36	0.68	11.14	1.14	14.23	0.66	10.77	10.93
CsPbI_3	1.18	15.5	0.73	13.47	1.17	15.2	0.66	11.75	12.37

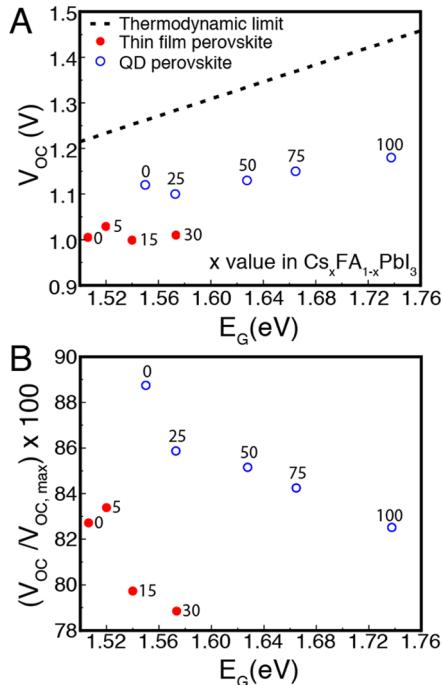


Figure 6. Estimation of voltage loss in the perovskite NC and thin-film devices. (A) Experimental V_{OC} s and (B) fraction of observed V_{OC} compared to the maximum attainable V_{OC} as functions of E_{G} ; the dashed line in panel A represents the theoretical thermodynamic limit for open-circuit voltage in single-junction solar cells as a function of the bandgap value and was generated using the data in ref 90. The numbers beside the solid and open circles represent the x in the $\text{Cs}_x\text{FA}_{1-x}\text{PbI}_3$ alloys.

under N_2 flow. At 180 °C, 2 mL of the Cs-oleate solution was swiftly injected into the PbI_2 mixture, and the reaction mixture was immediately quenched in an ice-water bath. To separate the CsPbI_3 NCs from the reaction liquor, 70 mL of MeOAc was added to the colloidal solution at room temperature and centrifuged at 7500 rpm for 5 min. The resulting precipitate was dispersed in 5 mL of hexane, re-precipitated with 5 mL MeOAc, and centrifuged again at 7500 rpm for 5 min. The resulting NCs were dispersed in 15 mL of hexane and stored in the refrigerator until used. To prepare solutions for spin coating and cation exchange, the CsPbI_3 NCs in hexane were removed from the refrigerator and centrifuged at 7500 for 5 min. The precipitate was discarded. The hexane from the supernatant was evaporated, and the NCs were finally redispersed in 1–2 mL of octane.

Synthesis of FAPbI_3 NCs. The FAPbI_3 NCs were synthesized following a method reported by Protesescu et al.²⁶ with slight modifications. Briefly, 0.74 mmol (0.344 g) PbI_2 and 20 mL 1-ODE were degassed under a vacuum at 120 °C for 30 min. A mixture of 4 mL of OA and 2 mL of OlAm, preheated to 120 °C, was then injected into the PbI_2 mixture under a vacuum. The mixture was briefly degassed under a vacuum until the PbI_2 mixture became clear. Under N_2 flow, the temperature was reduced to 80 °C. At 80 °C, 5 mL of the FA-oleate solution was swiftly injected into the PbI_2 mixture. After 5 s of reaction time, the reaction mixture was quenched using an ice-water bath. After the mixture cooled to room temperature, 1 mL of toluene and 5 mL of MeOAc were added, and the mixture was centrifuged at 8000 rpm for 30 min. The resulting NC precipitate was dispersed in 7 mL of toluene, re-precipitated with 5 mL of MeOAc, and centrifuged at 8000 rpm for 10 min. The final precipitate was redispersed in 5–7 mL of octane and stored under nitrogen for further use. The concentration of the FAPbI_3 NCs was adjusted to be comparable to that of the CsPbI_3 NC solution before synthesis of the alloys or fabrication of devices.

Synthesis of $\text{Cs}_{1-x}\text{FA}_x\text{PbI}_3$ Alloys. Colloidal solutions of CsPbI_3 and FAPbI_3 NCs dispersed in octane were mixed in different ratios to produce the desired Cs/FA stoichiometry. Before mixing, the absorption spectra of the individual samples were measured, and the concentration was adjusted so that each solution had a similar optical density near the band edge. The mixture was either left to react for 48 h at room temperature or reacted at different temperature (a maximum of 90 °C) for kinetics study.

Perovskite QD Device Fabrication. All of the solar devices were fabricated following earlier reported literature.⁶⁴ Briefly, a ~50 nm TiO_2 layer was deposited on a patterned FTO-coated glass substrate (Thin Film Devices, Inc.; precleaned via sonication in iso-propanol and then UV–ozone treated for 10 min). The sol–gel TiO_2 was prepared by mixing 5 mL of ethanol, 2 drops of HCl, 125 μL of deionized water, and 375 μL of titanium ethoxide and stirred continuously for 48 h. The TiO_2 solution was filtered through a 0.20 μm polyvinylidene difluoride filter before use. The sol–gel TiO_2 was spin-cast on the FTO–glass substrate at 3000 rpm for 30 s, annealed at 450 °C for 30 min. A total of four layers (~300 nm thick) of the QD absorber ink was then deposited layer-by-layer at 1000 rpm for 20 s followed by 2000 rpm for 5 s. The ligand-exchange steps during the QD layer deposition involved dipping (for ~1–2 s) the device in a saturated solution of $\text{Pb}(\text{NO}_3)_2$ in MeOAc (prepared by sonicating 20 mg $\text{Pb}(\text{NO}_3)_2$ in 20 mL of MeOAc for ~10 min and then removing the excess salt by centrifuging at 3500 for 5 min) after each layer deposition followed by rinsing with neat MeOAc and drying.

immediately with a jet of dry air. After these steps were repeated for 474 475 or 5 QD layers, the devices were finally soaked in a saturated solution 476 of FAI in EtOAc (prepared by sonicating ~20 mg of FAI salt in ~30 477 mL of EtOAc for ~15 min and then removing the excess salt by 478 centrifuging at 3500 for 5 min) for ~10 s, followed by rinsing with 479 neat MeOAc. The hole transporting materials was prepared by mixing 480 72.3 mg of spiro-OMeTAD, 28.8 mL of 4-TBP, 1 mL of 481 chlorobenzene, and 17.5 mL of Li-TFSI stock solution (520 mg/ 482 mL in acetonitrile). The spiro-OMeTAD solution was then spin-cast 483 on the QD absorber layer at 5000 rpm for 30 s. All deposition and 484 ligand-treatment procedures were performed in an ambient condition 485 at relative humidity of ~25–30%. The devices were left in the drybox 486 overnight before depositing the top electrodes. MoO_x was deposited 487 at a rate of 0.1–0.5 Å/s at a base pressure lower than 2×10^{-7} Torr 488 for a total thickness of 15 nm. Aluminum electrodes were evaporated 489 at a rate ranging from 0.5 to 2 Å/s for a total thickness of 120 nm.

490 Perovskite Thin-Film Device Fabrication. FAPbI₃ thin-film 491 devices were fabricated following previously reported study.²⁹ Briefly, 492 a thin compact TiO₂ layer with ~30 nm thickness was first spin-cast 493 (700 rpm for 10 s, 1000 rpm for 10 s, and 2000 rpm for 30 s) on 494 cleaned, patterned, FTO-coated glass substrates from a 0.2 M TAA 495 solution in 1-butanol. The TiO₂/FTO/glass substrate was then 496 annealed at 130 °C for 5 min and at 450 °C for 60 min. A 0.7 M 497 stoichiometric FAI and PbI₂ solution in anhydrous DMF was 498 prepared inside a glovebox and vortexed for 20 min at room 499 temperature. The resulting clear, bright-yellow solution was filtered 500 through a 0.20 μm polyvinylidene difluoride filter and spin-cast inside 501 a glovebox on the compact TiO₂/FTO substrate by a consecutive 502 three-step process: 500 rpm for 3 s, 3500 rpm for 10 s, and 5000 rpm 503 for 30 s. A total of 1–2 s before the end of second step, a drop of 504 toluene was gently placed on the spinning substrate. The resultant 505 films were annealed at 170 °C for 1 min. For FA/Cs alloys, absorber 506 layers were deposited following Zhen et al.¹⁶ Briefly, inside a 507 glovebox, stoichiometric amounts of FAI, CsI and PbI₂ were dissolved 508 in a mixed solvent of DMSO and DMF (v/v = 3:7) to obtain 509 precursor solutions of Cs_{1-x}FA_xPbI₃. All of the solutions were 510 dissolved at room temperature by vortexing, and they are filtered 511 through 0.20 μm polyvinylidene difluoride filters before use. The 512 solutions were then spin-cast on the TiO₂/FTO/glass substrate using 513 the following recipe: (1) 100 rpm for 3 s, (2) 3500 rpm for 10 s, (3) 514 5000 rpm for 30 s. During step 3, after 20 s, 1 mL of toluene was 515 deposited on the spinning substrate. The films were annealed at 170 516 °C for 10 min. Further layers, including spiro-OMeTAD deposition 517 and the electrode depositions, were similar to that of the QD devices 518 mentioned above except gold electrodes were deposited instead of 519 aluminum electrodes. All of the depositions were done inside a 520 nitrogen-filled glovebox.

521 Device Characterizations. All of the devices were tested using a 522 Newport Oriel Sol3A solar simulator with a xenon lamp source inside 523 a N₂-filled glovebox. A KG5 filtered Si reference diode was used to 524 calibrate the lamp intensity to 100 mW/cm² (AM1.5) and minimize 525 the spectral mismatch of the lamp source. Devices were illuminated 526 through a metal aperture (0.058 cm²). The devices were tested in 527 forward scan and reverse san at a scan rate of 20 mV/s. Stabilized 528 power output was measured by holding the device at a constant 529 voltage corresponding to the voltage at the maximum power point of 530 a previous J–V scan. EQE measurements were taken using a Newport 531 Oriel IQE200 system.

532 Calculation of Goldschmidt Tolerance Factor. The GTFs for 533 all of the alloy compositions of Cs_{1-x}FA_xPbI₃ were calculated using 534 the following formula:

$$t = \frac{[x \cdot r_{Cs} + (1 - x) \cdot r_{FA}] + r_X}{\sqrt{2} (r_{Pb} + r_X)}$$

535 where r_i is the ionic radius of the individual species. The Shannon 536 ionic radius for Cs⁺, Pb²⁺, and I⁻ were used,⁸⁸ while the reported 537 effective radius for FA⁺ was used for the following calculations:^{22,89} r_{Cs} 538 = 188 pm, r_{Pb} = 119 pm, r_I = 220 pm, and r_{FA} = 253 pm.

Estimation of Activation Energy. To calculate the activation 539 energy for the A-site cation exchange, CsPbI₃ and FAPbI₃ nanocrystal 540 solutions (1:1 ratio) were mixed at 45, 60, 70, 80, and 90 °C, and 541 aliquots were taken at different time intervals for PL emission 542 measurements. The PL emission spectra were then fitted with 543 Gaussian functions to extract the peak emission energies. Before 544 reaching a thermodynamically stable state with a single emission peak, 545 the PL emission spectra of the intermediate aliquots could be resolved 546 and fitted well with two Gaussians. The high-energy peak (denoted 547 E_1) is indicative of high-Cs-containing alloys, and the low-energy peak 548 (E_2) is indicative of high-FA-containing alloys in an ensemble of 549 nanocrystals. The shift of E_1 (ΔE_1) and E_2 (ΔE_2) from pure CsPbI₃ 550 and pure FAPbI₃ emission positions, respectively, were found to be 551 exponential as a function of time for all temperatures. The rate at 552 which the emission energies (k) shift was extracted from exponential 553 fitting. The activation energy, E_a , was then calculated using the 554 Arrhenius equation:

$$k = A_0 \exp\left(-\frac{E_a}{k_B T}\right)$$

Or,

$$\ln(k) = \left(-\frac{E_a}{k_B}\right)\frac{1}{T} + \ln(A_0)$$

where k_B is the Boltzmann constant, T is the absolute temperature, 557 and A_0 is the pre-exponential factor. 558

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the 561 ACS Publications website at DOI: [10.1021/acsnano.8b05555](https://doi.org/10.1021/acsnano.8b05555). 562

Additional details, figures, and tables related to the 563 preparation of precursors and characterization details 564 (PDF) 565

AUTHOR INFORMATION

Corresponding Author

*E-mail: joey.luther@nrel.gov.

ORCID

Abhijit Hazarika: [0000-0003-0391-2163](https://orcid.org/0000-0003-0391-2163)

Jeffrey A. Christians: [0000-0002-6792-9741](https://orcid.org/0000-0002-6792-9741)

Joseph J. Berry: [0000-0003-3874-3582](https://orcid.org/0000-0003-3874-3582)

Justin C. Johnson: [0000-0002-8874-6637](https://orcid.org/0000-0002-8874-6637)

Joseph M. Luther: [0000-0002-4054-8244](https://orcid.org/0000-0002-4054-8244)

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was authored by Alliance for Sustainable Energy, 578 LLC, the manager and operator of the National Renewable 579 Energy Laboratory for the U.S. Department of Energy (DOE) 580 under contract no. DE-AC36-08GO28308. We acknowledge 581 the Department of Defense Operational Energy Capability 582 Improvement Fund (OECIF) for development of the QD solar 583 cells with mixed cation. The device architecture and optical 584 characterization was supported by the Center for Advanced 585 Solar Photophysics and the Energy Frontier Research Center 586 funded by the U.S. Department of Energy, Office of Science, 587 Office of Basic Energy Sciences. Control samples of thin film 588 perovskites and structural characterization was performed by 589 authors supported by the hybrid perovskite solar cell program 590 funded by the U.S. Department of Energy Office of Energy 591

Efficiency and Renewable Energy Solar Energy Technologies Office. Cation exchange on perovskite was developed under the NREL Laboratory Directed Research and Development program. Q.Z. acknowledges fellowship support from the China Scholarship Council. J.A.C. was supported by the DOE Office of Energy Efficiency and Renewable Energy Postdoctoral Research Award through the Solar Energy Technologies Office under DOE contract no. DE-SC00014664. E.A.G. acknowledges support from the Director's Fellowship program of the National Renewable Energy Laboratory. We thank Ross Larsen for helpful discussion on determination of the activation energy and Rens Limpens for assistance on determining the PLQY. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government.

REFERENCES

- (1) NREL. Best Research-Cell Efficiencies. <https://www.nrel.gov/pv/assets/pdfs/pv-efficiencies-07-17-2018.pdf> (accessed August 28, 2018).
- (2) Manser, J. S.; Christians, J. A.; Kamat, P. V. Intriguing Optoelectronic Properties of Metal Halide Perovskites. *Chem. Rev.* **2016**, *116*, 12956–13008.
- (3) Yang, W. S.; Park, B.-W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H.; Seok, S. I. Iodide Management in Formamidinium-Lead-Halide-Based Perovskite Layers for Efficient Solar Cells. *Science* **2017**, *356*, 1376–1379.
- (4) Lin, Q.; Armin, A.; Burn, P. L.; Meredith, P. Organohalide Perovskites for Solar Energy Conversion. *Acc. Chem. Res.* **2016**, *49*, 545–553.
- (5) Gao, P.; Gratzel, M.; Nazeeruddin, M. K. Organohalide Lead Perovskites for Photovoltaic Applications. *Energy Environ. Sci.* **2014**, *7*, 2448–2463.
- (6) Stranks, S. D.; Snaith, H. J. Metal-Halide Perovskites for Photovoltaic and Light-Emitting Devices. *Nat. Nanotechnol.* **2015**, *10*, 391–402.
- (7) Docampo, P.; Bein, T. A Long-Term View on Perovskite Optoelectronics. *Acc. Chem. Res.* **2016**, *49*, 339–346.
- (8) Tan, Z.-K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. J.; Friend, R. H. Bright Light-Emitting Diodes Based on Organometal Halide Perovskite. *Nat. Nanotechnol.* **2014**, *9*, 687–692.
- (9) Aygüler, M. F.; Weber, M. D.; Puscher, B. M. D.; Medina, D. D.; Docampo, P.; Costa, R. D. Light-Emitting Electrochemical Cells Based on Hybrid Lead Halide Perovskite Nanoparticles. *J. Phys. Chem. C* **2015**, *119*, 12047–12054.
- (10) Yuan, M.; Quan, L. N.; Comin, R.; Walters, G.; Sabatini, R.; Voznyy, O.; Hoogland, S.; Zhao, Y.; Beauregard, E. M.; Kanjanaboos, P.; Lu, Z.; Kim, D. H.; Sargent, E. H. Perovskite Energy Funnels for Efficient Light-Emitting Diodes. *Nat. Nanotechnol.* **2016**, *11*, 872–877.
- (11) Stoumpos, C. C.; Kanatzidis, M. G. Halide Perovskites: Poor Man's High-Performance Semiconductors. *Adv. Mater.* **2016**, *28*, 5778–5793.
- (12) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. *J. Am. Chem. Soc.* **2009**, *131*, 6050–6051.
- (13) Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. *Science* **2012**, *338*, 643–647.
- (14) Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties. *Inorg. Chem.* **2013**, *52*, 9019–9038.
- (15) Christians, J. A.; Schulz, P.; Tinkham, J. S.; Schloemer, T. H.; Harvey, S. P.; Tremolet de Villers, B. J.; Sellinger, A.; Berry, J. J.; Luther, J. M. Tailored Interfaces of Unencapsulated Perovskite Solar Cells For > 1,000 h Operational Stability. *Nat. Energy* **2018**, *3*, 68–74.
- (16) Li, Z.; Yang, M.; Park, J.-S.; Wei, S.-H.; Berry, J. J.; Zhu, K. Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys. *Chem. Mater.* **2016**, *28*, 284–292.
- (17) Liu, T.; Zong, Y.; Zhou, Y.; Yang, M.; Li, Z.; Game, O. S.; Zhu, K.; Zhu, R.; Gong, Q.; Padture, N. P. High-Performance Formamidinium-Based Perovskite Solar Cells via Microstructure-Mediated δ -to- α Phase Transformation. *Chem. Mater.* **2017**, *29*, 3246–3250.
- (18) Lee, J. W.; Kim, D. H.; Kim, H. S.; Seo, S. W.; Cho, S. M.; Park, N. G. Formamidinium and Cesium Hybridization for Photo- and Moisture-Stable Perovskite Solar Cell. *Adv. Energy Mater.* **2015**, *5*, 1501310.
- (19) Yi, C.; Luo, J.; Meloni, S.; Boziki, A.; Ashari-Astani, N.; Gratzel, C.; Zakeeruddin, S. M.; Rothlisberger, U.; Gratzel, M. Entropic Stabilization of Mixed A-Cation ABX_3 Metal Halide Perovskites for High Performance Perovskite Solar Cells. *Energy Environ. Sci.* **2016**, *9*, 656–662.
- (20) Xia, X.; Wu, W.; Li, H.; Zheng, B.; Xue, Y.; Xu, J.; Zhang, D.; Gao, C.; Liu, X. Spray Reaction Prepared $FA_{1-x}Cs_xPbI_3$ Solid Solution as A Light Harvester for Perovskite Solar Cells with Improved Humidity Stability. *RSC Adv.* **2016**, *6*, 14792–14798.
- (21) Goldschmidt, V. M. Die Gesetze der Krystallochemie. *Naturwissenschaften* **1926**, *14*, 477–485.
- (22) Kieslich, G.; Sun, S.; Cheetham, A. K. Solid-State Principles Applied to Organic-Inorganic Perovskites: New Tricks for An Old Dog. *Chem. Sci.* **2014**, *5*, 4712–4715.
- (23) Green, M. A.; Ho-Baillie, A.; Snaith, H. J. The Emergence of Perovskite Solar Cells. *Nat. Photonics* **2014**, *8*, 506–514.
- (24) Travis, W.; Glover, E. N. K.; Bronstein, H.; Scanlon, D. O.; Palgrave, R. G. On the Application of the Tolerance Factor to Inorganic and Hybrid Halide Perovskites: A Revised System. *Chem. Sci.* **2016**, *7*, 4548–4556.
- (25) Saparov, B.; Mitzi, D. B. Organic–Inorganic Perovskites: Structural Versatility for Functional Materials Design. *Chem. Rev.* **2016**, *116*, 4558–4596.
- (26) Protesescu, L.; Yakunin, S.; Kumar, S.; Bär, J.; Bertolotti, F.; Masciocchi, N.; Guagliardi, A.; Grotewelt, M.; Shorubalko, I.; Bodnarchuk, M. I.; Shih, C.-J.; Kovalenko, M. V. Dismantling the “Red Wall” of Colloidal Perovskites: Highly Luminescent Formamidinium and Formamidinium–Cesium Lead Iodide Nanocrystals. *ACS Nano* **2017**, *11*, 3119–3134.
- (27) Lin, Y.; Chen, B.; Zhao, F.; Zheng, X.; Deng, Y.; Shao, Y.; Fang, Y.; Bai, Y.; Wang, C.; Huang, J. Matching Charge Extraction Contact for Wide-Bandgap Perovskite Solar Cells. *Adv. Mater.* **2017**, *29*, 1700607.
- (28) Khadka, D. B.; Shirai, Y.; Yanagida, M.; Noda, T.; Miyano, K. Tailoring the Open-Circuit Voltage Deficit of Wide-Band-Gap Perovskite Solar Cells Using Alkyl Chain-Substituted Fullerene Derivatives. *ACS Appl. Mater. Interfaces* **2018**, *10*, 22074–22082.
- (29) Pool, V. L.; Dou, B.; Van Campen, D. G.; Klein-Stockert, T. R.; Barnes, F. S.; Shaheen, S. E.; Ahmad, M. I.; van Hest, M. F. A. M.; Toney, M. F. Thermal Engineering of $FAPbI_3$ Perovskite Material via Radiative Thermal Annealing and *in situ* XRD. *Nat. Commun.* **2017**, *8*, 14075.
- (30) Eperon, G. E.; Paterno, G. M.; Sutton, R. J.; Zampetti, A.; Haghhighirad, A. A.; Cacialli, F.; Snaith, H. J. Inorganic Caesium Lead Iodide Perovskite Solar Cells. *J. Mater. Chem. A* **2015**, *3*, 19688–19695.
- (31) Kubicki, D. J.; Prochowicz, D.; Hofstetter, A.; Zakeeruddin, S. M.; Grätzel, M.; Emsley, L. Phase Segregation in Potassium-Doped Lead Halide Perovskites from 39K Solid-State NMR at 21.1 T. *J. Am. Chem. Soc.* **2018**, *140*, 7232–7238.
- (32) Nazarenko, O.; Yakunin, S.; Morad, V.; Cherniukh, I.; Kovalenko, M. V. Single Crystals of Caesium Formamidinium Lead

726 Halide Perovskites: Solution Growth and Gamma Dosimetry. *NPG
727 Asia Mater.* **2017**, *9*, e373.

728 (33) Son, D. H.; Hughes, S. M.; Yin, Y.; Alivisatos, A. P. Cation
729 Exchange Reactions in Ionic Nanocrystals. *Science* **2005**, *36*, 1009–
730 1012.

731 (34) Pietryga, J. M.; Werder, D. J.; Williams, D. J.; Casson, J. L.;
732 Schaller, R. D.; Klimov, V. I.; Hollingsworth, J. A. Utilizing the
733 Lability of Lead Selenide to Produce Heterostructured Nanocrystals
734 with Bright, Stable Infrared Emission. *J. Am. Chem. Soc.* **2008**, *130*,
735 4879–4885.

736 (35) Luther, J. M.; Zheng, H.; Sadtler, B.; Alivisatos, A. P. Synthesis
737 of PbS Nanorods and Other Ionic Nanocrystals of Complex
738 Morphology by Sequential Cation Exchange Reactions. *J. Am.
739 Chem. Soc.* **2009**, *131*, 16851–16857.

740 (36) Beberwyck, B. J.; Alivisatos, A. P. Ion Exchange Synthesis of
741 III–V Nanocrystals. *J. Am. Chem. Soc.* **2012**, *134*, 19977–19980.

742 (37) Routzahn, A. L.; Jain, P. K. Single-Nanocrystal Reaction
743 Trajectories Reveal Sharp Cooperative Transitions. *Nano Lett.* **2014**,
744 *14*, 987–992.

745 (38) De Trizio, L.; Gaspari, R.; Bertoni, G.; Kriegel, I.; Moretti, L.;
746 Scotognella, F.; Maserati, L.; Zhang, Y.; Messina, G. C.; Prato, M.;
747 Marras, S.; Cavalli, A.; Manna, L. Cu_{3-x}P Nanocrystals as a Material
748 Platform for Near-Infrared Plasmonics and Cation Exchange
749 Reactions. *Chem. Mater.* **2015**, *27*, 1120–1128.

750 (39) Li, H.; Zanella, M.; Genovese, A.; Povia, M.; Falqui, A.;
751 Giannini, C.; Manna, L. Sequential Cation Exchange in Nanocrystals:
752 Preservation of Crystal Phase and Formation of Metastable Phases.
753 *Nano Lett.* **2011**, *11*, 4964–4970.

754 (40) Akkerman, Q. A.; Genovese, A.; George, C.; Prato, M.;
755 Moreels, I.; Casu, A.; Marras, S.; Curcio, A.; Scarpellini, A.; Pellegrino,
756 T.; Manna, L.; Lesnyak, V. From Binary Cu₂S to Ternary Cu–In–S
757 and Quaternary Cu–In–Zn–S Nanocrystals with Tunable Compo-
758 sition via Partial Cation Exchange. *ACS Nano* **2015**, *9*, 521–531.

759 (41) Rivest, J. B.; Jain, P. K. Cation Exchange on the Nanoscale: An
760 Emerging Technique for New Material Synthesis, Device Fabrication,
761 and Chemical Sensing. *Chem. Soc. Rev.* **2013**, *42*, 89–96.

762 (42) Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.;
763 Grotevent, M. J.; Kovalenko, M. V. Fast Anion-Exchange in Highly
764 Luminescent Nanocrystals of Cesium Lead Halide Perovskites
765 (CsPbX₃, X = Cl, Br, I). *Nano Lett.* **2015**, *15*, 5635–5640.

766 (43) Akkerman, Q. A.; D’Innocenzo, V.; Accornero, S.; Scarpellini,
767 A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the Optical Properties
768 of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange
769 Reactions. *J. Am. Chem. Soc.* **2015**, *137*, 10276–10281.

770 (44) Ramasamy, P.; Lim, D.-H.; Kim, B.; Lee, S.-H.; Lee, M.-S.; Lee,
771 J.-S. All-Inorganic Cesium Lead Halide Perovskite Nanocrystals for
772 Photodetector Applications. *Chem. Commun.* **2016**, *52*, 2067–2070.

773 (45) Bekenstein, Y.; Koscher, B. A.; Eaton, S. W.; Yang, P.;
774 Alivisatos, A. P. Highly Luminescent Colloidal Nanoplates of
775 Perovskite Cesium Lead Halide and Their Oriented Assemblies. *J.
776 Am. Chem. Soc.* **2015**, *137*, 16008–16011.

777 (46) Koscher, B. A.; Bronstein, N. D.; Olshansky, J. H.; Bekenstein,
778 Y.; Alivisatos, A. P. Surface- vs Diffusion-Limited Mechanisms of
779 Anion Exchange in CsPbBr₃ Nanocrystal Cubes Revealed through
780 Kinetic Studies. *J. Am. Chem. Soc.* **2016**, *138*, 12065–12068.

781 (47) Bi, C.; Wang, S.; Wen, W.; Yuan, J.; Cao, G.; Tian, J. Room-
782 Temperature Construction of Mixed-Halide Perovskite Quantum
783 Dots with High Photoluminescence Quantum Yield. *J. Phys. Chem. C*
784 **2018**, *122*, 5151–5160.

785 (48) Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.;
786 Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V.
787 Nanocrystals of Cesium Lead Halide Perovskites (CsPbX₃, X = Cl, Br,
788 and I): Novel Optoelectronic Materials Showing Bright Emission with
789 Wide Color Gamut. *Nano Lett.* **2015**, *15*, 3692–3696.

790 (49) Swarnkar, A.; Chulliyil, R.; Ravi, V. K.; Irfanullah, M.;
791 Chowdhury, A.; Nag, A. Colloidal CsPbBr₃ Perovskite Nanocrystals:
792 Luminescence Beyond Traditional Quantum Dots. *Angew. Chem.
793 2015*, *127*, 15644–15648.

794 (50) Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V. Low-Threshold Amplified Spontaneous Emission and Lasing from Colloidal Nanocrystals of Cesium Lead Halide Perovskites. *Nat. Commun.* **2015**, *6*, 8056.

795 (51) Kwak, D.-H.; Lim, D.-H.; Ra, H.-S.; Ramasamy, P.; Lee, J.-S. High performance Hybrid Graphene-CsPbBr₃I_x Perovskite Nano-crystal Photodetector. *RSC Adv.* **2016**, *6*, 65252–65256.

796 (52) Hassan, Y.; Song, Y.; Pensack, R. D.; Abdelrahman, A. I.; Kobayashi, Y.; Winnik, M. A.; Scholes, G. D. Structure-Tuned Lead Halide Perovskite Nanocrystals. *Adv. Mater.* **2016**, *28*, 566–573.

797 (53) Huang, H.; Chen, B.; Wang, Z.; Hung, T. F.; Susha, A. S.; Zhong, H.; Rogach, A. L. Water Resistant CsPbX₃ Nanocrystals Coated with Polyhedral Oligomeric Silsesquioxane and Their Use as Solid State Luminophores in All-Perovskite White Light-Emitting Devices. *Chem. Sci.* **2016**, *7*, 5699–5703.

798 (54) Eaton, S. W.; Lai, M.; Gibson, N. A.; Wong, A. B.; Dou, L.; Ma, J.; Wang, L.-W.; Leone, S. R.; Yang, P. Lasing in Robust Cesium Lead Halide Perovskite Nanowires. *Proc. Natl. Acad. Sci. U. S. A.* **2016**, *113*, 1993–1998.

799 (55) Pan, J.; Quan, L. N.; Zhao, Y.; Peng, W.; Murali, B.; Sarmah, S. P.; Yuan, M.; Sinatra, L.; Alyami, N. M.; Liu, J.; Yassitepe, E.; Yang, Z.; Voznyy, O.; Comin, R.; Hedhili Mohamed, N.; Mohammed Omar, F.; Lu Zheng, H.; Kim Dong, H.; Sargent Edward, H.; Bakr Osman, M.; et al. Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering. *Adv. Mater.* **2016**, *28*, 8718–8725.

800 (56) Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T.; Luther, J. M. Quantum Dot-Induced Phase Stabilization of α -CCsPbI₃ Perovskite for High-Efficiency Photovoltaics. *Science* **2016**, *354*, 92–95.

801 (57) Cho, J.; Jin, H.; Sellers, D. G.; Watson, D. F.; Son, D. H.; Banerjee, S. Influence of Ligand Shell Ordering on Dimensional Confinement of Cesium Lead Bromide (CsPbBr₃) Perovskite Nanoplatelets. *J. Mater. Chem. C* **2017**, *5*, 8810–8818.

802 (58) Maes, J.; Balcaen, L.; Drijvers, E.; Zhao, Q.; De Roo, J.; Vantomme, A.; Vanhaecke, F.; Geiregat, P.; Hens, Z. Light Absorption Coefficient of CsPbBr₃ Perovskite Nanocrystals. *J. Phys. Chem. Lett.* **2018**, *9*, 3093–3097.

803 (59) Kovalenko, M. V.; Protesescu, L.; Bodnarchuk, M. I. Properties and Potential Optoelectronic Applications of Lead Halide Perovskite Nanocrystals. *Science* **2017**, *358*, 745–750.

804 (60) Yan, F.; Xing, J.; Xing, G.; Quan, L.; Tan, S. T.; Zhao, J.; Su, R.; Zhang, L.; Chen, S.; Zhao, Y.; Huan, A.; Sargent, E. H.; Xiong, Q.; Demir, H. V. Highly Efficient Visible Colloidal Lead-Halide Perovskite Nanocrystal Light-Emitting Diodes. *Nano Lett.* **2018**, *18*, 3157–3164.

805 (61) Maceiczyk, R. M.; Dümmbgen, K.; Lignos, I.; Protesescu, L.; Kovalenko, M. V.; deMello, A. J. Microfluidic Reactors Provide Preparative and Mechanistic Insights into the Synthesis of Formamidinium Lead Halide Perovskite Nanocrystals. *Chem. Mater.* **2017**, *29*, 8433–8439.

806 (62) Dong, Y.; Qiao, T.; Kim, D.; Parobek, D.; Rossi, D.; Son, D. H. Precise Control of Quantum Confinement in Cesium Lead Halide Perovskite Quantum Dots via Thermodynamic Equilibrium. *Nano Lett.* **2018**, *18*, 3716–3722.

807 (63) Akkerman, Q. A.; Rainò, G.; Kovalenko, M. V.; Manna, L. Genesis, Challenges and Opportunities for Colloidal Lead Halide Perovskite Nanocrystals. *Nat. Mater.* **2018**, *17*, 394–405.

808 (64) Sanehira, E. M.; Marshall, A. R.; Christians, J. A.; Harvey, S. P.; Ciesielski, P. N.; Wheeler, L. M.; Schulz, P.; Lin, L. Y.; Beard, M. C.; Luther, J. M. Enhanced Mobility CsPbI₃ Quantum Dot Arrays for Record-Efficiency, High-Voltage Photovoltaic Cells. *Sci. Adv.* **2017**, *3*, eaao4204.

809 (65) Zou, C.; Huang, C.-Y.; Sanehira, E. M.; Luther, J. M.; Lin, L. Y. Highly Stable Cesium Lead Iodide Perovskite Quantum Dot Light-Emitting Diodes. *Nanotechnology* **2017**, *28*, 455201.

810 (66) Lignos, I.; Morad, V.; Shynkarenko, Y.; Bernasconi, C.; Maceiczyk, R. M.; Protesescu, L.; Bertolotti, F.; Kumar, S.;

863 Ochsenbein, S. T.; Masciocchi, N.; Guagliardi, A.; Shih, C. J.;
864 Bodnarchuk, M. I.; deMello, A. J.; Kovalenko, M. V. Exploration of
865 Near-Infrared-Emissive Colloidal Multinary Lead Halide Perovskite
866 Nanocrystals Using an Automated Microfluidic Platform. *ACS Nano*
867 **2018**, *12*, 5504–5517.

868 (67) Wheeler, L. M.; Anderson, N. C.; Bliss, T. S.; Hautzinger, M.
869 P.; Neale, N. R. Dynamic Evolution of 2D Layers within Perovskite
870 Nanocrystals via Salt Pair Extraction and Reinsertion. *J. Phys. Chem. C*
871 **2018**, *122*, 14029–14038.

872 (68) Talapin, D. V.; Haubold, S.; Rogach, A. L.; Kornowski, A.;
873 Haase, M.; Weller, H. A Novel Organometallic Synthesis of Highly
874 Luminescent CdTe Nanocrystals. *J. Phys. Chem. B* **2001**, *105*, 2260–
875 2263.

876 (69) Norris, D. J.; Bawendi, M. G. Measurement and Assignment of
877 the Size-Dependent Optical Spectrum in CdSe Quantum Dots. *Phys.*
878 *Rev. B: Condens. Matter Mater. Phys.* **1996**, *53*, 16338–16346.

879 (70) Mićić, O. I.; Cheong, H. M.; Fu, H.; Zunger, A.; Sprague, J. R.;
880 Mascarenhas, A.; Nozik, A. J. Size-Dependent Spectroscopy of InP
881 Quantum Dots. *J. Phys. Chem. B* **1997**, *101*, 4904–4912.

882 (71) Ithurria, S.; Talapin, D. V. Colloidal Atomic Layer Deposition
883 (c-ALD) using Self-Limiting Reactions at Nanocrystal Surface
884 Coupled to Phase Transfer between Polar and Nonpolar Media. *J.*
885 *Am. Chem. Soc.* **2012**, *134*, 18585–18590.

886 (72) Trots, D. M.; Myagkota, S. V. High-Temperature Structural
887 Evolution of Caesium and Rubidium Triiodoplumbates. *J. Phys. Chem.*
888 *Solids* **2008**, *69*, 2520–2526.

889 (73) Stoumpos, C. C.; Kanatzidis, M. G. The Renaissance of Halide
890 Perovskites and Their Evolution as Emerging Semiconductors. *Acc.*
891 *Chem. Res.* **2015**, *48*, 2791–2802.

892 (74) Weller, M. T.; Weber, O. J.; Frost, J. M.; Walsh, A. Cubic
893 Perovskite Structure of Black Formamidinium Lead Iodide, α -
894 $[\text{HC}(\text{NH}_2)_2]\text{PbI}_3$, at 298 K. *J. Phys. Chem. Lett.* **2015**, *6*, 3209–3212.

895 (75) Fabini, D. H.; Stoumpos, C. C.; Laurita, G.; Kaltzoglou, A.;
896 Kontos, A. G.; Falaras, P.; Kanatzidis, M. G.; Seshadri, R. Reentrant
897 Structural and Optical Properties and Large Positive Thermal
898 Expansion in Perovskite Formamidinium Lead Iodide. *Angew.*
899 *Chem., Int. Ed.* **2016**, *55*, 15392–15396.

900 (76) Weber, O. J.; Ghosh, D.; Gaines, S.; Henry, P. F.; Walker, A. B.;
901 Islam, M. S.; Weller, M. T. Phase Behavior and Polymorphism of
902 Formamidinium Lead Iodide. *Chem. Mater.* **2018**, *30*, 3768–3778.

903 (77) De Roo, J.; Ibáñez, M.; Geiregat, P.; Nedelcu, G.; Walravens,
904 W.; Maes, J.; Martins, J. C.; Van Driessche, I.; Kovalenko, M. V.;
905 Hens, Z. Highly Dynamic Ligand Binding and Light Absorption
906 Coefficient of Cesium Lead Bromide Perovskite Nanocrystals. *ACS*
907 *Nano* **2016**, *10*, 2071–2081.

908 (78) Zhu, X.; Su, H.; Marcus, R. A.; Michel-Beyerle, M. E.
909 Computed and Experimental Absorption Spectra of the Perovskite
910 $\text{CH}_3\text{NH}_3\text{PbI}_3$. *J. Phys. Chem. Lett.* **2014**, *5*, 3061–3065.

911 (79) Endres, J.; Egger, D. A.; Kulbak, M.; Kerner, R. A.; Zhao, L.;
912 Silver, S. H.; Hodes, G.; Rand, B. P.; Cahen, D.; Kronik, L.; Kahn, A.
913 Valence and Conduction Band Densities of States of Metal Halide
914 Perovskites: A Combined Experimental–Theoretical Study. *J. Phys.*
915 *Chem. Lett.* **2016**, *7*, 2722–2729.

916 (80) Ravi, V. K.; Markad, G. B.; Nag, A. Band Edge Energies and
917 Excitonic Transition Probabilities of Colloidal CsPbX_3 (X = Cl, Br, I)
918 Perovskite Nanocrystals. *ACS Energy Lett.* **2016**, *1*, 665–671.

919 (81) Amat, A.; Mosconi, E.; Ronca, E.; Quart, C.; Umari, P.;
920 Nazeeruddin, M. K.; Grätzel, M.; De Angelis, F. Cation-Induced
921 Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin-
922 Orbit Coupling and Octahedra Tilting. *Nano Lett.* **2014**, *14*, 3608–
923 3616.

924 (82) Haruyama, J.; Sodeyama, K.; Han, L.; Tateyama, Y. First-
925 Principles Study of Ion Diffusion in Perovskite Solar Cell Sensitizers.
926 *J. Am. Chem. Soc.* **2015**, *137*, 10048–10051.

927 (83) Pan, D.; Fu, Y.; Chen, J.; Czech, K. J.; Wright, J. C.; Jin, S.
928 Visualization and Studies of Ion-Diffusion Kinetics in Cesium Lead
929 Bromide Perovskite Nanowires. *Nano Lett.* **2018**, *18*, 1807–1813.

930 (84) Wang, Q.; Jin, Z.; Chen, D.; Bai, D.; Bian, H.; Sun, J.; Zhu, G.;
931 Wang, G.; Liu, S. μ -Graphene Crosslinked CsPbI_3 Quantum Dots for
932 High Efficiency Solar Cells with Much Improved Stability. *Adv. Energy*
933 *Mater.* **2018**, *8*, 1800007.

(85) Wheeler, L. M.; Sanehira, E. M.; Marshall, A. R.; Schulz, P.;
Suri, M.; Anderson, N. C.; Christians, J. A.; Nordlund, D.; Sokaras, D.;
Kroll, T.; Harvey, S. P.; Berry, J. J.; Lin, L. Y.; Luther, J. M. Targeted
Ligand-Exchange Chemistry on Cesium Lead Halide Perovskite
Quantum Dots for High-Efficiency Photovoltaics. *J. Am. Chem. Soc.* **2018**, *140*, 10504–10513.

(86) Caraballo, F.; Kumano, M.; Saeki, A. Spatial Inhomogeneity of
Methylammonium Lead-Mixed Halide Perovskite Examined by
Space- and Time-Resolved Microwave Conductivity. *ACS Omega* **2017**, *2*, 8020–8026.

(87) Shockley, W.; Queisser, H. J. Detailed Balance Limit of
Efficiency of p-n Junction Solar Cells. *J. Appl. Phys.* **1961**, *32*, 510–
519.

(88) Shannon, R. D. Revised Effective Ionic Radii and Systematic
Studies of Interatomic Distances in Halides and Chalcogenides. *Acta*
Crystallogr., Sect. A: Cryst. Phys., Diff., Theor. Gen. Crystallogr. **1976**, *949*
32, 751–767.

(89) Kieslich, G.; Sun, S.; Cheetham, A. K. An Extended Tolerance
Factor Approach for Organic-Inorganic Perovskites. *Chem. Sci.* **2015**, *952*
6, 3430–3433.

(90) Rühle, S. Tabulated Values of the Shockley–Queisser Limit for
Single Junction Solar Cells. *Sol. Energy* **2016**, *130*, 139–147.