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Abstract

Identifying dynamic causal inference involved in flow and transport processes in
complex fractured-porous media is generally a challenging task, because nonlinear and
chaotic variables may be positively coupled or correlated for some periods of time, but
can then become spontaneously decoupled or non-correlated. In his 2002 paper
(Faybishenko, 2002), the author performed a nonlinear dynamical and chaotic analysis
of time-series data obtained from the fracture flow experiment conducted by Persoff
and Pruess (1995), and, based on the visual examination of time series data,
hypothesized that the observed pressure oscillations at both inlet and outlet edges of
the fracture result from a superposition of both forward and return waves of pressure
propagation through the fracture. In the current paper, the author explores an
application of a combination of methods for detecting nonlinear chaotic dynamics
behavior along with the multivariate Granger Causality (G-causality) time series test.
Based on the G-causality test, the author infers that his hypothesis is correct, and
presents a causation loop diagram of the spatial-temporal distribution of gas, liquid, and
capillary pressures measured at the inlet and outlet of the fracture. The causal
modeling approach can be used for the analysis of other hydrological processes, for
example, infiltration and pumping tests in heterogeneous subsurface media, and
climatic processes, for example, to find correlations between various meteorological
parameters, such as temperature, solar radiation, barometric pressure, etc.

Keywords: Two-phase fracture flow; nonlinear dynamics; time series; capillary pressure;
Granger causality; causality loop diagram.

1. Introduction

It is well established that nonlinearity is often a typical feature of many ecological
processes (e.g., Casini et al., 2009; Sugihara and May, 1990; Dixon et al., 1999).
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Nonlinearity is also known to exist for flow in hydrological systems (Perfect, 1997,
Weeks and Sposito, 1998; Pasternack, 1999; Sposito, 1999; Sivakumar, 2000) and
fractured-porous media (Faybishenko, 2002; 2003). Since the work of French
mathematician Henri Poincaré, it has also been known that nonlinear deterministic
systems can behave in an apparently unpredictable, chaotic manner. Chaotic
phenomena are widespread in all fields of sciences, including physics (Abarbanel, 1996),
chemistry (Winfree, 1984), biology (May, 1974; Skarda & Freeman, 1987), psychology
(Guastello et al., 2009), ecology (Nicolis, 1991; Beninca et al., 2008; Cushing et al., 2003),
etc. The principal source of difficulties in analyzing hydrological models is the extreme
variety, variability, and complexity of processes that affect hydrologic phenomena,
which require the knowledge of different temporal and spatial scales of these processes
and their interactions, temporal and spatial irregularities and instabilities, requiring the
application of empirical and causal models in hydrology (Klemes, 1982; Gilvear et al.,
2016). Because of these difficulties, identifying the causality, i.e., the cause-effect of
multiple variables, in complex hydrological systems is generally a difficult task, because
variables that may be positively coupled or correlated for some periods of time can then
become spontaneously decoupled or non-correlated due to chaotic nature of underlying
processes. For most flow and transport problems in fractured rock, it is not possible to
develop models directly from first principles (Pruess et al., 1999; Faybishenko, 2002),
and is not possible to develop mathematical models, using systems of partial differential
equations, to be used for predictions (Committee on Major U.S. Oceanographic..., 1999).

Over the last 30-40 years, there has been a great deal of field, laboratory, and modeling
research in fractured-rock hydrogeology [e.g., Bear et al., National Research Council,
Faybishenko et al. [2000; 2016; Nicholl et al., 1994] concerning the spatial and temporal
instabilities of flow in unsaturated media. Despite of many publications, the physics of
such flow remains unclear. In his previous publications the author showed that the
unsaturated fractured-rock system is chaotic because the flow processes are nonlinear,
sensitive to initial conditions, and dissipative, and confirmed that the presence of
chaotic behavior by calculating diagnostic chaotic parameters for gas, liquid, and
capillary pressures, measured during the water—gas injection in fractures, as well as
laboratory and field dripping-water experiments. These results revealed the presence of
deterministic chaos in the intra-fracture flow processes accompanied by a random
component. Deterministic chaos, in conjunction with noise effects, creates a source of
irreducible uncertainty for long-term predictions, which implies that the predictability of
a chaotic system cannot be improved by making more precise measurements of initial
conditions and system parameters. Deterministic chaotic modes can provide
meaningful predictions for a limited time duration, after which only stochastic models
can be used [Schuster, 1989]. Moreover, for nonlinear dynamical processes, a lack of
correlation, which is some time determined using conventional statistical methods, does
not imply the lack of causation. Conversely, the presence of correlation does not imply
the presence of real physical relationship between the variables. For example, using the
results of the fracture flow test (Persoff and Pruess, 1995), the author (Faybishenko,
2002) examined the time series of inlet and outlet gas and liquid pressure oscillations,



and showed that the pressure buildup first begins at the inlet and then propagates to
the outlet of the fracture. This pattern means that a pressure-wave propagates forward
as the water-air mixture moves from the inlet to the outlet of the fracture.
Theoretically, the amplitude of forward and return waves must decay in the direction of
flow, implying the dispersion of flow (Rabinovich and Trubetskov, 1994, p. 228).
However, the pressure drop first begins at the outlet and then propagates backward to
the inlet. The author hypothesized that the observed quasi-periodic pressure
oscillations at both inlet and outlet ends of the fracture result from a superposition of
both forward and return waves of pressure propagation through the fracture. However,
no quantitative evaluation of these phenomena of directional influences in fracture flow
has yet been given.

The objective of this paper is to quantitatively characterize the interconnection between
the inlet and outlet gas, liquid, and capillary pressure measurements, using a
combination of methods of detecting chaotic behavior and the Granger causality (GC)
testing of multivariable time series, based on the gas and water measurements in
flowing fracture. The structure of the paper is as follows. Section 2 includes a brief
description of the Persoff-Pruess experiment and the results of the nonlinear dynamics
analysis of time series gas and liquid inlet and outlet pressures and capillary pressures.
Section 3 provides a description of the methods used for causality testing in this paper.
Section 4 includes a discussion of the results of calculations, including a presentation of
the causality loop diagram, and Section 5 presents conclusions and directions of future
research.

2. Brief description of the fracture flow experiment and
evaluation of diagnostic parameters of nonlinear dynamics

2.1. Persoff and Pruess (1995) Experiment

Persoff and Pruess (1995) conducted a series of two-phase flow experiments by
simultaneously injecting water and nitrogen gas (respectfully, wetting and nonwetting
phases) into replicas of natural rough-walled rock fractures in granite (from the Stripa
mine in Sweden) and tuff (from Dixie Valley, Nevada). The scheme of the experimental
design and measurements is shown in Figure 1. Gas was injected at the inlet edge to a
plenum that distributed gas to a set of 40 vertical grooves in the porous block. Gas and
liquid pressures at the inlet and outlet edges of the fracture were measured for a series
of constant flow rates. Capillary pressure was measured using the differential pressure
transducers installed at the inlet and outlet edges of the fracture. Assuming fractures as
homogeneous porous media, and using averaged pressures, liquid and gas relative
permeability functions were calculated based on the theory of Darcy flow. In this paper,
we will analyze the results of Experiment C, which was carried out using the Stripa
natural rock (fracture hydrodynamic aperture 21.7 um) with a gas flow rate of 0.52
cm?/min (measured at standard conditions), and a liquid flow rate of 0.25 cm®/min (the
gas-liquid volumetric flow ratio is approximately 2), and the Reynolds numbers was



much less than 1.

2.2. Time Series of Gas and Liquid Pressures

Figure 2 shows measured gas and liquid pressure time series, which were collected
every 0.4 sec. Figure 3 demonstrates differential gas and liquid pressures along the
length of the fracture (determined using differential pressure transducers installed
between inlet and outlet gas pressures), and reveals that the drop in the liquid pressure
corresponds to the spike in the gas pressure. The sharp drops in the gas differential
pressure occurred at the time of the increase in the differential liquid pressure.
Instabilities in the liquid and air pressures, observed under constant liquid and gas
injection rates, were likely resulted from recurring changes in phase occupancy between
liquid and gas at a critical pore throat in a fracture, as well as a competition between
fluid pressures caused by injection and capillary effects driving the liquid to the critical
throat (Persoff and Pruess, 1995).

The time series data were used for a pair-wise comparison of measured gas (Pg.i) and
liquid (Py;,) pressures, which is shown in Figure 4 by plotting two-dimensional
scatterplots, i.e., phase-space attractors. Figure 4a shows that the inlet gas-liquid
pressure (Pgin vs. P.jin) attractor (black color) is only slightly skewed from the 1:1 line
(thin black line), and is located in the area of greater values of the pressures. The shape
of the outlet gas-liquid attractor (green color) is different: it is practically horizontal
(extended in the x direction along the gas pressure coordinate), and narrower in the y
direction (i.e., liquid pressure); the outlet attractor is located in the area of lower values
of the pressures —the lower pressures at the outlet are expected due to flow from the
inlet to the outlet.

Figure 4b shows the scatterplots/attractors of the gas inlet (Pgn) — gas outlet (Pg.out)
pressures and liquid inlet (P,;) — liquid outlet (P oy) pressures. One can see a narrower
scatterplot, close to a linear relationship, of the inlet-outlet liquid pressure, and a much
more scattered plot of the inlet-outlet gas pressures. One can see that both plots are
shifted from the 1:1 line, because the inlet pressures exceed the outlet pressures.

Figure 5 illustrates the time variations of the capillary pressures at the inlet and outlet of
the fracture, which were measured using differential pressure transducers between the
gas and liquid ports. This figure shows that relatively short periods of laminar flow,
when the capillary pressure was negative (shown in Figure 5 below the line P, = 0), are
interrupted by chaotic surges in the capillary pressure, when the capillary pressure
increased to positive values. Persoff and Pruess (1995) suggested that the pressure
changes resulted from recurring blockage of critical pore throats and phase changes
between water and gas, and the rapid drop in capillary pressure at the end of each
chaotic phase is likely caused by liquid breakthrough through a pore throat. Figure 5
also demonstrates a larger magnitude of the outlet capillary pressure fluctuations than
that at the inlet, probably caused by a larger positive pressure build-up near the



fracture’s outlet. Although the inlet gas and liquid pressure fluctuations exhibit identical
quasi-periodic cycling fluctuations, with a small time-delay of the liquid pressure during
the period of the pressure increase. (This time delay can also be caused by the time
delay in pressure measurements, using a porous cup with lower permeability than the
time delay of air-pressure sensors.)

Theoretically, the amplitude of forward and return waves of the pressure must decay in
the direction of flow, implying the dispersion of flow (Rabinovich and Trubetskov, 1994,
p. 228). However, Figure 6 demonstrates that the pressure build up first begins at the
outlet and then propagates backward to the inlet—see the arrows on both upper and
lower plots of Figure 6. Following the discussion in Faybishenko (2002), we hypothesize
that the observed pressure oscillations at both inlet and outlet of the fracture result
from a superposition of both forward and return waves of pressure propagation through
the fracture. (Note: a comparison of the capillary pressure measured using pressure
transducers and calculated as a difference between the recorded gas and liquid
pressures will be given in a separate paper. In this paper, the author analyzed the
capillary pressure measured during the experiment.)

2.3. Diagnostic nonlinear dynamics parameters of time series

It is often assumed in hydrological investigations that high frequency oscillations
represent a noisy signal produced by improperly tagged data or errors of
measurements, but not by physical phenomena. The author previously (Faybishenko
(2002) analyzed the inlet and outlet gas, liquid, and capillary pressures and showed the
presence of nonlinear deterministic chaotic phenomena after filtering time series by
means of a low-pass technique to remove high-frequency oscillations. However,
removing high-frequency oscillations may cause spurious cause-effect correlations
between the variables. Therefore, in this paper, the author assumed that the analysis of
the directly measured data would provide added benefits to achieving the goal of the
current paper to assess the interconnection between the variables in the presence of
chaotic dynamics. The following diagnostic nonlinear dynamics parameters were
calculated based on the time delay of time series (determined using the averaged
mutual information—AMI): global (Dgep) and local embedding dimensions determined
using the False Nearest Neighbor (FNN) method, the correlation dimension (Do),
Lyapunov exponents, and information dimension (Dj,). Calculations were conducted
with the application of the R code “Fractal.” The results of calculations shown in Figures
7 though 9 and Table 1 for the inlet and outlet capillary pressures demonstrate evidence
of low dimensional chaotic behavior, with Dggp from 4 to 5, Do from 1.57 to 2.62,
positive values of the maximum Lyapunov exponents, and negative sums of the
Lyapunov exponents (indicating that the systems embedding attractors are converging),
and D;s between 2 and 3. The 3-D pseudo-phase attractors were plotted using the time
lags calculated from the AMI analysis. These 3-D attractors represent approximations of
higher order (Dgmp = 4 and 5) processes.



3. Evaluation of Causality

3.1. Philosophical primer of the principle of causality

Recently, there has been considerable interest in a class of techniques called Granger
causality, which can help provide a statistically reliable approach to assess multi-
parameter influences in complex systems of different origin (e.g., Granger, 1969; 1980;
Dixon et al., 1999; Deyle and Sugihara, 2011; Sugihara et al., 2012). The principle of
causality is, generally, a well-known philosophy concept, which is also called a concept
of "cause" and "effect" (Bohm, 1957, Spirkin, 1990). This concept can be used for the
evaluation of the coupling between simultaneously occurring temporal events, which
could be contiguous events or events affected by the same cause. The cause and effect
of some system’s variables can be distributed over the time, and can be either divided
by a time interval or connected through other intermediate system’s links or variables.
The coupling between the system’s cause and effect may be expressed as follows: if A is
the cause of B, and B is the cause of C, then A may also be considered as the cause of C.
An effect may have several causes—some principal, and some accidental or secondary.
If the network of causal links between the systems components is continuous, with no
internal interruptions, the law of conservation of matter and motion is valid (i.e.,
Spirkin, 1990). In this case, the system’s internal mechanisms of causality are related to
each other, causing the processes of transfer of matter, motion and information, as well
as producing both feedback and forward feed in the system. The natural system
behavior is induced by the interaction of at least two phenomena or processes, so that
the causality process forms the system’s structural organization. Practically, we need to
identify a finite number of significant primary and secondary interactions to characterize
the system’s behavior and organization. Often, direct causes could be difficult to
distinguish from secondary causes, which, in turn, could be related through a number of
intervening (and often not known) processes. It is important that a cause can essentially
take effect on the system when specific conditions (thresholds) are met. The problem
of the physical nonlinear relationship between cause, condition, and effect can be
solved differently, depending on the complexity of the system’s relationships, the ability
to distinguish a comparative importance and to determine the correlation between
multiple factors and processes. Due to the nonlinear relationship between the system
variables, the variables may show a spurious relationship and the causally between
several variables may be very complex. Apparent relationships among variables can
switch spontaneously in nonlinear systems as a result of mirage correlations or a
threshold change in regime. The approach to assess the causality between the system’s
variables is described in Section 3.2.

3.2. Granger causality approach



The Granger causality (GC) test has been recognized as the primary test on the
causation problem, since publications by Granger (1969; 1980, 1988), who introduced a
definition of the concept of causality that does not rely on the specification of a specific
scientific model. This definition is particularly suited for interpretation of empirical
cause-effect relationships. The GC approach provides a conceptual framework of using
predictability, not a correlation approach, to identify causation between time-series
variables. The Granger causality addresses the issue with prediction rather than
correlation as the criterion for causation in time series. Variable X is said to “Granger
cause” (G-cause) Y, if the predictability of Y declines when X is removed from the
universe of all possible causative variables (Granger, 1969). According Granger (1969),
the application of this approach may be problematic for deterministic dynamic systems
with weak to moderate coupling. For example, in deterministic or stochastic dynamic
systems, if X is a cause for Y, information about X will be redundantly present in Y itself
and cannot formally be removed (Sugihara et al., 2012). According to the dynamical
systems theory, time-series variables are causally linked if they are from the same
dynamic system (Dixon et al., 1999; Deyle and Sugihara, 2011). These variables share a
common attractor manifold, so that each variable can identify the state of the other
(Packard et al., 1980; Sugihara and May, 1990; Abarbanel, 1996). Granger defined the
causality relationship based on two principles (Granger, 1980; Eichler, 2012):

- Temporal precedence, when causes precede their effects, and
- Physical influence, if manipulation of the cause changes the effects.

The theoretical basis for the Grarger-causality approach is the cause happens prior to its
effect, the cause and its effect are uniquely linked, and the cause contains the
information about the future values of its effect. A conceptual idea of the multivariate
Granger causality analysis is to perform the fitting of a vector autoregressive model
(VAR) to the time series. For instance, for X(t) € R fort=1, .. T, whichisa d-
dimensional multivariate time series, the Granger causality is assessed by fitting a VAR
model with L time lags as follows (Liitkepohl, 2005)

X () = Z AX(t — 1) + (t)

where &(t) is a white Gaussian random vector, and a time series X; is called a Granger
cause of another time series X;, if at least one of the elements A.(i,j) forB=1,--, 1L
significantly larger (in absolute value) than zero. The F-statistic is applied to assess

a rejection of the null hypothesis that there is Granger causality. The null hypothesis
that X; does not Granger-cause X is not rejected if and only if no lagged values of X; are
retained in the regression. In this paper, the multivariate Granger causality analysis was

performed using the time lags determined the AMI analysis given in Section 2.2.



One of the conditions to apply the Granger-causality test is the statistical stationarity of
the time series variable. To assess the stationary the Kwiatkowski—Phillips—Schmidt—
Shin (KPSS) test was first applied (using the R library “urca”) for a null hypothesis that an
observable time series is stationary around a deterministic trend, i.e. trend-stationary,
against the alternative of a unit root (Pfaff et al., 2016). The null hypothesis of the
stationarity around a constant mean was tested against the alternative that the series is
not stationary (i.e., of integration order I(1)). The results are summarized in Table 2,
indicating the stationarity of the time series. (The Augmented Dickey—Fuller (ADF)
statistics test was also applied, using the R library “tseries,” which confirmed the
rejection of the hypothesis that there is a unit root at some level of confidence).

The pairwise causality tests were conducted with the application of the R library
MSBVAR, which stands for the Markov-Switching, Bayesian, Vector Autoregression
Models (Brandt and Davis, 2014). The application of this library includes the bivariate
Granger causality testing for multiple time series. Estimates are found for all possible
bivariate G-causality tests for m variables. The test is implemented by regressing Y on p
past values of Y and p past values of X. A statistical F-test is then used to determine
whether the coefficients of the past values of X are jointly zero. The F-tests are
generally based on a decomposition of the variability in data in terms of sums of squares
reflecting different sources of variability. In order for the statistic to follow the F-
distribution under the null hypothesis, the sums of squares should be statistically
independent, and each should follow a scaled chi-squared distribution. The latter
condition is guaranteed if the data values are independent and normally distributed
with a common variance. This testing produces a matrix with m*(m-1) rows and m
columns, which are all of the possible bivariate Granger causal relations. The results
include F-statistics and p-values for each pair of variables. The G-causality tests indicate
that if X G-cause Y statistically, then it contains the information to help predict future
values of Y, and if Y affects X, which is the feedback effect, it means that X and Y are
both endogenous, and VAR type model can be used to characterize the interconnection
between Xand Y.

4. Results and Discussion

The results of calculations of the F-statistic are summarized in Table 3. For the number
of variables, m=4 (inlet and outlet gas and liquid pressures), the number of
interconnections calculated from m*(m-1) is 12. Table 3 shows that the null hypothesis
of the G-causality test of no interconnections of the variables (at the p-value <0.05) is
rejected for 10 interconnections, and is accepted for 2 interconnections, indicating no
interconnection.

Figure 10 illustrates a multiple bar chart diagram of the F-statistic for the
interconnections between the gas and water inlet and outlet pressures measured during
the experiment. The chart shows two components for each link, indicating a forward, or



positive, link, and those indicating a backward, or negative, link. The two connections,
for which the null hypothesis of no connection is accepted on the p-level >0.1, are
marked with the asterisk sign.

The data presented in Table 3 and Figure 11 were used to draw a causality loop diagram
(CLD) to aid in visualization of how different system’s variables are interrelated. The
CLD consists of 4 nodes, representing inlet and outlet gas and water ports of the
fracture, and the arrows representing the forward and backward links between the
nodes. The arrow line widths on the diagram in Figure 11 are proportional to the F-
statistic values. The dashed lines indicate the links, for which the null hypothesis of no
connection is accepted on the p-level > 0.1. The CLD represents a closed network of
interconnections between variables, indicating system’s mutual cause and effect
relationships. The CLD is internally initiated by the system properties within the limits of
boundary conditions, and the entire temporal and spatial flow processes are connected
by causality. For example, starting at the inlet gas pressure, the system’s cause-effect
propagation can expressed by:

g.in 2 Lin 2 lL.out = g.out 2 g.in (2a)

g.in 2 l.out = g.out = g.in (2b)

The equations (2) can generally be written for different starting points of the CLD. Table
4 presents the data and Figure 11b show the CLD of the capillary pressure
measurements. One can see that the output capillary pressure significantly affects the
inlet capillary pressure, which is essentially a confirmation of the initial hypothesis of the
influence of the outlet capillary pressure on the inlet capillary pressure. Thus, the results
show that, in general, the two-phase fracture flow system exhibits the mutual G-causality
properties, because two phases are mutually interacting with each other, which can be
considered the default interaction. The connections from Equations 2a and 2b are shown
in Figure 12.

Another important point from the results of the causality analysis is related to the
definition and measurements of the capillary pressure, which is difficult to measure
directly in fracture rock [e.g., Firozabadl and J.Hauge (1990), Reitsma and Kueper, 1994;
Faybishenko and Finsterle, 2003]. The capillary pressure is commonly calculated as the
difference between the gas (Pg.s, nonwetting phase) and liquid (Pjiquia, wetting phase)
pressures

Pcap = Pgas - Pliquid (3)

Equation (3) implies that the pressures are additive variables. However, the
dependence of the inlet capillary pressure on the outlet capillary pressure indicates that
the capillary pressure calculated from Equation (3) is not a physically based value. The



capillary pressure is in fact a multiplicative variable, intimately dependent on a
nonlinear superposition of coupled processes within fractured media. It is very hard if
not impossible to categorize the relationship between a "causative agent" and an
"effect" of the system components, as coupled processes intimately mix them. (A
detailed statistical analysis and a comparison of the calculated and measured capillary
pressures are not subject of this paper and will be given in a separate paper.)

As part of the discussion section of the paper, it is important to denote some limitations
of the application of the G-causality for the analysis of complex physical situations, as
some causes of variation may not be known or observable. The G-causality test is
phenomenological, and is based on the analysis of measured variables. This test is
basically a measure of the statistical relationship between the variables, and thus can
lead to some spurious causalities, if other important relevant variables are not included
in the analysis (Hsiao 1982). In this case, the G-causality test may provide a qualitative
assessment of the causality and may not necessarily represent true causality. If both X
and Y are driven by a conjoint third process with different time lags, one might fail to
reject the alternative hypothesis of Granger causality. In this regard, it would be
important to manipulate one of the variables to assess the response of the other, which
will be conducted in a separate paper based on the analysis of other field and laboratory
experiments.

Conclusions and Recommendations

The cause-effect relationships for gas and water pressures affecting flow and transport
processes in fractured media, using a conventional statistical regression analysis, are
difficult or even impossible to identify, which limit the reliability of numerical modeling
and prediction techniques. One of the modern approaches to the evaluation of the
cause-effect relationships is the application of the Granger causality principle. The
Granger causality statistical approach is based on using predictability as opposed to
correlation for detecting interactions between time series variables. In this paper, the
proposed approach is tested using the time-series data obtained from the fracture flow
experiment conducted by Persoff and Pruess (1995), and initially analyzed in the
author’s paper (Faybishenko, 2002). In his 2002 paper, based on the visual examination
of time series data, the author hypothesized that the observed quasi-periodic pressure
oscillations at both inlet and outlet ends of the fracture result from a superposition of
both forward and return waves of pressure propagation through the fracture. In the
current paper, based on the application of the G-causality test, the author infers that
this hypothesis is correct, and demonstrates the causation loop diagram of the spatial-
temporal distribution of gas and liquid pressures at the inlet and outlet of the fracture.
The evaluation of the gas-water interactions is important to finding the functional
significance of monitoring the flow processes. However, because the Granger causality
approach is used to analyze responses in measured variables, the method does not
identify whether these variables are sufficient to classify causality of the system, or



whether extra variables are required. A physical explanation of the identified statistical
causality should be a scope of further research.

The developed CLD can also serve as the basis for the development of the Bayesian
network model, with a requirement that the relationships be causal, and for the use of
structural equation models (e.g., Greenland and Brumback, 2014; West et al., 1998).
The application of causality theory is an innovative framework to hydrological flow and
transport investigations, and may take a prominent place as the basis for the
development of conceptual and mathematical models, uncertainty evaluation and
sensitivity analysis of hydrological and climatic predictions.
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Figure

Figures

Porous ceramic blocks

Figure 1. A schematic diagram of the fracture flow experiment used for investigating
two-phase flow regime in rock fracture specimen [66]. Ovals represent four absolute
and four differential pressure transducers (Persoff and Pruess, 1995).
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Figure 2. Time series of inlet and outlet gas and liquid pressures measured during the
fracture flow experiment shown in Figure 1.



Calculated differential pressure between inlet and outlet
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Figure 3. Differential gas and liquid pressures along the length of the fracture (calculated
as a difference between inlet and outlet gas pressures, and as a difference between the

inlet and outlet liquid pressures).
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Figure 4. 2D phase-space attractors/scatterplots of measures pressures (using time
series data in psi shown in Figure 2): figure (a) — black points: Pgas.in VS Pjiq.in, and green
points: Pgas.out VS Plig.oot; @and figure (b) — black points: Pgas.in VS Pgas.out and green points:
Pqu.in VS Pqu.out.



Measured capillary pressure
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Figure 5. Capillary pressure at the inlet and outlet of the fracture (measured
using differential manometers as the difference between pressures at the gas
and liquid ports). P,y is calculated using Eq. (3)



Gas pressure oscillations at the inlet and outlet
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Figure 6. Inlet and outlet gas and liquid pressure oscillations (calculated as the
difference between the measured and mean values for each time series), showing by
the arrows that the pressure changes began first at the outlet following by the changes
at the inlet (a single contrary instance is indicated by a dashed vertical line). Ovals on
the upper figure indicate the periods of reverse changes in the gas pressure.
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Figure 7. Results of the evaluation of chaotic parameters of inlet gas pressure: upper row from
left to right—averaged mutual information to determine the time delay, embedding dimension
determined using the False Nearest Neighbor (FNN) method, and correlation dimension (D2),
and the lower row—Lyapunov exponents, information dimension, and 3D pseudo-phase space
attractor.
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Figure 8. Results of the evaluation of chaotic parameters of out gas pressure: upper row from
left to right—averaged mutual information to determine the time delay, embedding dimension
determined using the False Nearest Neighbor (FNN) method, and correlation dimension (D2),
and the lower row—Lyapunov exponents, information dimension, and 3D pseudo-phase space
attractor.
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Figure 9. Results of the evaluation of chaotic parameters of inlet capillary pressure: upper row
from left to right—averaged mutual information to determine the time delay, embedding
dimension determined using the False Nearest Neighbor (FNN) method, and correlation
dimension (D2), and the lower row—Lyapunov exponents, information dimension, and 3D
pseudo-phase space attractor.
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Figure 10. Bar chart of the F-statistics calculated from the time series measurements of gas
and water inlet and outlet pressures for the fracture flow experiment. The two connections,
for which the null hypothesis of no connection is accepted on the p-level of >0.1, are indicated
with the asterisk sign. On Figures 10-12: g.in — gas pressure at the inlet gas port, l.in — liquid
pressure at the inlet liquid port, g.out —gas pressure at the outlet gas port, and l.out — liquid
pressure at the outlet liquid port.
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Figure 11. (a) Causality loop diagram showing F-statistics values (humbers on the diagram) of
the interconnections of the inlet and outlet gas and liquid pressures. Solid lines indicate that
the null hypothesis for independence is rejected (p-values <0.05), and dashed lines — the null
hypothesis of independence is accepted at the p-value level >0.1. (b) The same for the
measured capillary pressures.



g.in

l.in

b l.out

a,b

g.out

Figure 12. An acyclic graph of the prevailing causalities taken from the CLD on Figure 11.
(a) and (b) indicate the connections from Equations 2a and 2b.



Table

Table 1. Diagnostic parameters of chaos

Time series | AMI Embedding | Correlation | Max Sum of Information
(time delay) | dimention | dimension | Lyapunov | Lyapunov | dimension
(Demb) Deor exponent | exponents | Din
Pg.in 94 /89 5 1.85 0.25 -0.77 2.03
PLin 181/178 4 1.57 0.21 -1.16 2.51
Pcap.in 73 /61 4 2.62 0.21 -0.58 2.72
Pcap.out 66 / 60 4 2.17 0.34 -0.26 2.87

Note: Time delay values are given: in the nominator—measured data, in the dominator—
noise removed data.

Table 2. KPSS Unit Root Test shows that the null hypothesis of stationarity should be
accepted as the values of the test statistics given in table (a) are less than the 10%, 5%
and 1% critical values given in table (b).

(@)

Variable Value of test-statistic
Pg.in 0.0388
PLin 0.0291
Pg.out 0.0394
P1out 0.0952
Pc.in 0.0405
Pc.out 0.05
(b)

Significant Critical
level value
1% 0.216
2.5% 0.176
5% 0.146
10% 0.119
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Table 3. Results of the Multivariable G-causality test

G-causality F-statistics p-value Accept/Reject
Piin = Pgin 2.224 9.35E-09 Reject
Pgout 2 Pgin 3.681 0 Reject
Plowt 2 Pgin | 1.896 5.69E-06 Reject
Pgin 2 Plin 5.417 0 Reject
Pgout 2 Plin 2.257 4.71E-09 Reject
Prout 2 Plin 1.902 5.09E-06 Reject
Pgin 2 Pgout | 1.212 0.103 Accept
Pun 2 Pgou | 1.001 0.476 Accept
Prout 2 Pgout | 1.476 4.91E-03 Reject
Pgin 2 Proww | 1.877 8.01E-06 Reject
PLin 2 Plout 4.188 0 Reject
Pgout 2 Prowt | 1.466 5.68E-03 Reject

Table 4. Causality of the bidirectional G-causality test for inlet and outlet capillary
pressures (measured and noise removed)

G-causality Measured data Noise removed data
F-statistics p-value F-statistics p-value
Pcap.out 2 Pcapin | 3.966 0 2.595 1. 1le-10
Peap.in = Peapout | 1.672 0.0006 1.288 0.062






