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Abstract 
Identifying dynamic causal inference involved in flow and transport processes in 
complex fractured-porous media is generally a challenging task, because nonlinear and 
chaotic variables may be positively coupled or correlated for some periods of time, but 
can then become spontaneously decoupled or non-correlated.  In his 2002 paper 
(Faybishenko, 2002), the author performed a nonlinear dynamical and chaotic analysis 
of time-series data obtained from the fracture flow experiment conducted by Persoff 
and Pruess (1995), and, based on the visual examination of time series data, 
hypothesized that the observed pressure oscillations at both inlet and outlet edges of 
the fracture result from a superposition of both forward and return waves of pressure 
propagation through the fracture.  In the current paper, the author explores an 
application of a combination of methods for detecting nonlinear chaotic dynamics 
behavior along with the multivariate Granger Causality (G-causality) time series test.  
Based on the G-causality test, the author infers that his hypothesis is correct, and 
presents a causation loop diagram of the spatial-temporal distribution of gas, liquid, and 
capillary pressures measured at the inlet and outlet of the fracture.  The causal 
modeling approach can be used for the analysis of other hydrological processes, for 
example, infiltration and pumping tests in heterogeneous subsurface media, and 
climatic processes, for example, to find correlations between various meteorological 
parameters, such as temperature, solar radiation, barometric pressure, etc. 
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1. Introduction  
 

It is well established that nonlinearity is often a typical feature of many ecological 
processes (e.g., Casini et al., 2009; Sugihara and May, 1990; Dixon et al., 1999). 
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Nonlinearity is also known to exist for flow in hydrological systems (Perfect, 1997; 
Weeks and Sposito, 1998; Pasternack, 1999; Sposito, 1999; Sivakumar, 2000) and 
fractured-porous media (Faybishenko, 2002; 2003).  Since the work of French 
mathematician Henri Poincaré, it has also been known that nonlinear deterministic 
systems can behave in an apparently unpredictable, chaotic manner.  Chaotic 
phenomena are widespread in all fields of sciences, including physics (Abarbanel, 1996), 
chemistry (Winfree, 1984), biology (May, 1974; Skarda & Freeman, 1987), psychology 
(Guastello et al., 2009), ecology (Nicolis, 1991; Benincà et al., 2008; Cushing et al., 2003), 
etc.  The principal source of difficulties in analyzing hydrological models is the extreme 
variety, variability, and complexity of processes that affect hydrologic phenomena, 
which require the knowledge of different temporal and spatial scales of these processes 
and their interactions, temporal and spatial irregularities and instabilities, requiring the 
application of empirical and causal models in hydrology (Klemes, 1982; Gilvear et al., 
2016).  Because of these difficulties, identifying the causality, i.e., the cause-effect of 
multiple variables, in complex hydrological systems is generally a difficult task, because 
variables that may be positively coupled or correlated for some periods of time can then 
become spontaneously decoupled or non-correlated due to chaotic nature of underlying 
processes.  For most flow and transport problems in fractured rock, it is not possible to 
develop models directly from first principles (Pruess et al., 1999; Faybishenko, 2002), 
and is not possible to develop mathematical models, using systems of partial differential 
equations, to be used for predictions (Committee on Major U.S. Oceanographic…, 1999).   
 

Over the last 30-40 years, there has been a great deal of field, laboratory, and modeling 
research in fractured-rock hydrogeology [e.g., Bear et al., National Research Council, 
Faybishenko et al. [2000; 2016; Nicholl et al., 1994] concerning the spatial and temporal 
instabilities of flow in unsaturated media.  Despite of many publications, the physics of 
such flow remains unclear.  In his previous publications the author showed that the 
unsaturated fractured-rock system is chaotic because the flow processes are nonlinear, 
sensitive to initial conditions, and dissipative, and confirmed that the presence of 
chaotic behavior by calculating diagnostic chaotic parameters for gas, liquid, and 
capillary pressures, measured during the water–gas injection in fractures, as well as 
laboratory and field dripping-water experiments.  These results revealed the presence of 
deterministic chaos in the intra-fracture flow processes accompanied by a random 
component.  Deterministic chaos, in conjunction with noise effects, creates a source of 
irreducible uncertainty for long-term predictions, which implies that the predictability of 
a chaotic system cannot be improved by making more precise measurements of initial 
conditions and system parameters.  Deterministic chaotic modes can provide 
meaningful predictions for a limited time duration, after which only stochastic models 
can be used [Schuster, 1989].  Moreover, for nonlinear dynamical processes, a lack of 
correlation, which is some time determined using conventional statistical methods, does 
not imply the lack of causation.  Conversely, the presence of correlation does not imply 
the presence of real physical relationship between the variables.  For example, using the 
results of the fracture flow test (Persoff and Pruess, 1995), the author (Faybishenko, 
2002) examined the time series of inlet and outlet gas and liquid pressure oscillations, 



and showed that the pressure buildup first begins at the inlet and then propagates to 
the outlet of the fracture.  This pattern means that a pressure-wave propagates forward 
as the water-air mixture moves from the inlet to the outlet of the fracture.  
Theoretically, the amplitude of forward and return waves must decay in the direction of 
flow, implying the dispersion of flow (Rabinovich and Trubetskov, 1994, p. 228).  
However, the pressure drop first begins at the outlet and then propagates backward to 
the inlet.  The author hypothesized that the observed quasi-periodic pressure 
oscillations at both inlet and outlet ends of the fracture result from a superposition of 
both forward and return waves of pressure propagation through the fracture.  However, 
no quantitative evaluation of these phenomena of directional influences in fracture flow 
has yet been given.   

The objective of this paper is to quantitatively characterize the interconnection between 
the inlet and outlet gas, liquid, and capillary pressure measurements, using a 
combination of methods of detecting chaotic behavior and the Granger causality (GC) 
testing of multivariable time series, based on the gas and water measurements in 
flowing fracture. The structure of the paper is as follows.  Section 2 includes a brief 
description of the Persoff-Pruess experiment and the results of the nonlinear dynamics 
analysis of time series gas and liquid inlet and outlet pressures and capillary pressures.  
Section 3 provides a description of the methods used for causality testing in this paper.  
Section 4 includes a discussion of the results of calculations, including a presentation of 
the causality loop diagram, and Section 5 presents conclusions and directions of future 
research. 

2. Brief description of the fracture flow experiment and 
evaluation of diagnostic parameters of nonlinear dynamics  

2.1. Persoff and Pruess (1995) Experiment 
Persoff and Pruess (1995) conducted a series of two-phase flow experiments by 
simultaneously injecting water and nitrogen gas (respectfully, wetting and nonwetting 
phases) into replicas of natural rough-walled rock fractures in granite (from the Stripa 
mine in Sweden) and tuff (from Dixie Valley, Nevada).  The scheme of the experimental 
design and measurements is shown in Figure 1.  Gas was injected at the inlet edge to a 
plenum that distributed gas to a set of 40 vertical grooves in the porous block.  Gas and 
liquid pressures at the inlet and outlet edges of the fracture were measured for a series 
of constant flow rates.  Capillary pressure was measured using the differential pressure 
transducers installed at the inlet and outlet edges of the fracture.  Assuming fractures as 
homogeneous porous media, and using averaged pressures, liquid and gas relative 
permeability functions were calculated based on the theory of Darcy flow.  In this paper, 
we will analyze the results of Experiment C, which was carried out using the Stripa 

natural rock (fracture hydrodynamic aperture 21.7 m) with a gas flow rate of 0.52 
cm3/min (measured at standard conditions), and a liquid flow rate of 0.25 cm3/min (the 
gas-liquid volumetric flow ratio is approximately 2), and the Reynolds numbers was 



much less than 1. 

2.2. Time Series of Gas and Liquid Pressures 
 

Figure 2 shows measured gas and liquid pressure time series, which were collected 
every 0.4 sec. Figure 3 demonstrates differential gas and liquid pressures along the 
length of the fracture (determined using differential pressure transducers installed 
between inlet and outlet gas pressures), and reveals that the drop in the liquid pressure 
corresponds to the spike in the gas pressure.  The sharp drops in the gas differential 
pressure occurred at the time of the increase in the differential liquid pressure. 
Instabilities in the liquid and air pressures, observed under constant liquid and gas 
injection rates, were likely resulted from recurring changes in phase occupancy between 
liquid and gas at a critical pore throat in a fracture, as well as a competition between 
fluid pressures caused by injection and capillary effects driving the liquid to the critical 
throat (Persoff and Pruess, 1995).   
 
The time series data were used for a pair-wise comparison of measured gas (Pg.in) and 
liquid (Pl.in) pressures, which is shown in Figure 4 by plotting two-dimensional 
scatterplots, i.e., phase-space attractors.  Figure 4a shows that the inlet gas-liquid 
pressure (Pg.in vs. P.l.in) attractor (black color) is only slightly skewed from the 1:1 line 
(thin black line), and is located in the area of greater values of the pressures.  The shape 
of the outlet gas-liquid attractor (green color) is different: it is practically horizontal 
(extended in the x direction along the gas pressure coordinate), and narrower in the y 
direction (i.e., liquid pressure); the outlet attractor is located in the area of lower values 
of the pressures – the lower pressures at the outlet are expected due to flow from the 
inlet to the outlet.  
 
Figure 4b shows the scatterplots/attractors of the gas inlet (Pg.in) – gas outlet (Pg.out) 
pressures and liquid inlet (Pl.in) – liquid outlet (Pl.out) pressures. One can see a narrower 
scatterplot, close to a linear relationship, of the inlet-outlet liquid pressure, and a much 
more scattered plot of the inlet-outlet gas pressures.  One can see that both plots are 
shifted from the 1:1 line, because the inlet pressures exceed the outlet pressures.   
 
Figure 5 illustrates the time variations of the capillary pressures at the inlet and outlet of 
the fracture, which were measured using differential pressure transducers between the 
gas and liquid ports.  This figure shows that relatively short periods of laminar flow, 
when the capillary pressure was negative (shown in Figure 5 below the line Pcap = 0), are 
interrupted by chaotic surges in the capillary pressure, when the capillary pressure 
increased to positive values.  Persoff and Pruess (1995) suggested that the pressure 
changes resulted from recurring blockage of critical pore throats and phase changes 
between water and gas, and the rapid drop in capillary pressure at the end of each 
chaotic phase is likely caused by liquid breakthrough through a pore throat.  Figure 5 
also demonstrates a larger magnitude of the outlet capillary pressure fluctuations than 
that at the inlet, probably caused by a larger positive pressure build-up near the 



fracture’s outlet.  Although the inlet gas and liquid pressure fluctuations exhibit identical 
quasi-periodic cycling fluctuations, with a small time-delay of the liquid pressure during 
the period of the pressure increase.  (This time delay can also be caused by the time 
delay in pressure measurements, using a porous cup with lower permeability than the 
time delay of air-pressure sensors.)  
 
Theoretically, the amplitude of forward and return waves of the pressure must decay in 
the direction of flow, implying the dispersion of flow (Rabinovich and Trubetskov, 1994, 
p. 228).  However, Figure 6 demonstrates that the pressure build up first begins at the 
outlet and then propagates backward to the inlet—see the arrows on both upper and 
lower plots of Figure 6.  Following the discussion in Faybishenko (2002), we hypothesize 
that the observed pressure oscillations at both inlet and outlet of the fracture result 
from a superposition of both forward and return waves of pressure propagation through 
the fracture.  (Note: a comparison of the capillary pressure measured using pressure 
transducers and calculated as a difference between the recorded gas and liquid 
pressures will be given in a separate paper.  In this paper, the author analyzed the 
capillary pressure measured during the experiment.)   
 

2.3. Diagnostic nonlinear dynamics parameters of time series  
It is often assumed in hydrological investigations that high frequency oscillations 
represent a noisy signal produced by improperly tagged data or errors of 
measurements, but not by physical phenomena.  The author previously (Faybishenko 
(2002) analyzed the inlet and outlet gas, liquid, and capillary pressures and showed the 
presence of nonlinear deterministic chaotic phenomena after filtering time series by 
means of a low-pass technique to remove high-frequency oscillations.  However, 
removing high-frequency oscillations may cause spurious cause-effect correlations 
between the variables.  Therefore, in this paper, the author assumed that the analysis of 
the directly measured data would provide added benefits to achieving the goal of the 
current paper to assess the interconnection between the variables in the presence of 
chaotic dynamics.  The following diagnostic nonlinear dynamics parameters were 
calculated based on the time delay of time series (determined using the averaged 
mutual information—AMI): global (DGED) and local embedding dimensions determined 
using the False Nearest Neighbor (FNN) method, the correlation dimension (Dcor), 
Lyapunov exponents, and information dimension (Dinf). Calculations were conducted 
with the application of the R code “Fractal.”  The results of calculations shown in Figures 
7 though 9 and Table 1 for the inlet and outlet capillary pressures demonstrate evidence 
of low dimensional chaotic behavior, with DGED from 4 to 5, Dcor from 1.57 to 2.62, 
positive values of the maximum Lyapunov exponents, and negative sums of the 
Lyapunov exponents (indicating that the systems embedding attractors are converging), 
and Dinf between 2 and 3.  The 3-D pseudo-phase attractors were plotted using the time 
lags calculated from the AMI analysis.  These 3-D attractors represent approximations of 
higher order (DEMD = 4 and 5) processes. 



3. Evaluation of Causality 

3.1. Philosophical primer of the principle of causality 

Recently, there has been considerable interest in a class of techniques called Granger 
causality, which can help provide a statistically reliable approach to assess multi-
parameter influences in complex systems of different origin (e.g., Granger, 1969; 1980; 
Dixon et al., 1999; Deyle and Sugihara, 2011; Sugihara et al., 2012).  The principle of 
causality is, generally, a well-known philosophy concept, which is also called a concept 
of "cause" and "effect" (Bohm, 1957, Spirkin, 1990).  This concept can be used for the 
evaluation of the coupling between simultaneously occurring temporal events, which 
could be contiguous events or events affected by the same cause.  The cause and effect 
of some system’s variables can be distributed over the time, and can be either divided 
by a time interval or connected through other intermediate system’s links or variables. 
The coupling between the system’s cause and effect may be expressed as follows: if A is 
the cause of B, and B is the cause of C, then A may also be considered as the cause of C.  
An effect may have several causes—some principal, and some accidental or secondary.  
If the network of causal links between the systems components is continuous, with no 
internal interruptions, the law of conservation of matter and motion is valid (i.e., 
Spirkin, 1990).  In this case, the system’s internal mechanisms of causality are related to 
each other, causing the processes of transfer of matter, motion and information, as well 
as producing both feedback and forward feed in the system.  The natural system 
behavior is induced by the interaction of at least two phenomena or processes, so that 
the causality process forms the system’s structural organization.  Practically, we need to 
identify a finite number of significant primary and secondary interactions to characterize 
the system’s behavior and organization.  Often, direct causes could be difficult to 
distinguish from secondary causes, which, in turn, could be related through a number of 
intervening (and often not known) processes.  It is important that a cause can essentially 
take effect on the system when specific conditions (thresholds) are met.  The problem 
of the physical nonlinear relationship between cause, condition, and effect can be 
solved differently, depending on the complexity of the system’s relationships, the ability 
to distinguish a comparative importance and to determine the correlation between 
multiple factors and processes.  Due to the nonlinear relationship between the system 
variables, the variables may show a spurious relationship and the causally between 
several variables may be very complex.  Apparent relationships among variables can 
switch spontaneously in nonlinear systems as a result of mirage correlations or a 
threshold change in regime.  The approach to assess the causality between the system’s 
variables is described in Section 3.2.  

 

3.2. Granger causality approach 
 



The Granger causality (GC) test has been recognized as the primary test on the 
causation problem, since publications by Granger (1969; 1980, 1988), who introduced a 
definition of the concept of causality that does not rely on the specification of a specific 
scientific model.  This definition is particularly suited for interpretation of empirical 
cause-effect relationships.  The GC approach provides a conceptual framework of using 
predictability, not a correlation approach, to identify causation between time-series 
variables.  The Granger causality addresses the issue with prediction rather than 
correlation as the criterion for causation in time series.  Variable X is said to “Granger 
cause” (G-cause) Y, if the predictability of Y declines when X is removed from the 
universe of all possible causative variables (Granger, 1969).  According Granger (1969), 
the application of this approach may be problematic for deterministic dynamic systems 
with weak to moderate coupling.  For example, in deterministic or stochastic dynamic 
systems, if X is a cause for Y, information about X will be redundantly present in Y itself 
and cannot formally be removed (Sugihara et al., 2012).  According to the dynamical 
systems theory, time-series variables are causally linked if they are from the same 
dynamic system (Dixon et al., 1999; Deyle and Sugihara, 2011).  These variables share a 
common attractor manifold, so that each variable can identify the state of the other 
(Packard et al., 1980; Sugihara and May, 1990; Abarbanel, 1996).  Granger defined the 
causality relationship based on two principles (Granger, 1980; Eichler, 2012): 

- Temporal precedence, when causes precede their effects, and  
- Physical influence, if manipulation of the cause changes the effects. 

 
The theoretical basis for the Grarger-causality approach is the cause happens prior to its 
effect, the cause and its effect are uniquely linked, and the cause contains the 
information about the future values of its effect. A conceptual idea of the multivariate 
Granger causality analysis is to perform the fitting of a vector autoregressive model 
(VAR) to the time series.  For instance, for           for t = 1, …, T, which is a d-
dimensional multivariate time series, the Granger causality is assessed by fitting a VAR 
model with L time lags as follows (Lütkepohl, 2005) 

                    

 

   

  

where (t) is a white Gaussian random vector, and a time series Xi is called a Granger 

cause of another time series Xj, if at least one of the elements          …, L 

significantly larger (in absolute value) than zero.  The F-statistic is applied to assess 

a rejection of the null hypothesis that there is Granger causality.  The null hypothesis 

that Xi does not Granger-cause Xj is not rejected if and only if no lagged values of Xi are 

retained in the regression. In this paper, the multivariate Granger causality analysis was 

performed using the time lags determined the AMI analysis given in Section 2.2.   

 



One of the conditions to apply the Granger-causality test is the statistical stationarity of 
the time series variable.  To assess the stationary the Kwiatkowski–Phillips–Schmidt–
Shin (KPSS) test was first applied (using the R library “urca”) for a null hypothesis that an 
observable time series is stationary around a deterministic trend, i.e. trend-stationary, 
against the alternative of a unit root (Pfaff et al., 2016).  The null hypothesis of the 
stationarity around a constant mean was tested against the alternative that the series is 
not stationary (i.e., of integration order I(1)). The results are summarized in Table 2, 
indicating the stationarity of the time series.  (The Augmented Dickey–Fuller (ADF) 
statistics test was also applied, using the R library “tseries,” which confirmed the 
rejection of the hypothesis that there is a unit root at some level of confidence).  
 

The pairwise causality tests were conducted with the application of the R library 
MSBVAR, which stands for the Markov-Switching, Bayesian, Vector Autoregression 
Models (Brandt and Davis, 2014).  The application of this library includes the bivariate 
Granger causality testing for multiple time series. Estimates are found for all possible 
bivariate G-causality tests for m variables.  The test is implemented by regressing Y on p 
past values of Y and p past values of X.  A statistical F-test is then used to determine 
whether the coefficients of the past values of X are jointly zero.  The F-tests are 
generally based on a decomposition of the variability in data in terms of sums of squares 
reflecting different sources of variability.  In order for the statistic to follow the F-
distribution under the null hypothesis, the sums of squares should be statistically 
independent, and each should follow a scaled chi-squared distribution.  The latter 
condition is guaranteed if the data values are independent and normally distributed 
with a common variance.  This testing produces a matrix with m*(m-1) rows and m 
columns, which are all of the possible bivariate Granger causal relations. The results 
include F-statistics and p-values for each pair of variables.  The G-causality tests indicate 
that if X G-cause Y statistically, then it contains the information to help predict future 
values of Y, and if Y affects X, which is the feedback effect, it means that X and Y are 
both endogenous, and VAR type model can be used to characterize the interconnection 
between X and Y.  

4. Results and Discussion  
 

The results of calculations of the F-statistic are summarized in Table 3.  For the number 
of variables, m=4 (inlet and outlet gas and liquid pressures), the number of 
interconnections calculated from m*(m-1) is 12.  Table 3 shows that the null hypothesis 
of the G-causality test of no interconnections of the variables (at the p-value <0.05) is 
rejected for 10 interconnections, and is accepted for 2 interconnections, indicating no 
interconnection.  
 
Figure 10 illustrates a multiple bar chart diagram of the F-statistic for the 
interconnections between the gas and water inlet and outlet pressures measured during 
the experiment.  The chart shows two components for each link, indicating a forward, or 



positive, link, and those indicating a backward, or negative, link.  The two connections, 
for which the null hypothesis of no connection is accepted on the p-level >0.1, are 
marked with the asterisk sign.   
 
The data presented in Table 3 and Figure 11 were used to draw a causality loop diagram 
(CLD) to aid in visualization of how different system’s variables are interrelated.  The 
CLD consists of 4 nodes, representing inlet and outlet gas and water ports of the 
fracture, and the arrows representing the forward and backward links between the 
nodes.  The arrow line widths on the diagram in Figure 11 are proportional to the F-
statistic values.  The dashed lines indicate the links, for which the null hypothesis of no 
connection is accepted on the p-level > 0.1.  The CLD represents a closed network of 
interconnections between variables, indicating system’s mutual cause and effect 
relationships. The CLD is internally initiated by the system properties within the limits of 
boundary conditions, and the entire temporal and spatial flow processes are connected 
by causality.  For example, starting at the inlet gas pressure, the system’s cause-effect 
propagation can expressed by:  
 

g.in  l.in  l.out  g.out  g.in        (2a) 
 

g.in  l.out  g.out  g.in    (2b)   
 

 
The equations (2) can generally be written for different starting points of the CLD. Table 
4 presents the data and Figure 11b show the CLD of the capillary pressure 
measurements.  One can see that the output capillary pressure significantly affects the 
inlet capillary pressure, which is essentially a confirmation of the initial hypothesis of the 
influence of the outlet capillary pressure on the inlet capillary pressure.  Thus, the results 
show that, in general, the two-phase fracture flow system exhibits the mutual G-causality 
properties, because two phases are mutually interacting with each other, which can be 

considered the default interaction.  The connections from Equations 2a and 2b are shown 
in Figure 12.  
 

Another important point from the results of the causality analysis is related to the 
definition and measurements of the capillary pressure, which is difficult to measure 
directly in fracture rock [e.g., Firozabadl and J.Hauge (1990), Reitsma and Kueper, 1994; 
Faybishenko and Finsterle, 2003].  The capillary pressure is commonly calculated as the 
difference between the gas (Pgas, nonwetting phase) and liquid (Pliquid, wetting phase) 
pressures  
 

Pcap = Pgas  - Pliquid     (3) 

 
Equation (3) implies that the pressures are additive variables.  However, the 
dependence of the inlet capillary pressure on the outlet capillary pressure indicates that 
the capillary pressure calculated from Equation (3) is not a physically based value.  The 



capillary pressure is in fact a multiplicative variable, intimately dependent on a 
nonlinear superposition of coupled processes within fractured media.  It is very hard if 
not impossible to categorize the relationship between a "causative agent" and an 
"effect" of the system components, as coupled processes intimately mix them.  (A 
detailed statistical analysis and a comparison of the calculated and measured capillary 
pressures are not subject of this paper and will be given in a separate paper.)  
 
As part of the discussion section of the paper, it is important to denote some limitations 
of the application of the G-causality for the analysis of complex physical situations, as 
some causes of variation may not be known or observable.  The G-causality test is 
phenomenological, and is based on the analysis of measured variables.  This test is 
basically a measure of the statistical relationship between the variables, and thus can 
lead to some spurious causalities, if other important relevant variables are not included 
in the analysis (Hsiao 1982).  In this case, the G-causality test may provide a qualitative 
assessment of the causality and may not necessarily represent true causality. If both X 
and Y are driven by a conjoint third process with different time lags, one might fail to 
reject the alternative hypothesis of Granger causality.  In this regard, it would be 
important to manipulate one of the variables to assess the response of the other, which 
will be conducted in a separate paper based on the analysis of other field and laboratory 
experiments.   

Conclusions and Recommendations 
The cause-effect relationships for gas and water pressures affecting flow and transport 
processes in fractured media, using a conventional statistical regression analysis, are 
difficult or even impossible to identify, which limit the reliability of numerical modeling 
and prediction techniques.  One of the modern approaches to the evaluation of the 
cause-effect relationships is the application of the Granger causality principle.  The 
Granger causality statistical approach is based on using predictability as opposed to 
correlation for detecting interactions between time series variables.  In this paper, the 
proposed approach is tested using the time-series data obtained from the fracture flow 
experiment conducted by Persoff and Pruess (1995), and initially analyzed in the 
author’s paper (Faybishenko, 2002).  In his 2002 paper, based on the visual examination 
of time series data, the author hypothesized that the observed quasi-periodic pressure 
oscillations at both inlet and outlet ends of the fracture result from a superposition of 
both forward and return waves of pressure propagation through the fracture.  In the 
current paper, based on the application of the G-causality test, the author infers that 
this hypothesis is correct, and demonstrates the causation loop diagram of the spatial-
temporal distribution of gas and liquid pressures at the inlet and outlet of the fracture.  
The evaluation of the gas-water interactions is important to finding the functional 
significance of monitoring the flow processes. However, because the Granger causality 
approach is used to analyze responses in measured variables, the method does not 
identify whether these variables are sufficient to classify causality of the system, or 



whether extra variables are required.  A physical explanation of the identified statistical 
causality should be a scope of further research. 
 
The developed CLD can also serve as the basis for the development of the Bayesian 
network model, with a requirement that the relationships be causal, and for the use of 
structural equation models (e.g., Greenland and Brumback, 2014; West et al., 1998).  
The application of causality theory is an innovative framework to hydrological flow and 
transport investigations, and may take a prominent place as the basis for the 
development of conceptual and mathematical models, uncertainty evaluation and 
sensitivity analysis of hydrological and climatic predictions.   
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Figure 1. A schematic diagram of the fracture flow experiment used for investigating 
two-phase flow regime in rock fracture specimen [66]. Ovals represent four absolute 
and four differential pressure transducers (Persoff and Pruess, 1995).  
 
 
 

 

 

 

Figure
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Figure 2.  Time series of inlet and outlet gas and liquid pressures measured during the 
fracture flow experiment shown in Figure 1.  
 



 
Figure 3. Differential gas and liquid pressures along the length of the fracture (calculated 
as a difference between inlet and outlet gas pressures, and as a difference between the 
inlet and outlet liquid pressures).   
 



 
 

 
Figure 4. 2D phase-space attractors/scatterplots of measures pressures (using time 
series data in psi shown in Figure 2): figure (a) – black points: Pgas.in vs Pliq.in, and green 
points: Pgas.out vs Pliq.oot; and figure (b) – black points: Pgas.in vs Pgas.out and green points: 
Pliq.in vs Pliq.out.  



 
Figure 5.  Capillary pressure at the inlet and outlet of the fracture (measured 
using differential manometers as the difference between pressures at the gas 
and liquid ports). Pcap is calculated using Eq. (3) 
 
 
 
 
 
 
 
 
 

 
 
 



 
Figure 6. Inlet and outlet gas and liquid pressure oscillations (calculated as the 
difference between the measured and mean values for each time series), showing by 
the arrows that the pressure changes began first at the outlet following by the changes 
at the inlet (a single contrary instance is indicated by a dashed vertical line).  Ovals on 
the upper figure indicate the periods of reverse changes in the gas pressure.  
 
 
 
 
 
 
 

 

 

 
 



 
 

Figure 7.  Results of the evaluation of chaotic parameters of inlet gas pressure: upper row from 
left to right—averaged mutual information to determine the time delay, embedding dimension 
determined using the False Nearest Neighbor (FNN) method, and correlation dimension (D2), 
and the lower row—Lyapunov exponents, information dimension, and 3D pseudo-phase space 
attractor.   
 
 
 

 

 

 



 
 

Figure 8.  Results of the evaluation of chaotic parameters of out gas pressure: upper row from 
left to right—averaged mutual information to determine the time delay, embedding dimension 
determined using the False Nearest Neighbor (FNN) method, and correlation dimension (D2), 
and the lower row—Lyapunov exponents, information dimension, and 3D pseudo-phase space 
attractor.   
 
 



 
 

Figure 9.  Results of the evaluation of chaotic parameters of inlet capillary pressure: upper row 
from left to right—averaged mutual information to determine the time delay, embedding 
dimension determined using the False Nearest Neighbor (FNN) method, and correlation 
dimension (D2), and the lower row—Lyapunov exponents, information dimension, and 3D 
pseudo-phase space attractor.   
 
 
 

 

 

 

 

 

 



 
 

 

Figure 10. Bar chart of the F-statistics calculated from the time series measurements of gas 
and water inlet and outlet pressures for the fracture flow experiment.  The two connections, 
for which the null hypothesis of no connection is accepted on the p-level of >0.1, are indicated 
with the asterisk sign.  On Figures 10-12: g.in – gas pressure at the inlet gas port, l.in – liquid 
pressure at the inlet liquid port, g.out –gas pressure at the outlet gas port, and l.out – liquid 
pressure at the outlet liquid port.  
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Figure 11. (a) Causality loop diagram showing F-statistics values (numbers on the diagram) of 
the interconnections of the inlet and outlet gas and liquid pressures.  Solid lines indicate that 
the null hypothesis for independence is rejected (p-values <0.05), and dashed lines – the null 
hypothesis of independence is accepted at the p-value level >0.1.  (b) The same for the 
measured capillary pressures.   
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Figure 12. An acyclic graph of the prevailing causalities taken from the CLD on Figure 11.  
(a) and (b) indicate the connections from Equations 2a and 2b.  
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Table 1. Diagnostic parameters of chaos 

 

Time series AMI  

(time delay) 

Embedding 

dimention 

(DEMD) 

Correlation 

dimension 

Dcor 

Max 

Lyapunov 

exponent 

Sum of 

Lyapunov 

exponents 

Information 

dimension 

Dinf 

Pg.in 94 / 89 5 1.85 0.25 -0.77 2.03 

Pl.in 181 / 178 4 1.57 0.21 -1.16 2.51 

Pcap.in 73 /61 4 2.62 0.21 -0.58 2.72 

Pcap.out 66 / 60 4 2.17 0.34 -0.26 2.87 

 Note: Time delay values are given: in the nominator—measured data, in the dominator–

noise removed data. 

  

 

 

 

 

 

 

Table 2. KPSS Unit Root Test shows that the null hypothesis of stationarity should be 

accepted as the values of the test statistics given in table (a) are less than the 10%, 5% 

and 1% critical values given in table (b). 

(a) 

Variable Value of test-statistic 

Pg.in 0.0388 

Pl.in 0.0291 

Pg.out 0.0394 

Pl.out 0.0952 

Pc.in 0.0405 

Pc.out 0.05 

 

 

(b) 

Significant 

level 

Critical 

value 

1% 0.216 

2.5% 0.176  

5% 0.146   

10% 0.119 
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Table 3. Results of the Multivariable G-causality test 

G‐causality F‐statistics p‐value Accept/Reject 
Pl.in    Pg.in 2.224 9.35E-09 Reject 
Pg.out   Pg.in 3.681 0 Reject 
Pl.out    Pg.in 1.896 5.69E-06 Reject 
Pg.in    Pl.in 5.417 0 Reject 
Pg.out   Pl.in 2.257 4.71E‐09 Reject 
Pl.out    Pl.in 1.902 5.09E-06 Reject 
Pg.in    Pg.out    1.212 0.103 Accept 
Pl.in     Pg.out    1.001 0.476 Accept 
Pl.out    Pg.out    1.476 4.91E-03 Reject 
Pg.in    Pl.out    1.877 8.01E-06 Reject 
Pl.in    Pl.out    4.188 0 Reject 
Pg.out   Pl.out    1.466 5.68E-03 Reject 
 

 

 

Table 4. Causality of the bidirectional G-causality test for inlet and outlet capillary 

pressures (measured and noise removed) 

G-causality  Measured data Noise removed data 

F-statistics p-value F-statistics p-value 

Pcap.out  Pcap.in     3.966 0 2.595 1. 1e-10 

Pcap.in  Pcap.out     1.672 0.0006 1.288 0.062 

 

 

 

 

 




