

Shales at All Scales: Exploring Coupled Processes in Mudrocks

Anastasia G. Ilgen^{1*}, Jason E. Heath², I. Yucel Akkutlu³, L. Taras Bryndzia⁴, David R. Cole⁵, Yousif K. Kharaka⁶, Timothy J. Kneafsey⁷, Kitty L. Milliken⁸, Laura J. Pyrak-Nolte⁹, and Roberto Suarez-Rivera¹⁰

32 **Abstract**

33

34 Fine-grained sedimentary rocks – namely mudrocks, including their laminated fissile variety –
35 shales – make up about two thirds of all sedimentary rocks in the Earth’s crust and a quarter of
36 the continental land mass. Organic-rich shales and mudstones are the source rocks and reservoirs
37 for conventional and unconventional hydrocarbon resources. Mudrocks are relied upon as natural
38 barriers for geological carbon storage and nuclear waste disposal. Consideration of mudrock
39 multi-scale physics and multi-scale spatial and temporal behavior is vital to address emergent
40 phenomena in shale formations perturbed by engineering activities. Unique physical
41 characteristics of shales arise as a result of their layered and highly heterogeneous and
42 anisotropic nature, low permeability fabric, compositional complexity, and nano-scale confined
43 chemical environments. Barriers of lexicon among geoscientists and engineers impede the
44 development and use of conceptual models for the coupled thermal-hydraulic-mechanical-
45 chemical-biological (THMCB) processes in mudrock formations. This manuscript reviews the
46 THMCB process couplings, resulting emergent behavior, and key modeling approaches. We
47 identify future research priorities, in particular fundamental knowledge gaps in understanding the
48 phase behavior under nano-scale confinement, coupled chemo-mechanical effects on fractures,
49 the interplay between physical and chemical processes and their rates, and issues of non-linearity
50 and heterogeneity. We develop recommendations for future research and integrating multi-
51 disciplinary conceptual models for the coupled multi-scale multi-physics behavior of mudrocks.
52 Consistent conceptual models across disciplines are essential for predicting emergent processes
53 in the subsurface, such as self-focusing of flow, time-dependent deformation (creep), fracture
54 network development, and wellbore stability.

55

56 *Keywords: mudrock, shale, coupled processes, hydraulic fracturing, diagenesis, spatial scale,*
57 *temporal scale, THCMB*

58

59

60

61

62

63 **1. Introduction: Shale Architecture, Heterogeneity, and Coupled Processes**

64

65 *1.1 Significance of mudrocks, and laminated mudrocks – shales*

66

67 Sedimentary rock containing more than 50 percent (by weight or volume) of particles less than
68 62.5 microns in size are known variously as shale, siltstone, claystone, mudstone, and are
69 cumulatively referred to as mudrocks ^[1-3]. Some workers apply “shale” narrowly to refer to the
70 visibly laminated, fissile variety of this sedimentary rock, but in this paper we apply this term as
71 the overall name for the broad class of fine-grained layered sedimentary rocks, and, where
72 appropriate, use it interchangeably with the term “mudrock” ^[4]. Shale constitutes around two-
73 thirds of the sedimentary record of planet Earth ^[5, 6], and a quarter of the continental land mass
74 ^[7]. In some portions of sedimentary basins, distant from the principal axes of sediment transport,
75 the abundance of mudrocks may approach 90 percent of the local sediment volume ^[8]. Shales are
76 volumetrically dominant in both marine and terrigenous successions, and host significant
77 portions of the fluid-rock interactions controlling fate and transport of elements in the upper crust
78 ^[9], and atmosphere – e.g., chemical weathering of shale has been shown to serve as a long-term
79 global sink for carbon dioxide (CO₂) ^[7]. Thus, shale properties are key controls on interactions of
80 the atmosphere, hydrosphere and sedimentary lithosphere in many contexts, and are crucial
81 reservoirs for unconventional oil and gas production, top seals for conventional hydrocarbon
82 traps and geological CO₂ storage (GCS), and isolation of nuclear and other high-level wastes.

83

84 In each case, shales are of interest both as barriers to fluid flow (seals) and as rock units that
85 support flow of their contained fluids (reservoirs). Accelerated growth of information on Earth’s
86 most abundant sedimentary rock highlights key gaps in our understanding of this rock type. The
87 development of conceptual models for the coupled thermal-hydraulic-mechanical-chemical-
88 biological (THMCB) processes in shale formations presents a major scientific challenge. In this
89 paper we assess outstanding and fundamental issues in shale science that present obstacles to
90 practical management of shales as seals, reservoirs, and source rocks. We develop
91 recommendations for future research and integrating multi-disciplinary data for models
92 appropriate for multi-scale, multi-physics coupled processes in shale.

93

94 *1.2 Key physical and chemical characteristics of shales*

95

96 The physical and chemical properties of shales are controlled by their depositional environment,
97 post-depositional diagenetic history, and engineering activities. In general terms, shales are
98 commonly distinguished by their layered low-permeability fabric and composed of fine-grained
99 minerals. One of the primary components of source rock shale is organic matter (e.g., kerogen).
100 Porosity and pore sizes of shale are variable; however, nano-pores comprise a large fraction of
101 the total porosity ^[10-13].

102

103 Historically, shales have been strongly identified by their clay mineral content because clay
104 minerals are a component that controls the physical behavior of shale at scales ranging from field
105 and laboratory to the nano-scale ^[14]. Although most shales contain at least a few volume percent
106 of clay minerals, petrographic inspection by high-resolution methods shows that non-
107 phyllosilicate minerals such as quartz, feldspar, and calcite dominate in many shale lithologies
108 and that organic components contribute additional complexity ^[15-17]. Compositional classification
109 of shales has not, to date, benefited from a level of community consensus that is analogous to the
110 widely applied classifications of sandstones and limestones ^[2, 18, 19]. It is clear however, that
111 shales display a range of mineralogical compositions that encompass that of sandstones and
112 limestones in addition to actual clay-mineral-rich rocks ^[2].

113

114 Recent advances in understanding shale heterogeneity at many scales have been founded, in part,
115 on a heightened appreciation of the nature of fundamental components (grains, cements, and
116 grain replacements) as revealed by high resolution electron microbeam imaging ^[20]. Both
117 observational ^[18] and experimental ^[21] approaches demonstrate that the physical sedimentology
118 of fine-grained sediments entails a complex set of advective transport mechanisms as well as
119 gravity settling, leading to distinctive textural and fabric characteristics at the bed scale that can
120 be used to infer depositional conditions ^[18]. In this paper we use the term “texture” (rock
121 microstructure) to refer to the combination of properties, including maturity, pore characteristics,
122 fragment shape, roughness, composition, sorting, and diagenetic features - matrix and cement
123 ^[22].

125 Pores in shale manifest at a variety of sizes within kerogen (organic material), the inorganic
126 mineral matrix, and fractures formed during natural processes or engineering activities ^[23, 24].
127 The structures of pores reflect depositional processes and also the chemical and mechanical
128 diagenetic processes associated with burial. In organic-rich shales, thermal maturation results in
129 kerogen cracking and production of liquid hydrocarbons and gas, which also modifies the nature
130 of porosity within organic components associated with these rocks.

131

132 Pore waters comprise approximately 20 percent by volume of most sedimentary basins ^[25, 26].
133 The salinity of pore waters in petroleum reservoir rocks, including values reported for shale and
134 tight reservoirs with *in situ* temperatures of ~20–150 °C and fluid pressures of ~100–1,000 bar,
135 varies widely from approximately 1,000 mg L⁻¹ to over 400,000 mg L⁻¹ total dissolved solids
136 (TDS) ^[26]. Detailed inorganic and organic chemical analyses, together with measurements of
137 stable and radioactive water and solute isotopes have shown that the formation waters in
138 sedimentary basins are dominantly of local meteoric or marine connate origin. However, bittern -
139 residual evaporated seawater, geologically old meteoric water, and especially waters of mixed
140 origin are important components in most sedimentary basins ^[26]. During diagenesis, the original
141 waters of deposition evolve to Na–Cl, Na–Cl–CH₃COO-, or Na–Ca–Cl-type waters by a
142 combination of several processes including (1) dissolution of evaporites, especially halite; (2)
143 diffusion and advection, especially in and near salt domes; (3) reflux and incorporation of
144 bitterns; (4) dissolution, precipitation and transformation of minerals other than evaporites; (5)
145 interaction with clay minerals, principally mudrocks (and shales) behave as geologic membranes
146 and have high ion exchange capacities; (6) interactions with organics, including petroleum and
147 solid organic matter, as well as bacteria that can survive in sedimentary basins at temperatures of
148 up to ~80°C; and (7) mixing of different waters. The important processes responsible for the
149 chemical evolution of water in each basin can be identified using chemical markers and isotopic
150 tracers ^[26-30].

151

152 The significant compositional and textural heterogeneity that arises from the integrated effects of
153 depositional, biologic, and diagenetic processes in shales is observed on the scale of nanometers
154 ^[31, 32] to meters ^[18] to kilometers. Methods to honor this multi-scale heterogeneity in models that

155 predict the response of shales to natural and induced physical and chemical changes is one of the
156 key challenges of shale science.

157

158 *1.3 Why is THMBCB process coupling important for shale?*

159

160 The compositional and textural complexity of shale (Figure 1) is manifested in non-linear
161 progression of physical and chemical processes, and hard-to-predict response to natural and
162 anthropogenic perturbations. The time-dependence and the interplay of chemical, mechanical,
163 and transport processes have been directly observed, in particular in engineered systems. These
164 coupled processes develop in highly nonlinear fashion and can range across length scales from
165 nanometers to kilometers (Figure 1), and across time scales from geological time scale to nano-
166 seconds. The two-way process coupling in shale is presented in Table 1. There are numerous
167 unknowns about how THMBCB processes in shale are coupled and at what spatial and temporal
168 scales.

169

170 **Figure 1.**

171

172 **Table 1.**

173

174 Diagenesis is one of the classic examples of process coupling in shale. A volumetrically
175 important diagenetic reaction is the transformation of mixed layer clays (MLC), containing
176 smectite layers, to MLCs containing increasing proportions of illite ^[33]. This diagenetic reaction
177 is often accompanied by a volume change and is the source of significant dissolved silica that
178 results in quartz cementation of proximal reservoir sands ^[34, 35], and possibly, the shales
179 themselves ^[36]. This reaction also produces significant volumes of water that can cause the
180 development of geologic overpressures ^[37, 38]. The absolute value of volume change during the
181 transformation of smectite to illite is not a constant, and depends on the chemical pathway.
182 Osborne and Swarbrick (1999) calculated the volume change associated with 10 possible
183 smectite to illite reaction pathways ^[39]. The volume change ranges from an increase of 4.1% to a
184 decrease of 8.4% depending on reactants and products (see also ^[40]). A positive volume change
185 and developed overpressure may cause a decrease of horizontal stress and induce fracturing in

186 cases where the fluid pressures exceed the local minimum principal stress. Shale fracturing takes
187 place anisotropically, resulting in irreversible changes in shale fabric ^[41], and increases, also
188 anisotropically, the permeability by orders of magnitude. Shale architecture shaped by diagenesis
189 controls the preferential flow across scales.

190

191 As indicated by Dusseault, 2004, shale is the only “common” rock type, where all four (Darcian,
192 Fickian, Fourier and Ohmic) diffusion processes can co-exist as processes of first-order
193 importance ^[42]. Presence of the nano-channel and nano-pore structures in shale, as well as mixed
194 wettability (e.g. water- and oil-wetting) networks control transport behavior ^[43], while reactive
195 transport in turn affects the pore structures ^[44, 45]. Additionally, the combined effects of high salt
196 content and large proportion of water bound at interfaces (water films) relative to free water,
197 result in the overall low chemical potential (limited activity) of water, and chemical behavior
198 differing from the bulk-phase behavior.

199

200 In coupled processes, observed in shale formations, one of the key variables is volume change ^{[39,}
201 ^{40]}. Microscopic processes of swelling and shrinking of clay minerals results in macroscopically
202 observed expansion and contraction of shale beds. Volume changes control the state of stress,
203 which leads to yield (shearing and fracturing) and changes in geometry of pore and fracture
204 networks, and resulting changes in permeability and diffusivity ^[44]. Understanding the THCMB
205 process coupling and feedbacks necessitates quantifying the volume changes, governing
206 processes and their rates and incorporating them into numerical models.

207

208 Chemical controls on fractures are common for various rock types, including shale. Most
209 commonly, chemically-induced fracturing in shale is due to (1) cation-exchange reactions
210 involving swelling clay minerals, which may result in positive or negative volume change ^[42], (2)
211 mineral phase transformations, also resulting in volume change, and (3) chemical weakening of
212 the silica- or metal-oxygen bonds due to the chemical attack (by water, proton or hydroxyl) on
213 the accessible substrates—mineral grain surfaces and cements—contributing to fracture initiation
214 and growth ^[46].

215

216 In some cases, biologic interactions in fine-grained systems can be profound ^[31, 32, 47]. They are,
217 however, limited by the “tightness” of the rocks: it has been shown that in shale with pore throat
218 sizes less than 0.2 micron, biological activity is limited ^[48]. However, in perturbed shale
219 systems—for example, in gas wells in the Barnett shale—significant biological activity,
220 manifested as biogenic sulfide production and microbially-induced corrosion, have been
221 documented ^[49]. These introduced microorganisms in oil and gas fields can cause reservoir
222 plugging, decline in the resource quality, and corrosion of metal-containing equipment ^[49].

223

224 Coupled THCMB processes in engineered, or perturbed, systems are of particular interest in
225 various applications ranging from wellbore stability, to performance of geological CO₂ storage
226 reservoirs, and repositories for used nuclear fuel (UNF). In these applications, removal (oil and
227 gas production, construction of wellbores or underground repository shafts) or emplacement
228 (CO₂, nuclear waste packages) of materials interfere with the original either true or pseudo-
229 steady-state, or, local equilibrium conditions of the system. For example, when CO₂ is injected
230 into a geologic formation, some of the CO₂ dissolves in the pore brine and forms carbonic acid,
231 lowering the brine pH, initiating geochemical re-equilibration through mineral dissolution and
232 re-precipitation ^[50, 51]. Other examples of process coupling during engineering activities are: (1)
233 when a stainless steel UNF waste package is placed in a repository, gas generation from the
234 canister corrosion can cause fracturing of the porous media, contributing to the positive feedback
235 loop in the coupled fracture-transport ^[52]; and (2) borehole instability, which has been observed
236 for both smectite-rich shales with porosities in excess of 10%, as well as in low-porosity (less
237 than 10 %), highly fractured, quartz/illite-rich shale ^[42]. These types of shale are common and are
238 encountered in most deep drilling operations. The borehole instability is largely attributed to
239 process coupling – when volume is added or withdrawn as occurs with swelling clay minerals in
240 smectite-rich shale, the state of stress around the borehole is modified, creating the potential for
241 further yield, channeling and dilation ^[53]. The dynamic volumetric dilation is manifested all the
242 way to the processes occurring at the pore throats ^[53].

243

244 Quantitative predictive models are limited and still under development due to the complexity of
245 coupled processes and their manifestations over the large range of length and temporal scales.
246 The contemporary challenge is to understand process couplings and emergent phenomena such

247 as preferential flow path development, time-dependent deformation, fracture network
248 development, and wellbore stability across spatial and temporal scales in natural as well as in
249 perturbed systems. We suggest that the complexity of the THCMB process coupling in shale
250 requires a systematic approach involving a broad range of disciplines. This systematic approach
251 could create a foundation for a common language that could be used by the various disciplines
252 that study or engineer shale. In the following sections we review the state-of-the-art
253 methodologies used to address key subsets of coupled processes across the THCMB spectrum.

254

255 **2. Methods**

256

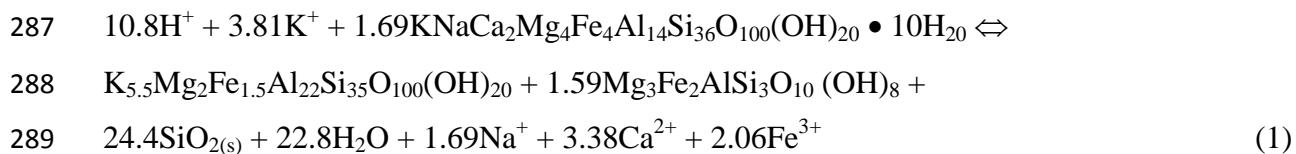
257 The selection of primary literature for this systematic review was based on whether the full range
258 or any combination of the THCMB coupled processes is specifically addressed. Given the multi-
259 scale multi-process nature of this review, we included both experimental, field, and theoretical
260 studies. Only literature in English is included. We have identified the physical, chemical,
261 mechanical, and geological properties of shale that distinguish it from other rock types. We
262 reviewed the methodologies developed to address process coupling at various time and length
263 scales, and synthesized the data to outline recommendations for future research on coupled
264 processes and data integration.

265

266 **3. Methodologies Applied to Coupled Processes in Shale**

267

268 *3.1 Post-depositional physical and chemical processes in shale (diagenesis)*

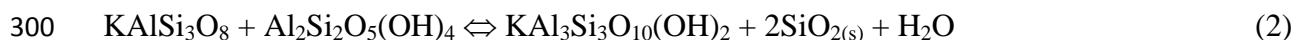

269

270 Post-depositional changes cause further heterogeneity in fine-grained sediments and encompass a
271 similar range of chemical and mechanical processes as are observed in the diagenesis of other
272 sedimentary rocks. Compaction ^[25, 54], cementation by carbonate, quartz, and other minerals ^[45],
273 pressure solution ^[55], and grain replacement such as albitization of feldspars ^[56] are all observed
274 in shales. The details of these processes in mudrocks are, however, still poorly understood
275 compared to similar processes observed in sandstones and limestones.

276

277 The transformation of smectite layers in MLC with increasing temperature is the key diagenetic
278 reaction in shale in sedimentary basins, including the northern Gulf of Mexico basin^[26, 35, 57].
279 Due to the large volumes of clay minerals, the water and solutes released and consumed by the
280 MLC transformation are major factors shaping the hydrogeochemistry and petroleum resources
281 of these basins^[35]. Several incongruent reactions conserving aluminum (Al) or maintaining a
282 constant total volume have been proposed for this transformation^[38, 57]. The reaction of Equation
283 1^[26] conserving both Al and Mg, and precipitating chlorite, quartz, and illite is probably a closer
284 approximation based on the composition of formation water observed in the northern Gulf of
285 Mexico basin.

286


290

291 Ferric iron (Fe^{3+}) in reaction (1) will be reduced by organic matter to Fe^{2+} and some may
292 precipitate as pyrite or ankerite. The overall reaction consumes large amounts of potassium (K^+)
293 and protons (H^+) and adds calcium (Ca^{2+}), sodium (Na^+) and some iron (Fe^{2+}) to the pore water.

294

295 Diagenetic illite and quartz are also the major pore-occluding cements in the petroleum
296 reservoirs of North Sea^[58] and Saudi Arabia^[59]. Illite and quartz in these basins are formed from
297 reactions of K-feldspar and kaolinite as depicted in reaction (2). Illitization of existing kaolinite
298 is postulated to occur isochemically at a threshold temperature of $\sim 140^\circ\text{C}$ ^[58].

299

301

302 As detailed in Kharaka et al.^[60], the salinity and chemical and isotopic compositions of pore
303 waters from conventional and unconventional reservoirs from the same basin/sub-basin and
304 pressure and temperature conditions appear comparable, indicating that diagenetic pathways
305 experienced by fine-grained sediments are similar to the processes in coarser sediments^[61, 62].

306

307 Basin modeling and basin petroleum system modeling (BPSM) represent integrated approaches
308 to recreate the diagenetic evolution of sedimentary basins, the latter focusing explicitly on
309 hydrocarbon systems^[63]. The traditional goal of BPSM is to quantify the history of
310 hydrocarbons in conventional reservoirs for exploration and resource extraction by
311 reconstructing and/or incorporating the original hydrocarbon source location, generation,
312 expulsion, migration pathways and preservation in hydrocarbon traps^[63]. Original sediment
313 deposition and subsequent diagenetic processes integrated by BPSM can include: sediment
314 depositional environments, sediment types and structures, sedimentation rates, compaction,
315 cementation, thermal history, dewatering and porosity evolution, kerogen maturation,
316 hydrocarbon generation-migration-accumulation, multi-phase flow including relative
317 permeability, capillary pressure, and assumptions on wettability, phase behavior of hydrocarbons
318 and/or other fluids, pore pressure evolution, (effective) stress changes, and faulting. The BPSM
319 approach can be applied spatially in 1, 2, or 3 dimensions. Major differences of BPSM from
320 typical conventional reservoir modeling include large basin-scale domains (on the order of
321 hundreds of kilometers with large grid block sizes in the numerical modeling) and geologic time
322 scales (e.g., hundreds of millions of years) as opposed to meter or kilometer scale modeling over
323 months to years^[63].

324

325 Application of BPSM to shale hydrocarbon plays is relatively new and still under development.
326 Recent effort focuses on treating the shale play as both source and reservoir. Romero-Sarmiento
327 et al. (2013, pages 315–316) explain that “expelled [hydrocarbons] have been therefore used as a
328 parameter to adjust for the assessment of conventional petroleum systems^[64]. A thorough
329 simulation of expulsion and retention mechanisms was not therefore necessary to define
330 conventional oil and gas in place in the reservoirs.” Romero-Sarmiento et al. (2013) present
331 approaches for basin-scale shale-play BPSM that include: source-rock kinetics, chemical
332 transformations, and evolution of total organic carbon (TOC) and associated porosity, retention
333 of hydrocarbon fluids (e.g., via sorption or as a free-phase in kerogen porosity), and assumptions
334 of porosity evolution of kerogen-hosted pores versus mineral matrix pores (e.g. mineral-
335 assemblage-hosted pores respond to stress state whereas organic pores respond mainly as a
336 function of maturity i.e., thermal history)^[62]. Recent and developing knowledge of the phase
337 behavior of hydrocarbon fluids under nano-scale confinement, non-Darcy transport process (e.g.,

338 Knudsen transport), complex cementation/dissolution textures, and creep and other mechanical
339 responses still need to be fully integrated in shale BPSM to enable better estimates of
340 hydrocarbon resources in place and their exploitation potential.

341

342 *3.2 Physical and chemical controls on fracturing in shale*

343

344 As discussed above, the heterogeneous nature of organic-rich shales arises from textural
345 complexity and variation in mineralogical composition. Fractures and coupled processes in
346 shales cannot be properly understood without accounting for the role of these
347 textural/compositional variations in controlling the mechanical properties, failure and the
348 interactions among rock deformation, pore pressure, fluid flow and solid-liquid geochemistry ^[41].

349

350 The laminated nature and varying mineral/chemical composition of shale has been observed on
351 multiple scales: from geologic observations at outcrops, in cores from organic-rich mudrock
352 reservoirs, and from laboratory test (with cm-resolution) that measure properties along the core
353 length (Figures 2 and 3). Core measurements have shown that variation in mechanical properties
354 of shale occur over intervals that range in scale from sub-centimeter to decimeters (Figure 3). For
355 example, unconfined strength in a single shale core can range from 69 MPa to 241 MPa (10,000
356 psi to 35,000 psi) among laminae, while Young Modulus has been observed to range from 7 GPa
357 to 34 GPa (1 Mpsi to 5 Mpsi) on the same length scale (unpublished data). Equally large ranges
358 of values of other mechanical properties are commonly observed ^[65]. Pervasive mm- to cm- to
359 decimeter- scale layering with sharply contrasting properties is abundant (Figure 2). Large scale
360 layering, on the order of meters, is also common and is caused by the presence of carbonate
361 benches, or other mineral concentrations, and intercalated shale units (Figure 3). The sharply
362 changing properties between thin rock units and the stacked rock architecture of organic-rich
363 shales also results in the presence and distribution of weak interfaces with specific orientations
364 (often bed parallel) which also affect fluid mobility and fracture propagation. Some of these
365 interfaces were activated, parted, and/or mineralized, during basin development. Other interfaces
366 are susceptible to slip when stresses and/or pore pressure change during drilling, hydraulic
367 fracturing, production, as well as from associated regional changes in stress and deformation. For
368 example, stresses and fluid pressure can vary widely in regions with a high density of wells

369 where large volume of fluids are pumped in during hydraulic fracturing, and withdrawn during
370 production. The presence of layering and weak interfaces results in preferential directions of
371 deformation, failure, and fluid flow. Often these observed preferential directions do not align as
372 predicted by simple homogeneous isotropic models.

373

374 **Figure 2.**

375

376 **Figure 3.**

377

378 These challenges have been clear to the mining and civil engineering industries, and their
379 workflows and models include orientations and modes of rock failure that are controlled
380 primarily by the presence, distributions, and properties of fault sets and discontinuities (i.e.,
381 planes of weakness). The role of the intrinsic rock properties on failure is proposed to be of
382 secondary importance. Block Theory ^[66] is an example of a methodology developed to
383 understand and predict rock failure and excavation stability based on a detailed mapping of the
384 orientation and distribution of planes of weakness in the regional rock system. Admittedly the
385 mining and civil engineering industries focus predominantly on "stronger" rocks, where the
386 intrinsic rock strength is larger than the shear strength of faults or other planes of weakness; and
387 the confining stresses may be lower because of the shallower nature of their applications.

388 Nevertheless, in contrast, the method and models the oil industry uses for rock deformation and
389 failure (e.g., wellbore stability, hydraulic fracturing, depletion-induced compaction, and others),
390 are primarily dependent on the intrinsic, homogenized, rock properties. These are typically
391 obtained or predicted at well-log resolution (averaged over 2 ft (60 cm), Table 2) and, as a
392 consequence, this minimizes or removes the representation of existing thin layering and
393 interfaces – e.g. micron-scale fractures (Figure 4). Such a method may be appropriate and
394 successful for conventional reservoirs, but is limiting for unconventional, over pressured,
395 heterogeneous, anisotropic reservoirs. Regarding hydraulic fracturing, for example, it is now
396 accepted that the layered nature of mudrocks and the ubiquitous presence of planes of weakness
397 in them (often bed parallel) give rise to complex hydraulic fracturing geometries, the presence of
398 multiple branches of fracture propagation, fish-bone structures of fracturing and leak off, step

399 overs, and other geometric effects that do not occur in homogeneous isotropic materials and
400 cannot be explained using homogeneous models (Figure 5) ^[67].

401

402 **Figure 4.**

403

404 **Figure 5.**

405

406 **Table 2.**

407

408 Elastic or seismic wave characterization is often used to determine the mechanical properties of
409 rocks in the subsurface from measurements of wave attenuation and velocity. However,
410 interpretation of geophysical signals is complicated for shale because of the potential for
411 competing sources of anisotropy: textural versus structural. Textural anisotropy arises from
412 laminae, thin parallel layers of alternating composition and moduli (e.g. carbonaceous, silty,
413 dolomitic, clayey, or lithoclastic) that range in scale from micrometers to centimeters, to
414 decimeters (Figures 1, 2 and 3), and with orientations that depend on the original depositional
415 environment and post-depositional tectonic processes. Structural anisotropy arises from micro-
416 cracks, fractures, joints, and the aforementioned interfaces that range in scale from micrometers
417 to meters, are sensitive to stress, and have orientations and spacings that may or may not align
418 with the textural features based on the diagenetic and tectonic history or any activities that
419 perturb the subsurface system. These competing sources of anisotropy can mask either the
420 presence of fractures and/or the matrix/fabric anisotropy depending on the state of stress (i.e.,
421 stress magnitude and orientation).

422

423 The effect of competing anisotropy has been clearly demonstrated in the laboratory
424 measurements on manufactured anisotropic medium. The acoustic wavefronts (Figure 6) were
425 propagated through this anisotropic medium with fractures perpendicular to subwavelength
426 layering ^[68]. The unique symmetry axis for the fracture set is vertical while that for the matrix is
427 horizontal. In Figure 6, the spatial distribution of energy is shown at a fixed arrival time. At low
428 or high stress, the measured anisotropy is controlled by either the fracture orientation or the
429 matrix texture, respectively. However, at an intermediate stress, the fractured anisotropic

430 medium appears isotropic as indicated by the circular shape of the wavefronts, i.e. the energy
431 spreads out nearly uniformly in all directions. Interpreting rheological properties from velocities
432 measured under the condition of the intermediate stress state would, incorrectly, yield isotropic
433 moduli.

434

435 **Figure 6.**

436

437 Thus a question arises whether competing sources of anisotropy in fractured shale can be
438 delineated using seismic or elastic wave techniques. Fractures and other mechanical
439 discontinuities often give rise to converted-, guided- and scattered modes that could be used to
440 interpret fracture and matrix properties. For example, the velocity of waves guided between or
441 along fractures has shown promise as potential tool to extract both fracture and matrix properties
442 from elastic waves. These guided modes depend on the orientation of a fracture relative to
443 layering, the matrix and fracture mechanical properties, layer/fracture spacing and signal
444 frequency ^[69, 70]. Heterogeneity leads to scaling complexities that are the undeniable challenge
445 for evaluating and modeling failure, fracture, and fluid mobility behavior of organic-rich
446 mudrocks, for understanding their coupled effects, and for defining the type of measurements
447 that will be relevant. Additional research is needed to assess the contributions to the scattered
448 wave field not only from fractures but also from fracture intersections, fracture sets, stress
449 gradients and fluids in order to characterize dynamically evolving fractured shale systems. This
450 future research will determine whether competing sources of anisotropy are separable, if the
451 dominant symmetry axis depends on stress and fluid conditions, and if the dominant symmetry
452 axis also indicates fluid flow anisotropy.

453

454 The ability to detect and monitor the dynamic evolution of fractured shale systems using
455 geophysical methods requires a link between a remotely-measured geophysical response and a
456 characteristic property (or properties) of a fracture. For over two decades, several researchers
457 have demonstrated that fracture-specific stiffness can be estimated from seismic wave
458 attenuation and velocity ^[71-80]. The dependence of specific stiffness on the spatial and probability
459 distribution of regions of contact between two fracture surfaces creates an implicit link to the
460 hydraulic properties of a fracture through the fracture geometry ^[81, 82]. Recently, Petrovitch et al.

461 (2013, 2014) determined the existence of a *scaling* relationship between fracture specific
462 stiffness and fluid flow for single fractures ^[83, 84]. The numerical flow-stiffness data, simulated at
463 multiple length scales, collapsed to a single scaling function because fracture specific stiffness
464 captures the deformed fracture void topology that includes both changes in contact area and
465 aperture caused by stress as well as by transport-dominated chemical erosion ^[85].

466

467 The resulting hydro-mechanical scaling function potentially provides a link between fluid flow
468 and the seismic response of a fracture, because fracture-specific stiffness affects seismic wave
469 attenuation and velocity. However, several outstanding questions related to the deformation of
470 fractures in shale and the scattered wave field must be addressed before extending these concepts
471 from single fractures to fracture networks in subsurface shale. For example: does a viscoelastic
472 matrix affect deformation of fracture void geometry in a manner that differs from pure elastic
473 conditions? Will the flow-stiffness relationship hold for partially-mineralized fractures that are
474 often found in shale? Can seismic data differentiate or unravel chemical, fluid and stress
475 alteration of fractures? Can scattered wave fields delineate the effects of stress gradients that lead
476 to non-uniform fracture topology and fluid distributions that mask or promote additional
477 scattering? And how do proppants or geochemically induced reaction halos affect fracture
478 deformation and in turn fracture specific stiffness?

479

480 The importance of the chemical effects on subsurface fracture behavior, or chemo-mechanical
481 coupling, has been recognized for several decades. Chemically assisted subcritical fracture
482 growth, also referred to as stress corrosion cracking, is proposed to control the time and
483 deformation-rate-dependent failure of rocks (e.g., ^[86-88] and references therein). Resistance to
484 subcritical fracturing depends on microstructural heterogeneities: micro-fractures, grain
485 boundary cohesion and orientation, and mismatches in elastic properties between phases.
486 Development of large fracture populations and fracture architecture is controlled by chemical
487 processes in the micro-scale near-tip fracture regions ^[89-91]. In aqueous fluids, mineral reactions
488 have been shown to play a key role in subcritical fracture development at both bulk and
489 microscopic scales.

490

491 A technique traditionally used for assessing reaction kinetic effects on subcritical fracture
492 propagation is double-torsion geomechanical testing, which allows measuring fracture
493 propagation rate and subcritical index in shale under controlled fluid composition and
494 temperature ^[88]. A novel approach for interrogating coupled chemical-mechanical fracture
495 processes is X-ray computed tomography (CT) for imaging fractures while controlling stress
496 conditions using a triaxial cell. This technique enables characterization of fracture formation and
497 permeability changes at *in situ* temperature, pressure and stress conditions ^[92]. The CT data can
498 be used as model input ^[92, 93] enabling prediction of fracture behavior as a function of fluid
499 pressure and changes of *in situ* stress. The accuracy of these models depends on the proper
500 inclusion of interfaces and fluid flow processes.

501
502 Further development of coupled models is needed in order to predict coupled fracture, multi-
503 phase flow, and multi-component reactive transport in the subsurface, and to capture the effect of
504 geochemical reactions on fracture permeability. These new models require that the solid solvers
505 are coupled to the multi-phase reactive flow and reactive transport codes. One difficulty in
506 modeling chemical-mechanical processes in shale, is that a model must incorporate changes in
507 volume that correspond to changes in chemical concentration which in turn are coupled to the
508 diffusion processes. In addition, laboratory data to support or verify such models is sparse.

509
510 *3.3 Fluid flow in multi-porosity systems*

511
512 Fluid flow in shales takes place in a variety of void or pore structures. Salient features that
513 influence flow and transport include: the occurrence of discrete pore networks within kerogen
514 and inorganic components (e.g., clay and silt), that have different wettabilities and characteristic
515 sizes ^[94, 95]; a range of pore sizes that result in various transport modes including viscous flow,
516 Knudsen flow, transition flow (viscous and Knudsen flow), and diffusive fluxes encompassing
517 ordinary Fickian diffusion including effect of mass (Graham's Law), and adsorption-desorption
518 processes on the surface of pores of the minerals or organic matter ^[96]; a variety of pore body and
519 throat shapes, sizes, and topologies that can strongly affect multi-phase flow processes such as
520 imbibition-drainage (Figure 7), especially relevant for liquid and gas hydrocarbon systems ^[97]; a
521 vast range of natural or induced fracture types that reflect paleo and recent fluid flow, and

522 precipitation-dissolution that may have modified the porous matrix or fracture permeability
523 (Figure 4). Different flow mechanisms can occur for different scales of the pore structures^[98].
524 The orientation of fractures (or faults) relative to the current regional and local stress regime can
525 affect whether the fractures-faults are critically-stressed and “hydraulically active.”

526

527 Additional complexity is introduced by the large variability of the organic matter associated with
528 shale^[44, 99]. For example, laboratory measurements of hydrocarbon fluid extraction and
529 composition indicate measurable differences in hydrocarbon compositions and in the partition
530 between light components, intermediate molecular weight components and heavy components,
531 within short intervals in the same formations and at the same levels of thermal maturity^[100]. This
532 is most likely due to the heterogeneous distribution of macerals in the system and also to the
533 effect of rock texture and composition on moderating the thermal processes of hydrocarbon
534 generation and cracking. Thus fluid separation (oil and water) in relation to surface energies
535 (mineral and organic surfaces), and changes in hydrocarbon composition in relation to changes in
536 rock texture and composition are factors that also contribute to the heterogeneous distribution of
537 pore pressures, and control the flow in the system.

538

539 **Figure 7.**

540

541 The large variety of pore types^[44], many of which can occur in a shale formation at a range of
542 scales, makes the quantification and/or prediction of flow and transport difficult. Current
543 techniques for understanding the transport in the multi-porosity shale system include a
544 combination of methods to characterize the pores and model flow and transport. Several studies
545 use fully three-dimensional (3D) imaging or serial sectioning to characterize the pores and then
546 reconstruct digital models of the pore geometry and connectivity of solid components. Primary
547 methods (Table 2) include dual beam focused ion beam–scanning electron microscopy (FIB-
548 SEM) (Figure 7), X-ray CT and micro- to nano-tomography, and neutron tomography, with
549 resolutions from ~1 nm to 10s of microns or higher for medical X-ray CT systems^[24]. A major
550 concern of reconstructions for flow modeling is whether the small volumes representative of the
551 digital reconstructions are representative of bulk volume properties of the shale. These volumes
552 can range in size from ~653 μm^3 ^[24] to ~ $10^6 \mu\text{m}^3$ ^[102]. Several studies address issues of

representative elementary volume (REV) to determine the length scale at which shale properties become statistically stable and suited for modeling by continuum methods^[24, 103-105]. It appears porosity REVs can be obtained for some shales from FIB-SEM 3D reconstructions: e.g., members of the Bakken,^[24]; however, it is not possible to obtain an REV for permeability for the same study because the FIB-SEM volumes are too small. Rui et al. 2016^[106], have recently presented a scaling up approach predicting kerogen REV using a nanopore-network modeling, and predicted an REV of 5 μm^3 (Figure 8). Establishing the ranges of sizes for REVs in kerogen, clay mineral-rich components, and mixtures of these with larger grains has not yet been fully investigated; however, and limited data is available to determine if REVs for certain shale lithotypes can be universally applicable to other shales (or even regions within the same shale). The unique depositional and diagenetic histories may make it difficult to determine which REV length scales are appropriate for different shale lithofacies. Concepts of representative elementary time (RET) also come into play for the given process under study, as the different pore types have different characteristic length scales that in turn affect the characteristic time scales of processes^[44]. Other studies address transport through laboratory measurements of permeability, porosity (connected and disconnected), capillary breakthrough pressure, wettability, and fracture hydraulic aperture and conductance^[54, 96]. Laboratory petrophysical properties suffer from the limitations due to retrieval and handling of core, which may induce microcracks and fractures that are not present in the subsurface. Additionally, the variety of techniques can give disparate results, especially when compared to digital pore network reconstructions.

574

575 **Figure 8.**

576

577 Modeling approaches for pore-scale flow and transport in shale range from theoretical to empirical—either idealized pore body and throat sizes and connectivity are assumed or digital reconstructions from direct imaging are used^[97, 102]. Theoretical models typically capture 579 laboratory-based behaviors such as drainage of a non-wetting phase and absolute permeability 580 using network models such as bundle-of-tubes model; regular-lattice models; acyclic models; 581 and multi-scale-multi-physics networks^[97, 98, 107, 108]. Theoretical models have revealed that 582 certain pore structures can capture multi-phase transport behaviors such as the non-plateau 583

584 drainage in shale ^[97] and allow for estimation of fitting parameters that may be helpful for
 585 classification of different shales. Empirical modeling using digital reconstructions from shale
 586 samples involve realistic pore structures, geometries, and topologies. Approaches include level
 587 set methods, volume of fluid methods, gradient based computational fluid dynamics, and Lattice
 588 Boltzmann (LB) methods. LB methods in particular show much potential for shale as they
 589 capture pore geometries and can represent large differences in densities of two fluids occupying
 590 the pore space ^[93, 109]. They also unfortunately suffer from the small REV problem discussed
 591 previously.

592

593 Wasaki and Akkutlu proposed a matrix permeability model for organic-rich shale and considered
 594 its coupling to a fracture during shale gas/oil production ^[110]. They argued that the shale
 595 permeability is not a petrophysical quantity in the classical sense reflecting the fluid transmitting
 596 ability of the pore network but instead it is an overall mass transfer coefficient that needs to be
 597 carefully tuned to honor the total mass flux of fluids draining into the fractures. They presented a
 598 conceptual transport model for the shale matrix with dual-porosity and single-permeability
 599 delineating the transport mechanisms at multiple-scales: (i) adsorption and diffusion mainly in
 600 the kerogen pores; and (ii) diffusion and convection in micro-cracks and other slit-shape
 601 inorganic pores.

602

$$603 \mathbf{k}_{\text{oil}} = \mathbf{k}_m \quad (3a)$$

$$604 \mathbf{k}_{\text{gas}} = \mathbf{k}_m + \mu c_g D \mathbf{I} + \mu \frac{V_{sL} \rho_{\text{grain}} B_g}{\varepsilon_{ks}} \frac{p_L}{(p + p_L)^2} D_s \mathbf{I} \quad (3b)$$

605

606 Here, \mathbf{I} is second order identity matrix. Wasaki and Akkutlu (2015) recognized that the observed
 607 anisotropy also exists in the flow field and inherently belongs to micro-cracks contribution (\mathbf{k}_m)
 608 which is sensitive to effective stress (Figure 9). The authors gave analytical expressions for the
 609 micro-crack permeability components, $\{k_m\}_{11}$, $\{k_m\}_{12}$, and $\{k_m\}_{22}$. Accordingly, if horizontal
 610 flow is considered, $\{k_m\}_{11}$ and $\{k_m\}_{12}$ are the elements that will affect the flow, and $\{k_m\}_{12}$ can
 611 be important if pressure gradient in vertical direction exists. Note that only the natural gas flow
 612 has it non-Darcian effects, as shown in Equation 3b, due to presence of molecular transport
 613 mechanisms taking place in the kerogen. These mechanisms are pore diffusion and cluster

614 diffusion of the adsorbed molecules and here represented by the isotropic diffusion coefficients,
615 D , and D_s , respectively, following terminology presented by Akkutlu and Fathi (2012) ^[23].

616

617 **Figure 9.**

618

619 At the production scale, another type of modeling—pressure transient or rate transient analysis
620 (PTA/RTA)—involves inversion of pressure and/or flow rate measurements at a production
621 wellhead to estimate reservoir transport parameters and properties. PTA/RTA methods can
622 represent the pore space as dual, triple, or multi-continua in order to attempt to capture the
623 multiple pore types and their interchange of fluids ^[111-113]. Reactive transport modeling (and
624 other geochemical modeling) can be used for mm- to reservoir scale systems and is commonly
625 applied to addresses mineral dissolution/precipitation, adsorption/desorption, and homogeneous
626 chemical reactions ^[114].

627

628 Fluid flow in shale is often coupled to other physical and chemical processes, resulting in
629 coupled phenomena. These can include mechanical behavior where the shale behaves as a
630 partially-drained or undrained medium, thus affecting the mechanical constitutive behavior.
631 Distinct pore networks in kerogen or the inorganic clay-silt components can exhibit different
632 stiffness/compliance for different deviatoric stress and conditions of the pore fluids e.g., Biot and
633 Skempton coefficients ^[115]. Thus, the permeability of kerogen may be affected by flow and
634 compaction or other mechanical processes at time-scales different from the pore networks of the
635 inorganic components, which in turn affects the overall flow regimes in shale impacted by
636 natural or engineering activities. The texture of a shale can strongly affect flow due to matric
637 (combined effects of capillarity and adsorptive forces) and osmotic potentials—nano-scale
638 confinement affects the phase behavior e.g., mean free path of a gas molecule and hence
639 transport behaviors. Texture can cause flow mechanisms to be species-dependent as the mean
640 free path may vary due to pressure changes (Knudsen number can vary during production of a
641 reservoir). The ability to flow methane gas in a system with porosity dominated by kerogen-
642 matrix is also a function of the percolation threshold of the connected kerogen volume in any
643 given organic-rich shale system.

644

645 3.4 *Nano-scale confinement, activity of water, and pore-scale coupled processes in shale*

646

647 Due to fine-grained shale fabric and presence of nano-pores, fluids (gas, oil, brine) in shales are
648 often present as nano-scale thin films, and occupy nano- and submicron-scale pores^[116-120]. The
649 resulting interfacial areas (fluid-fluid, and mineral-fluid) are relatively large for the pore volume
650 and therefore control chemical and transport behavior in shale. As shown below, the combined
651 effect of surface strain and fluid confinement results in a unique (and, largely unknown) set of
652 thermodynamic parameters, different from those observed in the bulk phase^[121-124]. For
653 example, molecular dynamic (MD) simulations reported by Phan et al. (2014; 2015) have shown
654 that methane solubility in confined water may far exceed that in bulk systems, and the release of
655 methane from kerogen nano-pores is controlled by the geometry and connectivity of these pores
656^[125]. Methane solubility in confined water strongly depends on the confining material, with silica
657 yielding the highest solubility followed by aluminum (Al_2O_3) and magnesium (MgO) oxides^{[126,}
658^[127]. Investigators looking into hydrocarbon behavior under confinement recorded confinement
659 effects on phase behavior, and fluid properties^[124, 128-130]. Figure 10 shows the suppression effect
660 of nanopores on the phase envelop of pure methane and pure n-butane. The asymmetry in the
661 suppression of the phase diagrams—the greater gap between the bulk and confined fluid in the
662 left-hand-side compared to the right-hand-side on the phase diagram, indicates the greater impact
663 of confinement on the vapor branch than on the liquid branch.

664

665 **Figure 10.**

666

667 Cristancho et al. (2016) have recently quantified the impact of organic pore wall heterogeneities
668 on the hydrocarbon fluid storage capacity of the pore using atomistic modeling and molecular
669 simulations^[131]. For the purpose of creating heterogeneity, they have considered organic
670 (carbon) walls with deficiencies and with non-hydrocarbon atoms, such as nitrogen. Their
671 results, shown in Figure 11, indicate that the measured excess amount due to confinement on the
672 stored methane is most pronounced between 6.9-34.5 MPa (1,000-5,000 psi), which is the typical
673 shale gas reservoir pressure range. The pore wall surface heterogeneities have the potential to
674 impact storage depending on the type and level of heterogeneities. Among the investigated

675 heterogeneities, nitrogen-doping at the pore walls is found to be the most influential. Both the
676 adsorbed and excess amount decreased with the nitrogen-doped pore wall surfaces (Figure 11).

677

678 **Figure 11.**

679

680 The dielectric constant of water decreases with increasing nano-scale confinement ^[132, 133], and
681 this effect becomes more pronounced when the pore size approaches < 5 nm. Molecular
682 dynamics simulations quantify the dielectric constant of water to be about one half of its
683 unconfined value when water is contained in a 12 Å (1.2 nm) pore ^[133]. Due to the decrease in
684 the dielectric constant the equilibrium constant for the mineral surface protonation (pKa) change,
685 ultimately changing the sorption behavior of the mineral surfaces. Bourg and Steefel (2012)
686 calculated that the average pKa value of silanol surface sites in a 2 nm nanopore is 0.5 pH units
687 higher compared to unconfined surfaces ^[134]. Experiments indicate that in silica pores with <5
688 nm pore size, both the density and the surface tension of water decrease with decreasing pore
689 size ^[135]. Other examples of emergent chemical behavior due to nano-scale confinement include
690 the decrease in the solvation energy of metal cations, which promotes the formation of inner-
691 sphere adsorption complexes over outer-sphere ^[136, 137], enhanced solubility of gas in water ^[138],
692 enhanced adsorption ^[137, 139, 140], and modified redox properties ^[141-143]. The nano-scale nature of
693 the chemical environments in shale dictates the unique chemical transport and reactivity trends,
694 in particular ion-selectivity and semi-permeable membrane behavior.

695

696 The nano-scale pore structure, mixed wettability, and multi-phase fluid conditions of shale have
697 a strong effect on the disposition and movement of water, oil, and gas, which can all interfere
698 with each other's movement. Quantitative measurements of shale samples by nuclear magnetic
699 resonance (NMR) indicate that the amount of “free” water—water not structured by electrostatic
700 forces—is largely variable for different shale samples, and does not correlate with the overall
701 porosity ^[42]. For example, only about 5% of total water content is “free” in smectite-rich shale of
702 10-20% porosity (Pierre II shale from Wyoming), while 50% of total interstitial water is “free” in
703 the quartz-illite shale with the lower porosity of 6-8% (Queenston Shale from Ontario) ^[42].
704 Surface-bound water is not likely to be oil wetting, thus oil migration through such pathways will
705 require higher pressure. NMR measurements have also been used to demonstrate mixed

706 wettability of source rock shale and for quantifying the water-wetting vs. oil-wetting porosity
707 [144]. The resulting ratio of water (brine)-wetting to oil (dodecane)-wetting ranged from 0.34 to
708 2.93 [144]. This indicates that surfaces are heterogeneously wet - some shale surfaces are water-
709 wetting, while others are hydrocarbon wetting. Interfacial contact lines will tend to pin at
710 locations where wettability changes, and additional pressure is required to cross these regions.
711 Both adsorbed water and hydrocarbon will partially occlude the geometric area available for
712 flow in nanopores affecting phase mobility [97, 145].

713

714 Water in shale is subject to a variety of forces that affect its potential energy state (relative to a
715 reference state) as expressed by the total potential. The total potential of water incorporates the
716 matric potential, the osmotic (or solute) potential, the pressure potential, and the gravitational
717 potential [146]. Pressure and gravitational potentials are invoked for understanding fluid flow in
718 conventional reservoirs and aquifers. In tight shales, Darcian flow may not take place due to the
719 limiting pore throat size. Because the majority of water may be “structured”—bound to the
720 mineral surfaces—a threshold pressure gradient is required for advective transport to begin [42].
721 High osmotic pressures (1-2 MPa) develop since hydrated ion flux is impeded [42]. Figure 12
722 shows the predicted osmotic pressure in the clay mineral pores as a function of the distance from
723 the hydraulic fracture surface [147]. Hydraulic conductivity of smectite-rich shales depends on
724 specific mineral surface characteristics (e.g., mineral surface charge, the ionic composition of the
725 interstitial water, and temperature (“structured” water layer thickness decreases with increasing
726 temperature, causing an increase in hydraulic conductivity). Therefore, hydraulic conductivity of
727 shale is not a unique function of the pore and throat geometry. The following sections address
728 the importance of the matric and osmotic potentials in shale with regard to the following:
729 spontaneous imbibition-drainage, adsorptive fluid films and ion, and solute transport in shale.

730

731 The matric potential expresses combined effects of capillarity and adsorptive forces of a porous
732 medium [148]. Capillary forces arise due to a pressure difference related to the curvature of the
733 interface between two immiscible fluids, as expressed by the Young-Laplace equation that
734 incorporates the effects of the pore size, interfacial tension, and contact angle. The nanometer-
735 scale pore sizes and water-wet or intermediate-wet conditions for certain pore networks in shale
736 lead to high capillary pressure that can become significant in comparison to pressure potentials.

737

738 The features of shale that control the matric potential include the pore size, shape, and
739 wettability. Many studies have been performed to examine the pore structures in shales^{[12, 116, 117,}
740 ^{149-154]}, with Desbois et al. (2009) classifying pores. Pore geometry imposes the first order control
741 on the mobility of water. Smaller, triangular pores or flat narrow pores (on the scale of 10 nm)
742 have a tendency to imbibe water and spontaneously fill at a given water chemical potential
743 compared to larger, circular pores^[155] in part because adsorptive films take up a substantial
744 portion of the pore space^[156]. “Corners” influence the curvature of the fluid-fluid interface and
745 thus their geometry affects the amount of capillary-held water^[156]. The matric potential is
746 currently being cited to explain the field observation when only a small portion of the water
747 injected during hydraulic fracturing returns to the wellbore (e.g. $\sim 30\pm 10\%$ return, ^[157]). Gas
748 shale systems typically have high thermal maturities with little to no smectite component left in
749 the MLC (e.g. Marcellus and Haynesville shales). In the thermally mature systems only a
750 fraction of injected water is recovered, due to the low chemical potential of water in these
751 formations. In some cases, the observed return of injected water is higher: for examined wells in
752 the Marcellus Shale, 10-50% of the fracturing fluid returns to the surface as produced water after
753 a year of production^[62]; while for Barnett Shale, large variability from <20% to >350% in the
754 ratios of returned to injection water are observed after 4 years of production^[158]. The return in
755 excess of 100% indicates that wells produce local waters from adjacent formations. Extensive
756 petrophysical evaluation of gas-bearing shale systems shows them to have very low water
757 saturations and essentially no free mobile water phase. The limited water activity in organic-rich
758 shale and how it is controlled by thermal maturity is an example of a coupled process that
759 evolves over geological time scale.

760

761 Osmotic, or solute potential, is defined as the potential of water molecules to move from a
762 hypotonic solution to a hypertonic solution across a semi-permeable membrane^[148]. Osmotic
763 potential is a function of the gradient in solute concentration. Due to the nano-scale porosity and
764 the permanent negative charge on the surfaces of clay minerals, shale acts as an ion-selective
765 semi-permeable membrane, with apparent ion mobility differing from the bulk-solutions^[159].
766 Therefore, shale can be conceptualized and modeled as an ion-exchange membrane with fixed
767 charged sites along narrow pores^[160]. During Fickian ion transfer waters of hydration are

768 transported with the ions. Flow occurs by osmotic pressure, governed by gradient in chemical
769 potential. Shale exhibits a non-ideal, or “leaky” membrane behavior, due to the heterogeneity in
770 pore size and pore throat geometry, with wider pores increasing the overall permeability to
771 solutes. High concentrations of solutes have been observed in flowback water from hydraulic
772 fracturing operations, indicating higher concentrations in the subsurface reservoir than in the
773 injected water. The presence of this high-salinity brine and injection of low salinity brine is
774 expected to drive an osmotic flow ^[61, 101, 165].

775

776 The effects of osmotic pressure have been observed during well completions. Water from
777 introduced fluids is absorbed into shale due to the difference in osmotic potential between the
778 pore waters and the drilling mud or fracturing fluid, causing sloughing of well walls ^[119, 161-163].
779 These processes have been incorporated in a coupled mechanical-thermal-physico-chemical
780 model ^[53]. To account for the driving force on fluid flow due to osmotic potential, osmotic
781 pressure is explicitly included in the rock water potential. The gradient between the rock water
782 potential and water potential in drilling mud (or, hydrofracturing fluid) is the driving force for
783 pore fluid flow ^[53].

784

785 **Figure 12.**

786

787 Because shales may exist under low water saturations (for both liquid and gas hydrocarbons), the
788 strong capillary and adsorption potential results in spontaneous imbibition and potentially
789 counterflow of hydrocarbons from the shale matrix ^[164, 165]. Other researchers quantify water
790 uptake in shales through imbibition experiments, while taking into account effects of rock
791 texture, complex pore networks, interactions between hydrofracturing fluid and minerals, and
792 changes in osmotic potential, with some studies accounting for how concurrent and
793 countercurrent flow during water imbibition impacts liquid and gas hydrocarbon recovery ^[166].
794 Findings indicate that the connectivity of water-wet and oil-wet pathways may differ, which in
795 turn affect water uptake and hydrocarbon expulsion ^[165, 166]. Thus, the matric potential is a major
796 driving force for water (and other fluid) flow in the nano-scale matrix in shale.

797

798 3.5 *Equilibrium-disequilibrium transitions in perturbed shale*

799

800 The combination of heterogeneous rock texture and composition, heterogeneous surface forces
801 acting on the solid and fluid (liquid and gas) constituents, and the potential separation of fluid
802 types (water and hydrocarbons) based on their interactions with wetting and non-wetting surfaces
803 suggests an added heterogeneity in the fluid distribution and the fluid pressure. The available
804 models for coupled poro-elastic behavior are described by poro-elastic coefficients developed
805 based on an assumption of homogeneous rock properties, homogeneous stresses, and hydraulic
806 pressure equilibration. These models cannot be extrapolated to mudrocks, particularly due to the
807 coarse—2 ft (60 cm)—volumetric averages typical for well-log measurements. The typical
808 examples of perturbations include injection of CO₂ (into sandstone storage formations with shale
809 caprock) and unconventional gas extraction by hydraulic fracturing of shale. In both cases, the
810 initial state of shale formation is either at steady-state, or at equilibrium, before the drilling and
811 introduction of large volumes of fluid disrupt the initial state. The response of the geologic
812 system to this perturbation is non-linear in space and time, since for re-equilibration it has to
813 reach a multi-component - equilibrium, not an independent equilibrium of each of the
814 components (e.g., hydraulic equilibrium). For example, the overall fluid flow and pressure
815 equilibration for fine-grained rocks is controlled by chemical effects (osmosis), surface effects
816 (capillary), physical effects (electrical double layer), and thermal gradient effects (relative
817 expansion between solids and fluids in relation to hydraulic diffusion and thermal diffusion). The
818 deformation versus pore pressure equilibration of organic-rich laminated mudrocks has the same
819 contributions as considered for other fine-grained rocks, complicated by complex distribution of
820 texture and compositions. This problem cannot be resolved by measuring an equivalent
821 homogenized Biot's coefficient; new models are required to define coupled behaviors in locally
822 heterogeneous media.

823

824 The state of geochemical (dis)equilibrium is usually assessed by analyzing fluid samples.
825 Detailed chemical and isotopic analyses of pore waters in shale and tight reservoirs have been
826 reported for only a few recent case studies ^[61, 62, 101, 167]. Chemical and isotopic data reported by
827 oil companies from approximately 10,000 samples of ‘flowback’ and produced waters from
828 these unconventional sources of petroleum have been recently compiled and added to the
829 updated and expanded USGS Produced Waters Geochemical Database ^[168]. The reported salinity

830 and chemical composition of water varies widely with time of sampling and carry large
831 uncertainties, especially for the ‘flowback’ samples that are a variable mixture of pore formation
832 water and the hydraulic fracturing fluids, which consist of large volumes (~10,000-40,000 m³ per
833 well) of generally fresh, local meteoric water, together with proppants (sand), and organic and
834 inorganic chemicals additives ^[169-172]. During hydraulic fracturing, a significant fraction of the
835 injected water can be imbibed into pores in some shales (e.g. Marcellus ^[62, 165]), and the
836 imbibition process may continue over a period of weeks to months ^[157, 158]. Water salinities and
837 chemical compositions obtained at steady chemical states, which may require a year or longer
838 following production, vary greatly from basin to basin. Results show formation waters with
839 relatively low salinities are present in Fayetteville Shale, AR (~15,000 mg L⁻¹) and in Monterey
840 Formation, CA (~30,000 mg L⁻¹). Produced water salinities in Barnett Shale, TX, average at
841 ~100,000 mg L⁻¹, but higher average salinities (~150,000 mg L⁻¹) are obtained in brines from the
842 Marcellus Shale, PA, and Haynesville, TX; even higher average salinities (>250,000 mg L⁻¹) are
843 observed in brine in Bakken Shale. An important initial conclusion from these data is that the
844 chemical and isotopic compositions of these samples are comparable with data from more than
845 150,000 samples currently listed in the same USGS Produced Waters Geochemical Database, but
846 collected from conventional oil and gas wells ^[168]. It remains challenging, however, to use this
847 geochemical data for predictive modeling.

848

849 **4. Conclusions: Approaches for Coupled Process Studies and Future Research Needs**

850

851 *4.1 Summary of applied approaches/methodologies*

852

853 Table 2 indicates the various common data types relevant to shales, and their spatial and
854 temporal resolution as well as well-established methods for integration of multi-disciplinary data.

855

856 Promising approaches for addressing coupled processes so far included dynamic consolidation
857 problems with elastoplastic deformation and finite element modeling (FEM) ^[173-177], quasi-static
858 discrete element models (DEM) coupled with conjugate lattice network flow ^[178], Basin
859 Petroleum System Modeling ^[64], incorporating Knudsen diffusion and gas slippage (in addition
860 to Darcy flow) into reservoir models for shale ^[179], and lattice Boltzmann (LB) approaches for

861 coupled multi-component reactive flow and transport with the feedback between pore structure
862 changes and flow processes ^[180, 181]. The typical measurement resolution and modeling methods
863 used for single and coupled processes in shale are shown in Figure 13.

864

865 The physics-based hydraulic fracturing simulator ^[178] couples a quasi-static discrete element
866 model for deformation and fracturing with conjugate lattice network flow model for fluid flow in
867 both fractures and porous matrix. This two-dimensional model with coupled deformation and
868 flow reproduces growth patterns of hydraulic fractures. The model accounts for *in situ* stress,
869 fluid viscosity, heterogeneity of rock mechanical properties and injection rate. The modeling of a
870 multistage horizontal wellbore confirms the strong coupling between observed complex fracture
871 patterns and fluid pressure, small length scale heterogeneities, and elastic interactions among
872 multiple propagating fractures ^[178].

873

874 The lattice Boltzmann method is used for modeling pore-scale reactive transport and allows
875 accounting for complex biogeochemical processes - mineral dissolution-precipitation and biofilm
876 dynamics, and their feedback to transport (e.g. ^[182]). LB models conceptualize flow as a
877 collective behavior of pseudo-particles described by a discrete Boltzmann equation ^[182]. In shale
878 applications, LB modeling is capable of predicting permeability and effective Knudsen
879 diffusivity of the shale samples characterized by FIB-SEM ^[180]. LB models have been applied to
880 multi-phase flow with phase transition ^[183] and development of preferential flow paths in porous
881 media ^[184].

882

883 Basin Petroleum System Modeling is relatively new for unconventional hydrocarbon resources
884 and is still under development and refinement. Basin-scale shale-play modeling accounts for
885 source-rock kinetics and chemical transformations, including the evolution of TOC and
886 associated porosity and adsorption of hydrocarbons to the mineral and organic components ^[64].
887 However, this modeling approach does not account for the chemical effects due to nano-scale
888 confinement, non-Darcy transport process (e.g., Knudsen transport), and complex
889 cementation/dissolution textures. The retention capacity in BPSM is also a coupled process
890 between burial, uplift and geomechanical rock properties since the *in situ* fluid pressures are
891 ultimately determined by the fracture gradient that a shale can sustain as a result of overburden

892 loss during uplift. One of the most important challenges for resource assessment in
893 unconventional plays is the need to quantitatively model the retention capacity of such organic-
894 rich source rocks.

895

896 **Figure 13.**

897

898 **4.2 Coupled processes in shale: future research needs**

899

900 The development of quantitative predictive models capturing process coupling and emergent
901 phenomena at the necessary length and temporal scales requires a systematic approach involving
902 a broad range of multi-disciplinary techniques. Current research is hindered due to sparse data
903 from shale formations at *in situ* pressure and temperature conditions, limited spatial resolution of
904 the well-logging/interpretation techniques, and methodologies for merging multi-disciplinary
905 datasets at different length and time scales. Therefore, on the practical side, it is critical to define
906 the type of relevant measurements, improve the resolution and link *in situ* well resistivity logging
907 to chemistry, and develop better approaches for representative or standardized sampling and
908 sample preservation. In particular, addressing heterogeneity and anisotropy, which leads to
909 scaling complexity, is a major challenge. Below, we identify future research needs critical for
910 fundamental and applied shale science, considering both single- and multi-disciplinary
911 approaches.

912

913 It is necessary to develop unambiguous classification schemes for mudrocks, and develop further
914 understanding of the material transport and cementation mechanisms during shale deposition and
915 diagenesis. We also need to establish the range of sizes for REVs, which are different for
916 kerogen, clay mineral-rich components, and individual lithofacies, and are controlled by the
917 unique depositional and diagenetic history. As shown in our review, the complex cementation
918 and dissolution textures—both solid components and pores in shale—control the fluid transport,
919 chemical behavior, and mechanical properties. Understanding fundamental
920 geological/chemical/physical controls on the formation of these textures, and proposing a
921 comprehensive classification scheme, could lay the foundation for the development of predictive

922 methods to understand physical flow, chemical behavior and reactive transport, and mechanical
923 behavior of shale in native state and in engineered systems.

924

925 Another key research area is developing robust methods for integrating rock anisotropy into
926 geomechanical analysis, especially proper characterization and modeling of mechanical
927 interfaces, and developing new constitutive laws describing stress-strain relationships for shale.
928 Seismic methods show promise in characterizing fractures; however, research is needed to
929 understand the contributions to the scattered wave field from fracture intersections, fracture sets,
930 stress gradients and fluids in the dynamically evolving fractured shale systems. To further refine
931 the interpretation of seismic data, and to characterize dynamically evolving fracture populations,
932 seismic data needs to be integrated with high resolution imaging. A potential bridge here is the
933 integration of high resolution image logs (centimeter scale) with petrological studies (micron
934 scale) that may be upscaled to the seismic scale. The upscaling issue dominates the use of
935 seismic methods for quantitative assessment of reservoir rock properties at all scales. Future
936 research should focus on separating competing sources of anisotropy in rock and fluid flow, and
937 how seismic signals change as a function of stress and fluid conditions. Future research needs to
938 answer the fundamental question - can seismic data differentiate or unravel chemical, fluid and
939 stress alteration of fractures?

940

941 The geochemistry of shale is unique, characterized by high salinity, complex compositions of
942 brine and solids, water-limited, and nano-scale confined chemical environments, resulting in ion-
943 selectivity and semi-permeable membrane behavior. In order to interpret and predict the
944 chemical behavior in these environments, we need to develop new thermodynamic databases, as
945 well as a systematic approach for predicting shifts in chemical kinetics under these conditions.
946 Fundamental science of nanogeochemistry is still in its infancy.

947

948 As shown in our review, process coupling exerts major controls on the physical, mechanical and
949 chemical behavior of shale. Further development of coupled models is crucial for predicting
950 coupled fracture, multi-phase flow, and multi-component reactive transport in the subsurface.
951 New models are required to address coupled behavior in locally heterogeneous shale media. For
952 the development of these models, the solid solvers need to be coupled in a 2-way manner to the

953 multi-phase reactive flow and transport codes, and incorporate changes in volume and chemical
954 concentrations, and their feedback to the mechanical properties and permeability. Due to
955 complex pore geometries and the large variety of pore types and their control on the flow
956 processes in shale, the development of a porosity-permeability relationship is a challenge. Since
957 fluid flow in shale is coupled to the mechanical behavior, a method is required for computing the
958 effect of flow on the mechanical constitutive behavior of shale (as partially-drained or undrained
959 medium). These models should also incorporate multi-porosity system behavior, as distinct pore
960 networks in organic and mineral components can exhibit different stiffness/compliance as a
961 function of stress, resulting in different time scales of permeability evolution. Additional
962 laboratory data for calibration and verification of these coupled models is necessary.

963

964 Further development of data integration approaches is another critical research need, due to the
965 primary controls that the nano-scale processes exert on the macro-scale behavior. In an ideal
966 case, we should be able to merge data all the way from the mineral-water interface (sub-
967 nanometer), to rock microstructure observations (micron), to the core-scale samples (centimeter-
968 meter), well-log scale (meters), and linking to seismic scale (many meters to kilometers) (Table
969 2).

970

971 For developing fully coupled multi-physics multi-scale models for shale, we need a fundamental
972 understanding of the interplay between the physical and chemical processes, their rates and
973 resulting emergent behavior. We need to understand and quantify the evolution of thermal,
974 hydrologic, chemical, mechanical, and biological (dis)equilibrium during perturbations
975 (withdrawal or emplacement of materials into subsurface), and identify the relevant
976 representative elementary volumes, as well as representative elementary time scales. Further
977 development in constitutive laws (or, equations of state) is needed to incorporate evolving stress-
978 pressure and system transitions. This requires advanced modeling linking molecular-, to pore-, to
979 macroscopic-scale processes and the formalization of heterogeneity and spatial and temporal
980 scales. We need to improve and merge conceptual models and develop a common language for
981 the multi-disciplinary research on coupled THCMB processes in shale.

982

983 **Acknowledgements**

984 This review article is an outgrowth of the “Shales at All Scales: Exploring Coupled Processes”
985 workshop, held in Santa Fe, New Mexico, June 9–11, 2015. We thank the workshop attendees—
986 scientists from academia, industry and national laboratories—who highlighted recent advances in
987 shale science, and brainstormed research needs and approaches for the next level of
988 advancement. The Workshop was sponsored by Sandia National Laboratories. Sandia National
989 Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a
990 wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
991 National Nuclear Security Administration under contract DE-AC04-94AL85000. We thank
992 Susan Altman for reviewing an early draft of the manuscript, and the anonymous reviewer for
993 the constructive comments on the submitted version. For AGI, work relevant to the chemical
994 controls on fracture is supported as part of the Center for Frontiers in Subsurface Energy
995 Security (CFSES), an Energy Frontier Research Center funded by the U.S. Department of
996 Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award # DE-
997 SC0001114. For DRC, TJK, and LJPN work was supported as part of the Center for Nanoscale
998 Controls on Geologic CO₂ (NCGC), an Energy Frontier Research Center funded by the U.S.
999 Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-AC02-
1000 05CH11231. For LJPN, work related to wave propagation in fractured anisotropic media was
1001 supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences
1002 and the Geosciences Research Program under Award Number (DE-FG02-09ER16022).

1003
1004 **References**

1005

1006 [1] Folk R. *Petrology of Sedimentary Rocks* 1980 (Hemphill Publishing Company: Austin).
1007 [2] Milliken K. A compositional classification for grain assemblages in fine-grained
1008 sediments and sedimentary rocks. *Journal of Sedimentary Research*. **2014**, 84(12), 1185-99.
1009 [3] Tucker ME. *Sedimentary petrology: an introduction to the origin of sedimentary rocks*
1010 2009 (John Wiley & Sons).
1011 [4] Boggs S. *Principles of sedimentology and stratigraphy* 2006.
1012 [5] Garrels RM, Mackenzie FT. Sedimentary rock types: relative proportions as a function of
1013 geological time. *Science*. **1969**, 163(3867), 570-1.
1014 [6] Blatt H. *Sedimentary petrology*. **1982**.
1015 [7] Jin L, Ogrinc N, Yesavage T, Hasenmueller EA, Ma L, Sullivan PL, et al. The CO₂
1016 consumption potential during gray shale weathering: insights from the evolution of carbon
1017 isotopes in the Susquehanna Shale Hills critical zone observatory. *Geochimica et Cosmochimica
1018 Acta*. **2014**, 142, 260-80.

1019 [8] Galloway WE, Hobday DK, Magara K. Frio formation of the Texas Gulf Coast Basin-
1020 Depositional systems, structural framework, and hydrocarbon origin, migration, distribution, and
1021 exploration potential. *Rep Invest, Univ Tex Austin, Bur Econ Geol*;(United States). **1982**, 122.

1022 [9] Milliken K. Late diagenesis and mass transfer in sandstone-shale sequences. *Treatise on*
1023 *Geochemistry: Sediments, Diagenesis and Sedimentary rocks*, edited by Mackenzie, FT,
1024 Holland, HD, and Turekian, KK, Elsevier, New York. **2004**, 7, 159-90.

1025 [10] Ross DJ, Bustin RM. The importance of shale composition and pore structure upon gas
1026 storage potential of shale gas reservoirs. *Marine and Petroleum Geology*. **2009**, 26(6), 916-27.

1027 [11] Loucks RG, Reed RM, Ruppel SC, Jarvie DM. Morphology, genesis, and distribution of
1028 nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. *Journal of*
1029 *sedimentary research*. **2009**, 79(12), 848-61.

1030 [12] Chalmers GR, Bustin RM, Power IM. Characterization of gas shale pore systems by
1031 porosimetry, pycnometry, surface area, and field emission scanning electron
1032 microscopy/transmission electron microscopy image analyses: Examples from the Barnett,
1033 Woodford, Haynesville, Marcellus, and Doig units. *AAPG Bulletin*. **2012**, 96(6), 1099-119.

1034 [13] Nelson PH. Pore-throat sizes in sandstones, tight sandstones, and shales. *AAPG bulletin*.
1035 **2009**, 93(3), 329-40.

1036 [14] Potter PE, Maynard JB, Depetris PJ. *Mud and mudstones: Introduction and overview*
1037 2005 (Springer Science & Business Media).

1038 [15] Cook A, Sherwood N. Classification of oil shales, coals and other organic-rich rocks.
1039 *Organic Geochemistry*. **1991**, 17(2), 211-22.

1040 [16] Dean WE, Leinen M, Stow DA. Classification of deep-sea, fine-grained sediments.
1041 *Journal of Sedimentary Research*. **1985**, 55(2).

1042 [17] Aplin AC, Macquaker JH. Mudstone diversity: Origin and implications for source, seal,
1043 and reservoir properties in petroleum systems. *AAPG bulletin*. **2011**, 95(12), 2031-59.

1044 [18] Lazar OR, Bohacs KM, Macquaker JH, Schieber J, Demko TM. Capturing key attributes
1045 of fine-grained sedimentary rocks in outcrops, cores, and thin sections: nomenclature and
1046 description guidelines. *Journal of Sedimentary Research*. **2015**, 85(3), 230-46.

1047 [19] Bourg IC. Sealing Shales versus Brittle Shales: A Sharp Threshold in the Material
1048 Properties and Energy Technology Uses of Fine-Grained Sedimentary Rocks. *Environmental*
1049 *Science & Technology Letters*. **2015**, 2(10), 255-9.

1050 [20] Wawak BE, Diaz E, Camp WK. *Electron microscopy of shale hydrocarbon reservoirs*
1051 2013.

1052 [21] Schieber J, Southard J, Thaisen K. Accretion of mudstone beds from migrating floccule
1053 ripples. *Science*. **2007**, 318(5857), 1760-3.

1054 [22] Vernon RH. *A practical guide to rock microstructure* 2004 (Cambridge university press).

1055 [23] Akkutlu IY, Fathi E. Multiscale gas transport in shales with local kerogen
1056 heterogeneities. *SPE-167234-PA*. **2012**, 17(04), 1,002-1,11.

1057 [24] Saraji S, Piri M. The representative sample size in shale oil rocks and nano-scale
1058 characterization of transport properties. *International Journal of Coal Geology*. **2015**, 146, 42-54.

1059 [25] Mondol NH, Bjørlykke K, Jahren J, Høeg K. Experimental mechanical compaction of
1060 clay mineral aggregates—Changes in physical properties of mudstones during burial. *Marine and*
1061 *Petroleum Geology*. **2007**, 24(5), 289-311.

1062 [26] Kharaka Y, Hanor J. in *Surface and Groundwater, Weathering and Soils* Eds. Holland H,
1063 Turekian K)2014, (Elsevier Sciecne: Amsterdam).

1064 [27] Hitchon B, Billings GK, Klovan J. Geochemistry and origin of formation waters in the
1065 western Canada sedimentary basin—III. Factors controlling chemical composition. *Geochimica
1066 et Cosmochimica Acta*. **1971**, 35(6), 567-98.

1067 [28] Hanor JS. Origin of saline fluids in sedimentary basins. Geological Society, London,
1068 Special Publications. **1994**, 78(1), 151-74.

1069 [29] Kharaka Y, Maest A, Carothers W, Law L, Lamothe P, Fries T. Geochemistry of metal-
1070 rich brines from central Mississippi Salt Dome basin, USA. *Applied Geochemistry*. **1987**, 2(5),
1071 543-61.

1072 [30] Capo RC, Stewart BW, Rowan EL, Kohl CAK, Wall AJ, Chapman EC, et al. The
1073 strontium isotopic evolution of Marcellus Formation produced waters, southwestern
1074 Pennsylvania. *International Journal of Coal Geology*. **2014**, 126, 57-63.

1075 [31] Macquaker JH, Keller MA, Davies SJ. Algal blooms and “marine snow”: Mechanisms
1076 that enhance preservation of organic carbon in ancient fine-grained sediments. *Journal of
1077 Sedimentary Research*. **2010**, 80(11), 934-42.

1078 [32] Schieber J. Microbial mats in the siliciclastic rock record: a summary of diagnostic
1079 features. *The precambrian earth: tempos and events Developments in Precambrian geology*.
1080 **2004**, 12, 663-73.

1081 [33] Hower J, Mowatt TC. The mineralogy of illites and mixed-layer illite/montmorillonites.
1082 *American Mineralogist*. **1900**, 51(5-6).

1083 [34] Towe KM. Clay mineral diagenesis as a possible source of silica cement in sedimentary
1084 rocks. *Journal of Sedimentary Research*. **1962**, 32(1).

1085 [35] Lynch FL, Mack LE, Land LS. Burial diagenesis of illite/smectite in shales and the
1086 origins of authigenic quartz and secondary porosity in sandstones. *Geochimica et Cosmochimica
1087 Acta*. **1997**, 61(10), 1995-2006.

1088 [36] Thyberg B, Jahren J, Winje T, Bjørlykke K, Faleide JI, Marcussen Ø. Quartz cementation
1089 in Late Cretaceous mudstones, northern North Sea: changes in rock properties due to dissolution
1090 of smectite and precipitation of micro-quartz crystals. *Marine and Petroleum Geology*. **2010**,
1091 27(8), 1752-64.

1092 [37] Osborne MJ, Swarbrick RE. Mechanisms for generating overpressure in sedimentary
1093 basins: a reevaluation. *AAPG bulletin*. **1997**, 81(6), 1023-41.

1094 [38] Rask J, Bryndzia L, Braunsdorf N, Murray T. Smectite illitization in Pliocene-age Gulf of
1095 Mexico mudrocks. *Clays and Clay Minerals*. **1997**, 45(1), 99-109.

1096 [39] Osborne MJ, Swarbrick RE. Diagenesis in North Sea HPHT clastic reservoirs—
1097 Consequences for porosity and overpressure prediction. *Marine and Petroleum Geology*. **1999**,
1098 16(4), 337-53.

1099 [40] Swarbrick RE, Osborne MJ, Yardley GS. *AAPG Memoir 76, Chapter 1: Comparision of
1100 Overpressure Magnitude Resulting from the Main Generating Mechanisms*. **2001**.

1101 [41] Gale JF, Laubach SE, Olson JE, Eichhubl P, Fall A. Natural fractures in shale: A review
1102 and new observations. *AAPG bulletin*. **2014**, 98(11), 2165-216.

1103 [42] Dusseault MB. Coupled processes and petroleum geomechanics. *Elsevier Geo-
1104 Engineering Book Series*. **2004**, 2, 49-62.

1105 [43] Javadpour F. Nanopores and apparent permeability of gas flow in mudrocks (shales and
1106 siltstone). *Journal of Canadian Petroleum Technology*. **2009**, 48(08), 16-21.

1107 [44] Milliken KL, Curtis ME. Imaging Pores in Sedimentary Rocks: Foundation of Porosity
1108 Prediction. *Marine and Petroleum Geology*. **2016**.

1109 [45] Milliken KL, Day-Stirrat RJ. Cementation in mudrocks: brief review with examples from
1110 cratonic basin mudrocks. **2013**.

1111 [46] Dove PM. Geochemical controls on the kinetics of quartz fracture at subcritical tensile
1112 stresses. *Journal of Geophysical Research: Solid Earth*. **1995**, 100(B11), 22349-59.

1113 [47] Petsch S, Edwards K, Eglinton T. Microbial transformations of organic matter in black
1114 shales and implications for global biogeochemical cycles. *Palaeogeography, Palaeoclimatology,*
1115 *Palaeoecology*. **2005**, 219(1), 157-70.

1116 [48] Fredrickson J, McKinley J, Bjornstad B, Long P, Ringelberg D, White D, et al. Pore-size
1117 constraints on the activity and survival of subsurface bacteria in a late cretaceous shale-sandstone
1118 sequence, northwestern New Mexico. *Geomicrobiology Journal*. **1997**, 14(3), 183-202.

1119 [49] Struchtemeyer CG, Davis JP, Elshahed MS. Influence of the drilling mud formulation
1120 process on the bacterial communities in thermogenic natural gas wells of the Barnett Shale.
1121 *Applied and environmental microbiology*. **2011**, 77(14), 4744-53.

1122 [50] Ilgen AG, Cygan RT. Mineral dissolution and precipitation during CO₂ injection at the
1123 Frio-I Brine Pilot: Geochemical modeling and uncertainty analysis. *International Journal of*
1124 *Greenhouse Gas Control*. **2016**, 44, 166-74.

1125 [51] Kharaka Y, Cole DR, Hovorka SD, Gunter W, Knauss K, Freifeld BM. Gas-water-rock
1126 interactions in Frio Formation following CO₂ injection: Implications for the storage of
1127 greenhouse gases in sedimentary basins. *Geology*. **2006**, 34(7), 577-80.

1128 [52] Olivella S, Alonso E. Modelling gas flow through deformable fractured rocks. *Coupled*
1129 *Thermo-hydro-mechanical-chemical Processes in Geo-systems: Fundamentals, Modelling,*
1130 *Experiments and Applications*. **2004**, 2, 31.

1131 [53] Choi S, Ta C, Freij-Ayou R. A Coupled mechanical-thermal-physico-chemical model for
1132 the study of time-dependent wellbore stability in shales. *Elsevier Geo-Engineering Book Series*.
1133 **2004**, 2, 581-6.

1134 [54] Schneider J, Flemings PB, Day-Stirrat RJ, Germaine JT. Insights into pore-scale controls
1135 on mudstone permeability through resedimentation experiments. *Geology*. **2011**, 39(11), 1011-4.

1136 [55] Evans J. Quartz dissolution during shale diagenesis implications for quartz cementation
1137 in sandstones. *Chemical Geology*. **1990**, 84(1), 239-40.

1138 [56] Milliken KL. Cathodoluminescent Textures and the Origin of Quarts Silt in Oligocene
1139 Mudrocks, South Texas. *Journal of Sedimentary Research*. **1994**, 64(3).

1140 [57] Boles JR, Franks SG. Clay diagenesis in Wilcox sandstones of southwest Texas:
1141 implications of smectite diagenesis on sandstone cementation. *Journal of Sedimentary Research*.
1142 **1979**, 49(1).

1143 [58] Bjørlykke K, Aagaard P, Egeberg PK, Simmons SP. Geochemical constraints from
1144 formation water analyses from the North Sea and the Gulf Coast Basins on quartz, feldspar and
1145 illite precipitation in reservoir rocks. *Geological Society, London, Special Publications*. **1995**,
1146 86(1), 33-50.

1147 [59] Franks SG, Zwingmann H. Origin and timing of late diagenetic illite in the Permian–
1148 Carboniferous Unayzah sandstone reservoirs of Saudi Arabia. *AAPG bulletin*. **2010**, 94(8),
1149 1133-59.

1150 [60] Kharaka YK, Gans K, Rowan E, Thordsen J, Conaway C, Blondes M, et al. in *Subsurface*
1151 *Science and Engineering of Shale* Eds. Dewers TA, Sanchez M, Heath JE)2016, (American
1152 Geophysical Union/Wiley).

1153 [61] Haluszczak LO, Rose AW, Kump LR. Geochemical evaluation of flowback brine from
1154 Marcellus gas wells in Pennsylvania, USA. *Applied Geochemistry*. **2013**, 28, 55-61.

1155 [62] Rowan EL, Engle MA, Kraemer TF, Schroeder KT, Hammack RW, Doughten MW.
1156 Geochemical and isotopic evolution of water produced from Middle Devonian Marcellus shale
1157 gas wells, Appalachian basin, Pennsylvania. *AAPG Bulletin*. **2015**, 99(2), 181-206.

1158 [63] Al-Hajeri MM, Al Saeed M, Derks J, Fuchs T, Hantschel T, Kauerauf A, et al. Basin and
1159 petroleum system modeling. *Oilfield Review*. **2009**, 21(2), 14-29.

1160 [64] Romero-Sarmiento M-F, Ducros M, Carpentier B, Lorant F, Casas M-C, Pegaz-Fioret
1161 S, et al. Quantitative evaluation of TOC, organic porosity and gas retention distribution in a gas
1162 shale play using petroleum system modeling: application to the Mississippian Barnett Shale.
1163 *Marine and Petroleum Geology*. **2013**, 45, 315-30.

1164 [65] Suarez-Rivera R. in *SPE ATW Shale as Reservoir: development Challenges and Solutions*
1165 2011, (Barcelona, Spain).

1166 [66] Goodman RE, Shi G-h. *Block theory and its application to rock engineering* 1985
1167 (Prentice-Hall Englewood Cliffs, NJ).

1168 [67] Suarez-Rivera R, Behrmann LA, Green S, Burghardt J, Stanchits S, Edelman E, et al. in
1169 *SPE Annual Technical Conference and Exhibition* 2013, (Society of Petroleum Engineers).

1170 [68] Shao S. 2015, Purdue University.

1171 [69] Shao S, Pyrak-Nolte LJ. Interface waves along fractures in anisotropic media.
1172 *Geophysics*. **2013**, 78(4), T99-T112.

1173 [70] Shao S, Petrovitch C, Pyrak-Nolte L. Wave guiding in fractured layered media.
1174 Geological Society, London, Special Publications. **2015**, 406(1), 375-400.

1175 [71] Choi M-K, Bobet A, Pyrak-Nolte LJ. The effect of surface roughness and mixed-mode
1176 loading on the stiffness ratio κ_x/κ_z for fractures. *Geophysics*. **2014**, 79(5), D319-D31.

1177 [72] Far ME, de Figueiredo JJ, Stewart RR, Castagna JP, Han D-H, Dyaar N. Measurements
1178 of seismic anisotropy and fracture compliances in synthetic fractured media. *Geophysical Journal
1179 International*. **2014**, ggu101.

1180 [73] Hobday C, Worthington M. Field measurements of normal and shear fracture
1181 compliance. *Geophysical Prospecting*. **2012**, 60(3), 488-99.

1182 [74] Verdon JP, Wüstefeld A. Measurement of the normal/tangential fracture compliance ratio
1183 (ZN/ZT) during hydraulic fracture stimulation using S-wave splitting data. *Geophysical
1184 Prospecting*. **2013**, 61(s1), 461-75.

1185 [75] Lubbe R, Worthington M. A field investigation of fracture compliance. *Geophysical
1186 Prospecting*. **2006**, 54(3), 319-31.

1187 [76] Lubbe R, Sothcott J, Worthington M, McCann C. Laboratory estimates of normal and
1188 shear fracture compliance. *Geophysical Prospecting*. **2008**, 56(2), 239-47.

1189 [77] Majer E, McEvilly TV, Eastwood F, Myer L. Fracture detection using P-wave and S-
1190 wave vertical seismic profiling at The Geysers. *Geophysics*. **1988**, 53(1), 76-84.

1191 [78] Pyrak-Nolte LJ, Myer LR, Cook NG. Transmission of seismic waves across single
1192 natural fractures. *Journal of Geophysical Research: Solid Earth*. **1990**, 95(B6), 8617-38.

1193 [79] Pyrak-Nolte LJ, Myer LR, Cook NG. Anisotropy in seismic velocities and amplitudes
1194 from multiple parallel fractures. *Journal of Geophysical Research: Solid Earth*. **1990**, 95(B7),
1195 11345-58.

1196 [80] Sayers CM, Taleghani AD, Adachi J. The effect of mineralization on the ratio of normal
1197 to tangential compliance of fractures. *Geophysical Prospecting*. **2009**, 57(3), 439-46.

1198 [81] Pyrak-Nolte L, Morris J. Single fractures under normal stress: The relation between
1199 fracture specific stiffness and fluid flow. *International Journal of Rock Mechanics and Mining
1200 Sciences*. **2000**, 37(1), 245-62.

1201 [82] Cook N. in *International Journal of Rock Mechanics and Mining Sciences &*
1202 *Geomechanics Abstracts* 1992, pp. 198-223 (Elsevier).

1203 [83] Petrovitch CL, Nolte DD, Pyrak-Nolte LJ. Scaling of fluid flow versus fracture stiffness.
1204 *Geophysical Research Letters*. **2013**, 40(10), 2076-80.

1205 [84] Petrovitch CL. Scaling of the flow-stiffness relationship in weakly correlated single
1206 fractures. **2013**.

1207 [85] Pyrak-Nolte LJ, Nolte DD. Approaching a universal scaling relationship between fracture
1208 stiffness and fluid flow. *Nature communications*. **2016**, 7.

1209 [86] Anderson OL, Grew PC. Stress corrosion theory of crack propagation with applications
1210 to geophysics. *Reviews of Geophysics*. **1977**, 15(1), 77-104.

1211 [87] Swanson PL. Subcritical crack growth and other time-and environment-dependent
1212 behavior in crustal rocks. *Journal of Geophysical Research: Solid Earth*. **1984**, 89(B6), 4137-52.

1213 [88] Holder J, Olson JE, Philip Z. Experimental determination of subcritical crack growth
1214 parameters in sedimentary rock. *Geophysical Research Letters*. **2001**, 28(4), 599-602.

1215 [89] Hu M, Hueckel T. Environmentally enhanced crack propagation in a chemically
1216 degrading isotropic shale. *Geotechnique*. **2013**, 63(4), 313.

1217 [90] Schultz R. Growth of geologic fractures into large-strain populations: review of
1218 nomenclature, subcritical crack growth, and some implications for rock engineering.
1219 *International Journal of Rock Mechanics and Mining Sciences*. **2000**, 37(1), 403-11.

1220 [91] Gale JF, Laubach SE, Marrett RA, Olson JE, Holder J, Reed RM. Predicting and
1221 characterizing fractures in dolostone reservoirs: Using the link between diagenesis and
1222 fracturing. *Geological Society, London, Special Publications*. **2004**, 235(1), 177-92.

1223 [92] Carey JW, Lei Z, Rougier E, Mori H, Viswanathan H. Fracture-permeability behavior of
1224 shale. *Journal of Unconventional Oil and Gas Resources*. **2015**, 11, 27-43.

1225 [93] Lei Z, Rougier E, Knight E, Munjiza A. A framework for grand scale parallelization of
1226 the combined finite discrete element method in 2d. *Computational Particle Mechanics*. **2014**,
1227 1(3), 307-19.

1228 [94] Akkutlu IY, Efendiev Y, Savatorova V. Multi-scale asymptotic analysis of gas transport
1229 in shale matrix. *Transport in Porous Media*. **2015**, 107(1), 235-60.

1230 [95] Heath JE, Dewers TA, McPherson BJ, Petrusak R, Chidsey TC, Rinehart AJ, et al. Pore
1231 networks in continental and marine mudstones: Characteristics and controls on sealing behavior.
1232 *Geosphere*. **2011**, 7(2), 429-54.

1233 [96] Gensterblum Y, Ghanizadeh A, Cuss RJ, Amann-Hildenbrand A, Krooss BM, Clarkson
1234 CR, et al. Gas transport and storage capacity in shale gas reservoirs—A review. Part A: Transport
1235 processes. *Journal of Unconventional Oil and Gas Resources*. **2015**, 12, 87-122.

1236 [97] Sakhaei-Pour A, Bryant S. Gas Permeability of Shale. SPE-146944-PA. **2012**, August
1237 2012

1238 [98] Mehmani A, Prodanović M, Javadpour F. Multiscale, multiphysics network modeling of
1239 shale matrix gas flows. *Transport in porous media*. **2013**, 99(2), 377-90.

1240 [99] Eliyahu M, Emmanuel S, Day-Stirrat RJ, Macaulay CI. Mechanical properties of organic
1241 matter in shales mapped at the nanometer scale. *Marine and Petroleum Geology*. **2015**, 59, 294-
1242 304.

1243 [100] Freeman C, Moridis G, Blasingame T. A numerical study of microscale flow behavior in
1244 tight gas and shale gas reservoir systems. *Transport in porous media*. **2011**, 90(1), 253-68.

1245 [101] Arthur MA, Cole DR. Unconventional hydrocarbon resources: prospects and problems.
1246 *Elements*. **2014**, 10(4), 257-64.

1247 [102] Trebotich D, Graves D. An adaptive finite volume method for the incompressible
1248 Navier–Stokes equations in complex geometries. *Communications in Applied Mathematics and*
1249 *Computational Science*. **2015**, 10(1), 43-82.

1250 [103] Yoon H, Dewers TA. Nanopore structures, statistically representative elementary
1251 volumes, and transport properties of chalk. *Geophysical Research Letters*. **2013**, 40(16), 4294-8.

1252 [104] Chen C, Hu D, Westacott D, Loveless D. Nanometer-scale characterization of
1253 microscopic pores in shale kerogen by image analysis and pore-scale modeling. *Geochemistry,*
1254 *Geophysics, Geosystems*. **2013**, 14(10), 4066-75.

1255 [105] Gelb J, Gu A, Fong T, Hunter L, Lau S, Yun W. in *Proc SCA* 2011.

1256 [106] Rui K, Akkutlu I. Molecular Dynamics Simulation Approach in Estimating Organic-rich
1257 Shale Permeability. *SPE-180112* presented at the *SPE EUROPEC* featured at *78th EAGE*
1258 *Conference and Exhibition*, Vienna, Austria 30 May-2 June.

1259 [107] Purcell W. Capillary pressures-their measurement using mercury and the calculation of
1260 permeability therefrom. *Journal of Petroleum Technology*. **1949**, 1(02), 39-48.

1261 [108] Washburn EW. The dynamics of capillary flow. *Physical review*. **1921**, 17(3), 273.

1262 [109] Ho TA, Striolo A. Water and methane in shale rocks: Flow pattern effects on fluid
1263 transport and pore structure. *AIChE Journal*. **2015**, 61(9), 2993-9.

1264 [110] Wasaki A, Akkutlu IY. Permeability of Organic-rich Shale. *SPE Journal*, **2015**, 20(6),
1265 1384-96.

1266 [111] Clarkson CR. Production data analysis of unconventional gas wells: Review of theory
1267 and best practices. *International Journal of Coal Geology*. **2013**, 109, 101-46.

1268 [112] Ezulike OD, Dehghanpour H. Capturing the effects of secondary fractures on production
1269 data using flow regime equations and specialised plots: An uncertainty analysis approach.
1270 *Journal of Petroleum Science and Engineering*. **2016**, 138, 201-17.

1271 [113] Kuhlman KL, Malama B, Heath JE. Multiporosity flow in fractured low-permeability
1272 rocks. *Water Resources Research*. **2015**, 51(2), 848-60.

1273 [114] Bethke C. *Geochemical and biogeochemical reaction modeling* 2008 (Cambridge
1274 University Press Cambridge, UK).

1275 [115] Suarez-Rivera R, Fjær E. Evaluating the poroelastic effect on anisotropic, organic-rich,
1276 mudstone systems. *Rock mechanics and rock engineering*. **2013**, 46(3), 569-80.

1277 [116] Ambrose RJ, Hartman RC, Diaz Campos M, Akkutlu IY, Sondergeld C. Shale Gas in-
1278 place Calculations Part I - New Pore-scale Considerations. *SPE Journal*. **2010**, 17(1), 219-29.

1279 [117] Wang FP, Reed RM. in *2009 SPE Annual Technical Conference and Exhibition* 2009,
1280 (Society of Petroleum Engineers: New Orleans, Louisiana, USA).

1281 [118] Bennion DB, Thomas FB, Schulmeister BE, Rushing J. in *Petroleum Society's Canadian*
1282 *International Petroleum Conference* 2002, (Petroleum Society of Canada: Calgary, Alberta,
1283 Canada).

1284 [119] Al-Bazali TM, Zhang J, Chenevert ME, Sharma MM. in *2009 SPE Offshore Europe Oil*
1285 & *Gas Conference & Exhibition* 2009, (Society of Petroleum Engineers: Aberdeen, UK).

1286 [120] Wang Y. Nanogeochemistry: nanostructures, emergent properties and their control on
1287 geochemical reactions and mass transfers. *Chemical Geology*. **2014**, 378, 1-23.

1288 [121] Firincioglu T, Ozkan E, Ozgen C. 2012, (Society of Petroleum Engineers).

1289 [122] Wu Y-S. *Multiphase Fluid Flow in Porous and Fractured Reservoirs* 2015 (Gulf
1290 Professional Publishing).

1291 [123] Teklu TW, Alharthy N, Kazemi H, Yin X, Graves RM, AlSumaiti AM. Phase Behavior
1292 and Minimum Miscibility Pressure in Nanopores. **2014**.

1293 [124] Akkutlu IY, Rahmani DB. in *SPE International Symposium on Oilfield Chemistry* 2013,
1294 (Society of Petroleum Engineers).

1295 [125] Ho TA, Criscenti LJ, Wang Y. Nanostructural control of methane release in kerogen and
1296 its implications to wellbore production decline. *under review*. **2016**.

1297 [126] Phan A, Cole DR, Striolo A. Aqueous methane in slit-shaped silica nanopores: high
1298 solubility and traces of hydrates. *The Journal of Physical Chemistry C*. **2014**, 118(9), 4860-8.

1299 [127] Phan A, Cole DR, Striolo A. Factors governing the behaviour of aqueous methane in
1300 narrow pores. *Phil Trans R Soc A*. **2016**, 374(2060), 20150019.

1301 [128] Singh SK, Sinha A, Deo G, Singh JK. Vapor– liquid phase coexistence, critical
1302 properties, and surface tension of confined alkanes. *The Journal of Physical Chemistry C*. **2009**,
1303 113(17), 7170-80.

1304 [129] Firincioglu T, Ozkan E, Ozgen C. in *SPE Annual Technical Conference and Exhibition*
1305 2012, (Society of Petroleum Engineers).

1306 [130] Rahmani Didar B, Akkutlu IY. **2013**. Pore-size Dependence of Fluid Phase Behavior and
1307 Properties in Organic-rich Shale Reservoirs. SPE-164099, paper presented at the *SPE Int.*
1308 *Symposium on Oilfield Chemistry* in Woodlands, Texas, USA, 8–10 April.

1309 [131] Cristancho D, Akkutlu IY, Criscenti L, Wang Y. **2016** Influence of Kerogen Pore Surface
1310 Heterogeneities on Methane Storage. SPE-180112 presented at the SPE EUROPEC featured at
1311 78th EAGE Conference and Exhibition, Vienna, Austria 30 May-2 June.

1312 [132] Marti J, Nagy G, Guardia E, Gordillo M. Molecular dynamics simulation of liquid water
1313 confined inside graphite channels: dielectric and dynamical properties. *The Journal of Physical*
1314 *Chemistry B*. **2006**, 110(47), 23987-94.

1315 [133] Senapati S, Chandra A. Dielectric constant of water confined in a nanocavity. *The*
1316 *Journal of Physical Chemistry B*. **2001**, 105(22), 5106-9.

1317 [134] Bourg IC, Steefel CI. Molecular dynamics simulations of water structure and diffusion in
1318 silica nanopores. *The Journal of Physical Chemistry C*. **2012**, 116(21), 11556-64.

1319 [135] Takei T, Mukasa K, Kofuji M, Fuji M, Watanabe T, Chikazawa M, et al. Changes in
1320 density and surface tension of water in silica pores. *Colloid and Polymer Science*. **2000**, 278(5),
1321 475-80.

1322 [136] Kalluri RK, Konatham D, Striolo A. Aqueous NaCl solutions within charged carbon-slit
1323 pores: Partition coefficients and density distributions from molecular dynamics simulations. *The*
1324 *Journal of Physical Chemistry C*. **2011**, 115(28), 13786-95.

1325 [137] Wang Y, Bryan C, Xu H, Gao H. Nanoge geochemistry: Geochemical reactions and mass
1326 transfers in nanopores. *Geology*. **2003**, 31(5), 387-90.

1327 [138] Diaz-Campos M, Akkutlu IY, Sigal RF. **2009**. A Molecular Dynamics Study on Natural
1328 Gas Solubility Enhancement in Water Confined to Small Pores. SPE-124491, paper presented
1329 during *SPE Annual Technical Conference and Exhibition* in New Orleans, October 4-7.

1330 [139] Nelson J, Bargar J, Brown G, Maher K. in *Goldschmidt Abstracts* 2014.

1331 [140] Zimmerman AR, Chorover J, Goyne KW, Brantley SL. Protection of mesopore-adsorbed
1332 organic matter from enzymatic degradation. *Environmental Science & Technology*. **2004**,
1333 38(17), 4542-8.

1334 [141] Jung HB, Boyanov MI, Konishi H, Sun Y, Mishra B, Kemner KM, et al. Redox behavior
1335 of uranium at the nanoporous aluminum oxide-water interface: Implications for uranium
1336 remediation. *Environmental science & technology*. **2012**, 46(13), 7301-9.

1337 [142] Patra S, Pandey AK, Sarkar SK, Goswami A. Wonderful nanoconfinement effect on
1338 redox reaction equilibrium. *RSC Advances*. **2014**, 4(63), 33366-9.

1339 [143] Patra S, Pandey AK, Sen D, Ramagiri SV, Bellare JR, Mazumder S, et al. Redox
1340 Decomposition of Silver Citrate Complex in Nanoscale Confinement: An Unusual Mechanism of
1341 Formation and Growth of Silver Nanoparticles. *Langmuir*. **2014**, 30(9), 2460-9.

1342 [144] Odusina EO, Sondergeld CH, Rai CS. in *Canadian Unconventional Resources*
1343 *Conference* 2011, (Society of Petroleum Engineers).

1344 [145] Hu Y, Devegowda D, Striolo A, Phan A, Ho TA, Civan F, et al. Microscopic Dynamics
1345 of Water and Hydrocarbon in Shale-Kerogen Pores of Potentially Mixed Wettability. SPE-
1346 167234-PA. **2014**, 112-24.

1347 [146] Nitao JJ, Bear J. Potentials and their role in transport in porous media. *Water Resources*
1348 *Research*. **1996**, 32(2), 225-50.

1349 [147] Eveline V, Akkutlu IY, Moridis G. **2016**. Impact of Hydraulic Fracturing Fluid Damage
1350 on Shale Gas Well Production Performance. SPE-181677, paper presented during the *SPE*
1351 *Annual Technical Conference and Exhibition* in Dubai, UAE, September 26-28. in

1352 [148] Hillel D. *Introduction to Soil Physics* 1982 (Academic Press).

1353 [149] Bustin RM, Bustin AMM, Cui A, Ross D, Pathi VM. in *2008 SPE Shale Gas Production*
1354 *Conference* 2008, (Society of Petroleum Engineers: Fort Worth, Texas, U.S.A.).

1355 [150] Curtis ME, Ambrose RJ, Sondergeld CH, Rai CS. in *SPE North American*
1356 *Unconventional Gas Conference and Exhibition* 2011, (Society of Petroleum Engineers: The
1357 Woodlands, Texas, USA).

1358 [151] Desbois G, Urai JL, Kukla PA. Morphology of the pore space in claystones – evidence
1359 from BIB/FIB ion beam sectioning and cryo-SEM observations. *eEarth*. **2009**, 4(1), 15-22.

1360 [152] Dewers TA, Heath J, Ewy R, Duranti L. Three-dimensional pore networks and transport
1361 properties of a shale gas formation determined from focused ion beam serial imaging. *Int J of*
1362 *Oil, Gas and Coal Technology*. **2012**, 5(2/3), 229 - 48.

1363 [153] Heath JE, Dewers TA, McPherson BJOL, Nemer MB, Kotula PG. Pore-lining phases and
1364 capillary breakthrough pressure of mudstone caprocks: Sealing efficiency of geologic CO₂
1365 storage sites. *International Journal of Greenhouse Gas Control*. **2012**, 11, 204-20.

1366 [154] Silin D, Kneafsey TJ. in *Canadian Unconventional Resources Conference* 2011, (Society
1367 of Petroleum Engineers).

1368 [155] Or D, Tuller M. Liquid retention and interfacial area in variably saturated porous media:
1369 Upscaling from single-pore to sample-scale model. *Water Resources Research*. **1999**, 35(12),
1370 3591-605.

1371 [156] Heath JE, Bryan CR, Matteo EN, Dewers TA, Wang Y, Sallaberry CJ. Adsorption and
1372 capillary condensation in porous media as a function of the chemical potential of water in carbon
1373 dioxide. *Water Resources Research*. **2014**, 50(3), 2718-31.

1374 [157] Byrnes AP. Role of induced and natural imbibition in frac fluid transport and fate in gas
1375 shales. for the Hydraulic Fracturing Study: Fate and Transport. **2011**, 70.

1376 [158] Nicot J-P, Scanlon BR, Reedy RC, Costley RA. Source and fate of hydraulic fracturing
1377 water in the Barnett Shale: a historical perspective. *Environmental science & technology*. **2014**,
1378 48(4), 2464-71.

1379 [159] Lomba RF, Chenevert M, Sharma MM. The role of osmotic effects in fluid flow through
1380 shales. *Journal of Petroleum Science and Engineering*. **2000**, 25(1), 25-35.

1381 [160] Lomba RF, Chenevert M, Sharma MM. The ion-selective membrane behavior of native
1382 shales. *Journal of Petroleum Science and Engineering*. **2000**, 25(1), 9-23.

1383 [161] Chen G, Chenevert ME, Sharma MM, Yu M. A study of wellbore stability in shales
1384 including poroelastic, chemical, and thermal effects. *Journal of Petroleum Science and*
1385 *Engineering*. **2003**, 38(3–4), 167-76.

1386 [162] Schlemmer R, Friedheim JE, Growcock FB, Bloys JB, Headley JA, Polnaszek SC.
1387 *Chemical Osmosis, Shale, and Drilling Fluids*. **2003**.

1388 [163] van Oort E, Hale AH, Mody FK. 1995, (Society of Petroleum Engineers).

1389 [164] Engelder T. Capillary tension and imbibition sequester frack fluid in Marcellus gas shale.
1390 *Proceedings of the National Academy of Sciences*. **2012**, 109(52), E3625-E.

1391 [165] Engelder T, Cathles LM, Bryndzia LT. The fate of residual treatment water in gas shale.
1392 *Journal of Unconventional Oil and Gas Resources*. **2014**, 7, 33-48.

1393 [166] Ghanbari E, Dehghanpour H. Impact of rock fabric on water imbibition and salt diffusion
1394 in gas shales. *International Journal of Coal Geology*. **2015**, 138, 55-67.

1395 [167] Council GWP. *Modern shale gas development in the United States: A primer* 2009 (US
1396 Department of Energy, Office of Fossil Energy).

1397 [168] Blondes M, Gans K, Thordsen J, Reidy M, Engle M, Kharaka Y, et al. (Ed. USGS)2015.

1398 [169] Kharaka Y, Thordsen JJ, Conaway CH, Thomas RB. The energy-water nexus: potential
1399 groundwater-quality degradation associated with production of shale gas. *Procedia Earth and*
1400 *Planetary Science*. **2013**, 7, 417-22.

1401 [170] Bryndzia LT, Braunsdorf NR. From source rock to reservoir: the evolution of self-
1402 sourced unconventional resource plays. *Elements*. **2014**, 10(4), 271-6.

1403 [171] Gallegos TJ, Varela BA, Haines SS, Engle MA. Hydraulic fracturing water use
1404 variability in the United States and potential environmental implications. *Water Resources*
1405 *Research*. **2015**, 51(7), 5839-45.

1406 [172] Healy RW, Alley WM, Engle MA, McMahon PB, Bales JD. 2015, (US Geological
1407 Survey).

1408 [173] Lewis RW, Schrefler BA. The finite element method in the deformation and
1409 consolidation of porous media. **1987**.

1410 [174] De Borst R, Sluys L, Muhlhaus H-B, Pamin J. Fundamental issues in finite element
1411 analyses of localization of deformation. *Engineering computations*. **1993**, 10(2), 99-121.

1412 [175] Armero F. Formulation and finite element implementation of a multiplicative model of
1413 coupled poro-plasticity at finite strains under fully saturated conditions. *Computer Methods in*
1414 *Applied Mechanics and Engineering*. **1999**, 171(3), 205-41.

1415 [176] Kim JM. A fully coupled finite element analysis of water-table fluctuation and land
1416 deformation in partially saturated soils due to surface loading. *International Journal for*
1417 *Numerical Methods in Engineering*. **2000**, 49(9), 1101-19.

1418 [177] Chen L, Fang W, Kang Q, Hyman JDH, Viswanathan HS, Tao W-Q. Generalized lattice
1419 Boltzmann model for flow through tight porous media with Klinkenberg's effect. *Physical*
1420 *Review E*. **2015**, 91(3), 033004.

1421 [178] Huang H, Mattson E. in *48th US Rock Mechanics/Geomechanics Symposium* 2014,
1422 (American Rock Mechanics Association).

1423 [179] Swami V, Settari A. in *SPE Americas Unconventional Resources Conference* 2012,
1424 (Society of Petroleum Engineers).

1425 [180] Chen L, Zhang L, Kang Q, Viswanathan HS, Yao J, Tao W. Nanoscale simulation of
1426 shale transport properties using the lattice Boltzmann method: permeability and diffusivity.
1427 *Scientific reports*. **2015**, 5.

1428 [181] Chen L, Kang Q, Pawar R, He Y-L, Tao W-Q. Pore-scale prediction of transport
1429 properties in reconstructed nanostructures of organic matter in shales. *Fuel*. **2015**, 158, 650-8.

1430 [182] Yoon H, Kang Q, Valocchi A. Lattice Boltzmann-based approaches for pore-scale
1431 reactive transport. *Rev Mineral Geochem*. **2015**, 80, 393-431.

1432 [183] Shan X, Chen H. Lattice Boltzmann model for simulating flows with multiple phases and
1433 components. *Physical Review E*. **1993**, 47(3), 1815.

1434 [184] Szymczak P, Ladd A. A network model of channel competition in fracture dissolution.
1435 *Geophysical research letters*. **2006**, 33(5).

1436 [185] Campbell CV. Lamina, laminaset, bed and bedset. *Sedimentology*. **1967**, 8(1), 7-26.

Table 1. Two-way coupling of thermal, hydraulic, mechanical, chemical, and biological processes relevant to natural and engineered shale.

Process	Thermal	Hydraulic	Mechanical	Chemical	Biological
Hydraulic	Changes in fluid buoyancy and viscosity, change in fluid phase – evaporation and condensation. Thermal diffusion and fluid flow. Heat convection by moving fluid.	Hydraulic			
Mechanical	Conversion of mechanical energy into heat; thermal stress and thermal expansion, damage and deformation.	Stress-deformation-damage controls on porosity and permeability, and fracture network dynamics; aperture-pressure-stiffness of fracture as a function of matrix effective stress; capillary and swelling pressure-relative saturation.	Mechanical		
Chemical	Temperature control on chemical reaction rates and mineral stability fields; heat release from exothermal chemical reactions, involving inorganic and organic components.	Fluid pressure, velocity and saturation effects on solid and gas solutions, precipitation reactions and consumption of solute. Chemical control on permeability.	Mechanical processes control transport paths – deformation, damage and fracturing. Rock strength and damage due to chemical reactions.	Chemical	
Biological	Thermal effects on metabolism of microorganisms.	“Plugging” – changes in permeability due to cell growth within pore networks.		Microbially-induced chemical changes; Chemical stimulation or inhibition of microbial growth.	

Table 2. Types of data available for studies on shale, their spatial and temporal resolution, and their process couplings.

Data type	Spatial resolution or size of testable sample	Temporal resolution	Couples with ^{a)} or strongly affects	Comments
Texture (grain size, shape, orientation of individual grain, overall sorting)	Mudrock has > 50% of particles <62.5 μm ; fine mud (clay and very fine silt) is <8 μm	Time-scale of depositional setting (see Bedding); up to geological time for mechanical diagenesis and recrystallization	Porosity, permeability, capillary pressure characteristics; strength, Young's Modulus	Informs sediment provenance, water column energy level, and geologic controls on rock properties including porosity and permeability (Lazar et al., 2015)
Pore network imaging, pore types and distribution, porosity (FIB-SEM, USAN/SANS, core plug measurements) NMR	nm to 100's of μm (imaging); 0.5 μm to 100's of μm (EDS); 1 nm to 10's of μm (USANS/SANS) cm's (core plug)	Time-scale of transport in pore networks: up to seconds	Porosity, permeability, chemical composition /wettability	Direct imaging and indirect measurements of porosity and connectivity—useful for modeling of pore-scale transport (including wettability) and potential mechanical behavior
Bedding	Lamina: fraction of mm to mm's; Laminaset: mm to cm's; Beds: typically	Laminae: forms in seconds to one or more years Beds: minutes to "many moments of geological	"Larger"-scale flow or mechanical units; natural fracture spacing may correlate with larger-scale stratal	Relevant for interpreting: sediment input, accumulation; energy of deposition; degree of bioturbation (Lazar et al., 2015); curved, wavy

	mm's to 10's of cm's (do not have minimum or maximum absolute thickness); laterally meters to km's	time" [185]	units	planar (parallel and nonparallel) affect heterogeneity and other transport/mechanical properties
Solid composition (mineralogy, chemical composition, kerogen type; total organic carbon)	Can vary from individual particles (or cements) to large-scale systematic variation up the bedset or larger-scale stratal units (such as parasequences)	Time-scale controlling composition from seconds (depositional setting) to oil and gas extraction and CO ₂ storage (10s to 1000s of years) to geological time (diagenesis)	Brine chemistry; pore-lining phases and geometry of pore networks; (mixed) wettability	Reflects primary depositional and diagenetic conditions; pore-lining phases affect wettability and chemical reactivity
Fluid chemistry (brine, fracturing fluids, hydrocarbon liquids and gases, possibly injected CO ₂)	Single pores to regional scale (10's to 100's of km)	Minutes/hours/ weeks/years for engineered (injection); geologic time scales for natural systems	Mineralogy; permeability, porosity (coupled through reactive transport) and nano-scale confinement effects and phase behavior; sub-critical fracture	Fluid chemistry can strongly couple with many processes (transport, mechanical behavior, heat flow, and microbiology)

			growth	
Absolute permeability (and relative permeability)	10's of microns (FIB-SEM and modeling) to cm (core plug)	Permeability evolution of natural systems: geological time scale for diagenesis; permeability evolution can be over hours, weeks, days, years for engineered systems	Porosity; pore pressure distribution; drained versus undrained behavior; texture, chemistry	Continuum concept; REV may vary for shales and is not very well documented yet and may vary for different types of pore structure (e.g., matrix vs fractures) Relative permeability is not routinely measured in mudrocks
Capillary pressure curves and pore-throat size distributions	cm (core plug); possibility down to 100's of microns if using FIB-SEM data and a modeling method (e.g., LB)	Probably up to seconds of transport (in FIB-SEM models)	Porosity, permeability, textural analysis; activity of water or fluids in nano-scale confined pore networks	Capillary imbibition strongly coupled with texture
Effective diffusion coefficient	cm (core plug); possibility down to 100's of microns if using FIB-SEM data	Geologic time scales for natural transport processes; large surface area of induced fractures	Texture (topology/tortuosity of pore networks); porosity	Diffusion processes may range from Ordinary Fickian to Knudsen diffusion

		may reduce time scales to that of reservoir production		
Sorption / adsorption isotherms	mm to cm (core plug or crushed samples)	Seconds; may depend on reservoir pressure and thus time scales of field operations (years)	Texture, composition, fluid compositions, permeability	Consider sorption/desorption for fine-grained minerals and organic material
Geomechanics and constitutive models: Young Modulus and Poisson ratio (isotropic); Transversely isotropic (five parameters); critical state mechanics; general plasticity; failure models and parameters (e.g., Mohr-Coulomb)	From micron (nanoindentation) to cm (core plug); core plugs may need to be taken at different angles for estimates of transversely or fully anisotropic parameters	Seconds, hours, weeks (engineered) to geological timescales (natural)	Porosity, pore network properties, texture, composition, diagenetic textures	Some parameters may be dynamically estimated from seismic wave velocities; sophistication of geomechanical properties estimated can vary greatly
Unconfined compressive strength	micron to mm to cm (micron indenter on FIB-ed columns; calibrated	Seconds, hours, weeks (engineered) to geological	Porosity, pore network properties, texture, composition, fluid	<i>In situ</i> stress state, including magnitudes, directions, and pore pressure distribution

	scratch test; core plugs)	timescales (natural)	composition contacting fracture process zone, chemistry-related	should be taken into account in predicting subsurface behavior
Fracture toughness	From micron (nanoindentation) to cm (double-torsion)	Seconds, hours, weeks (engineered) to geological timescales (natural)	Porosity, pore network properties, texture, composition, fluid composition contacting fracture process zone	<i>In situ</i> stress state and fluid composition should be taken into account
Tracer logs or spinner surveys; distributed fiber optic sensing	10's of cm, up to length of completion of wellbore	Hours, weeks, years (for permanently installed fiber optic arrays)	Porosity, permeability, fracture network characteristics	Tracer logging and spinner surveys may reflect aspects of completions and the reservoir itself
Production decline analysis; pressure or rate transient analysis: yields estimates of a variety of reservoir parameters	Length scale of fracture spacing; provides information on the entire length of completion of wellbore	Months to decades; the progression of flow regimes in shale reservoirs may take decades to develop	Integrates permeability (potentially temporally varying), porosity, multi-phase flow; may include double porosity	Attempts to invert for reservoir parameters and reverses oil/gas in place, and forecasts production
Wireline measurements	Resolution 1-2 feet (30-60 cm)	Wireline measurements on	Porosity, permeability, and	Important tools for measurements of reservoir

(neutron porosity, gamma ray, well resistivity, NMR, <i>in situ</i> fluid saturations, etc)		order or hours	fluid composition	properties over length of completed zones
Microseismic	10's of meters	Probably hours for measurements	Poroisty, permeability, geomechanical properties	Important for mapping fracture complexity at the wellbore scale

Notes:

^{a)} Identifies where methodologies for integrating multi-disciplinary data are well established

Figure Captions

Figure captions

Figure 1. Structures, processes, and the relevant length scales for shale formations.

Figure 2. Intense layering with contrasting properties in shales. Outcrops photos (top), and scanning electron microscope (SEM) images (bottom).

Figure 3. Elemental composition of shale measured by x-ray fluorescence (XRF) with centimeter-resolution. The presence and distribution of calcite-rich layers intermixed with mudstone units is observed over an 85 ft. (25 m) section.

Figure 4. Healed bedding plane fracture in Eau Claire Formation, a major seal for the Mt. Simon Sandstone in the mid-continent of the U.S.

Figure 5. (a) Borehole breakouts result along preferential direction under a uniform stress field, because the presence of planes of weakness in the rock; (b) Hydraulic fracture grows by overcoming one layer at a time, despite the imposed uniform stress field; (c and d) Thin mineralized interfaces and weak bedding control the propagation of fractures during fracture toughness experiments; (e) Fish-bone structures of fracture propagation and fluid leak off are common on laboratory hydraulic fracturing experiments on laminated shales.

Figure 6. Acoustic wavefronts propagated through garolite (fiberglass-epoxy laminate) sample with a set of parallel fractures. Stress was applied perpendicular to the fractures (solid black lines) or parallel to the layering (dashed gray lines).

Figure 7. (a) Dual beam focused ion beam (FIB)/SEM 3-D volume, (b) 3-D rendering of kerogen and (c) 3-D rendering of the pores in this volume of the Pt. Pleasant formation, Wood Co. West Virginia, 9503 ft depth. Re-printed from Arthur and Cole., 2014.

Figure 8. Left: Three-dimensional pore network model consisting of nano-capillaries shown in two-dimensions for nanopore Pn. The model has been developed and used to investigate kerogen

REV by Rui et al., 2016. Right: estimated permeability of the kerogen nanopore network as a function of the network volume for changing coordination number, Z . Methane transport is considered (including convection, diffusion and adsorption mechanisms) at average pore pressure of 2,500 psi, and temperature 80°C (353K).

Figure 9. Left: Schematic illustrating the uniform distribution of micro-cracks and their orientation angle θ in a cross section of organic-rich shale in vertical direction. The organic-rich shale is shown as gray background. Directions of vertical and horizontal minimum stresses are also shown. Right: Permeability tensor k_m elements for various microcrack orientation angle (θ) with $k_{z'z'} = 0$.

Figure 10. Phase diagrams of methane (top, left) and n-butane (top, right) in 4 and 8 nm size pores obtained from simulations and compared to bulk behavior. Phase diagram of binary methane-n-butane mixture (bottom). The bulk behavior is extracted from Peng-Robinson equation of state. Adopted from Akkutlu and Rahmani 2015.

Figure 11. Left: Organic pore wall model with surface heterogeneities. Carbon is shown in brown, hydrogen in yellow and nitrogen in blue. Right: Predicted storage of methane in the pore in adsorbed form (solid line) and excess (dashed line) methane. Predictions are based on grand canonical ensemble molecular simulations where the Lennard-Jones parameters (ϵ, σ) of methane-wall interactions have been estimated using quantum mechanical (DFT) calculations and ground-state energy optimization. Adopted from Cristancho et al., 2016.

Figure 12. Osmotic pressure increase by the hydraulic fracture as a function of shut-in time at various locations (1, 5, 10, 50, and 100 cm) in the shale matrix near the fracture. The simulation involves flow of water in a rock (semipermeable membrane) driven by the pressure and chemical potential gradient. Membrane efficiency is 0.1 (top) and 1.0 (bottom). Osmotic pressure increase is defined as the difference between the initial pore pressure and pore pressure after fluid invasion. A constant pressure is applied on the left boundary. The objective of the simulation is to understand the effect of hydraulic fracturing water with low salinity (equivalent NaCl concentration of 10,000 ppm) on the adjacent shale matrix containing formation water with higher salinity (50,000 ppm). The initial pressure is 3,000 psi and temperature is 50°C. The rock

has permeability of 200 nD and porosity of 10%. The further most left cell has a constant pressure of 3,000 psi, which is representing shut-in pressure in the fracture, temperature of 50°C.

Figure 13. The typical measurement resolution (see Table 2), and modeling methods used for single and coupled processes in shale.

Figure 1

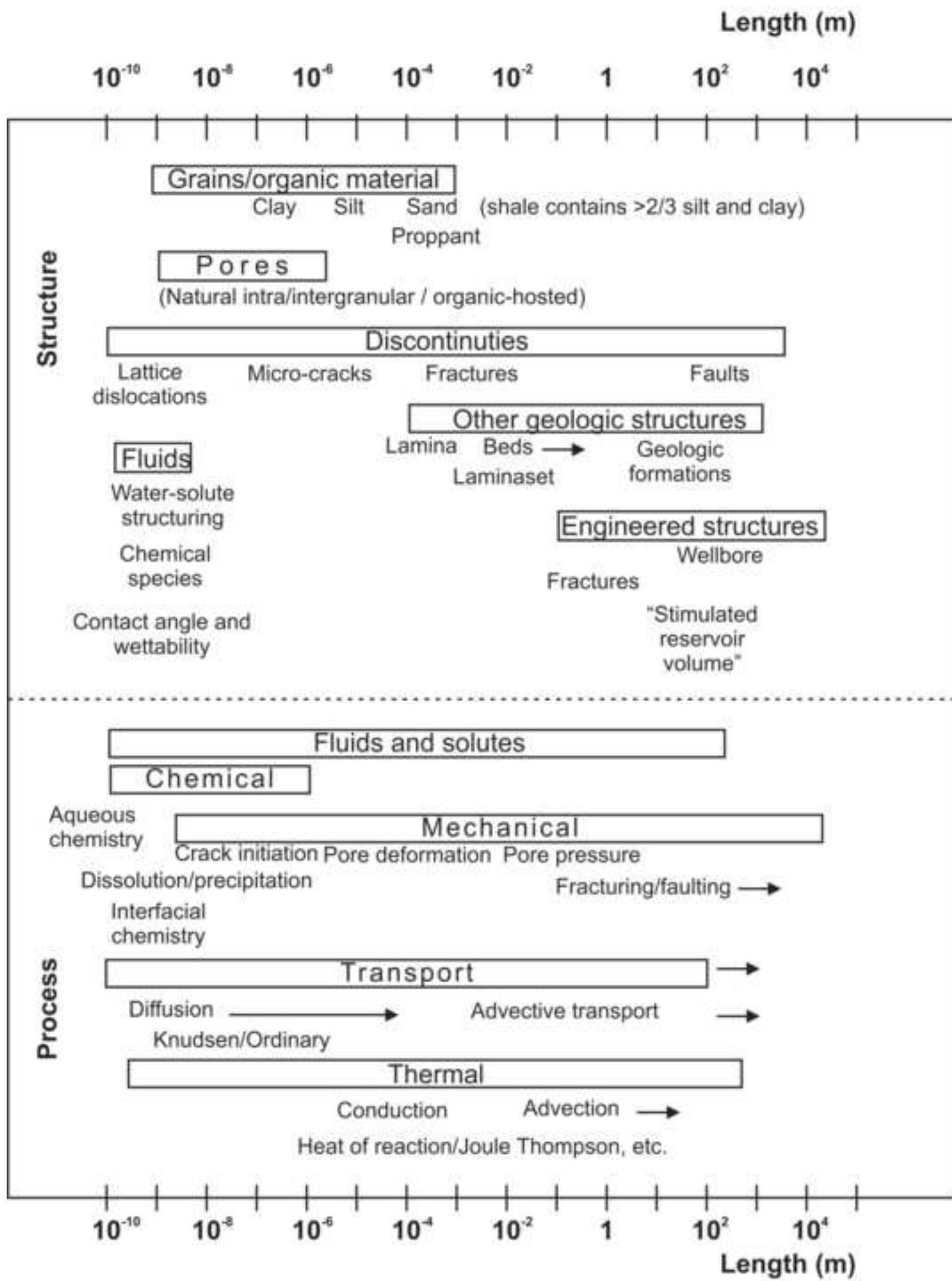


Figure 2

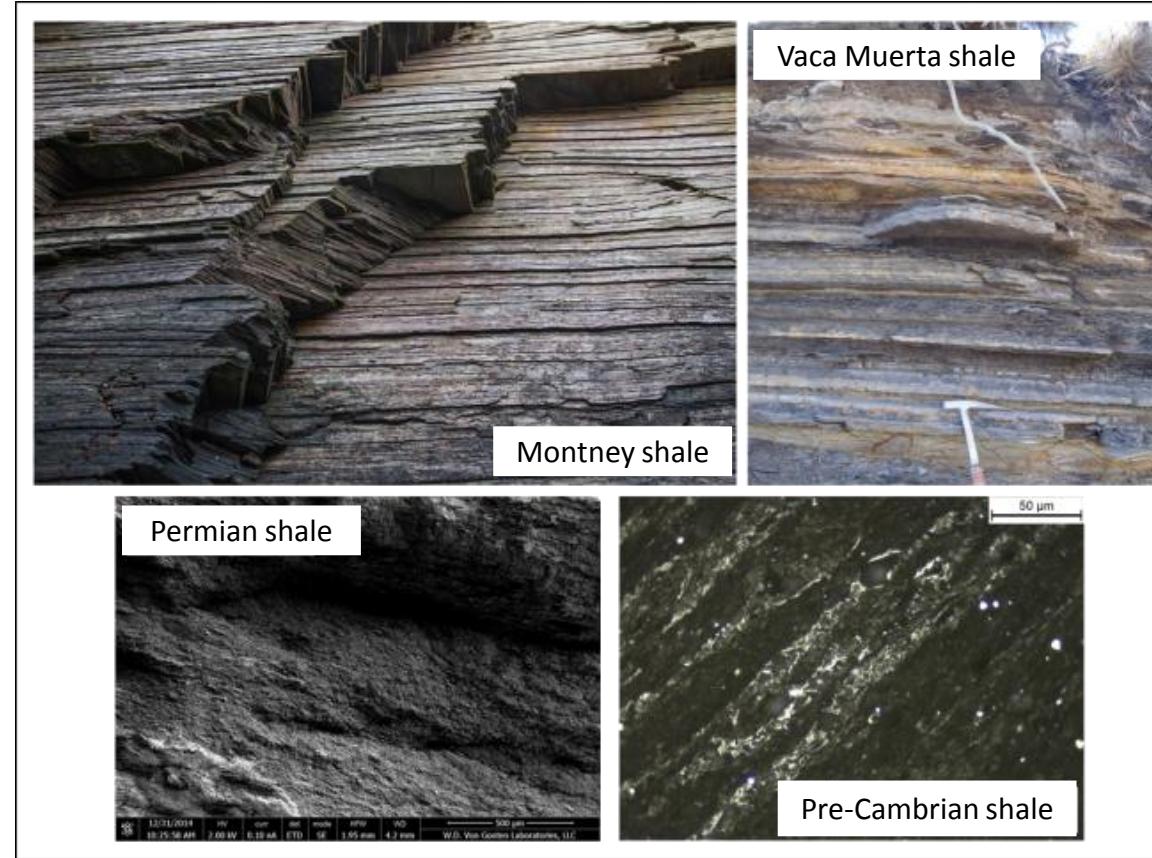


Figure 3

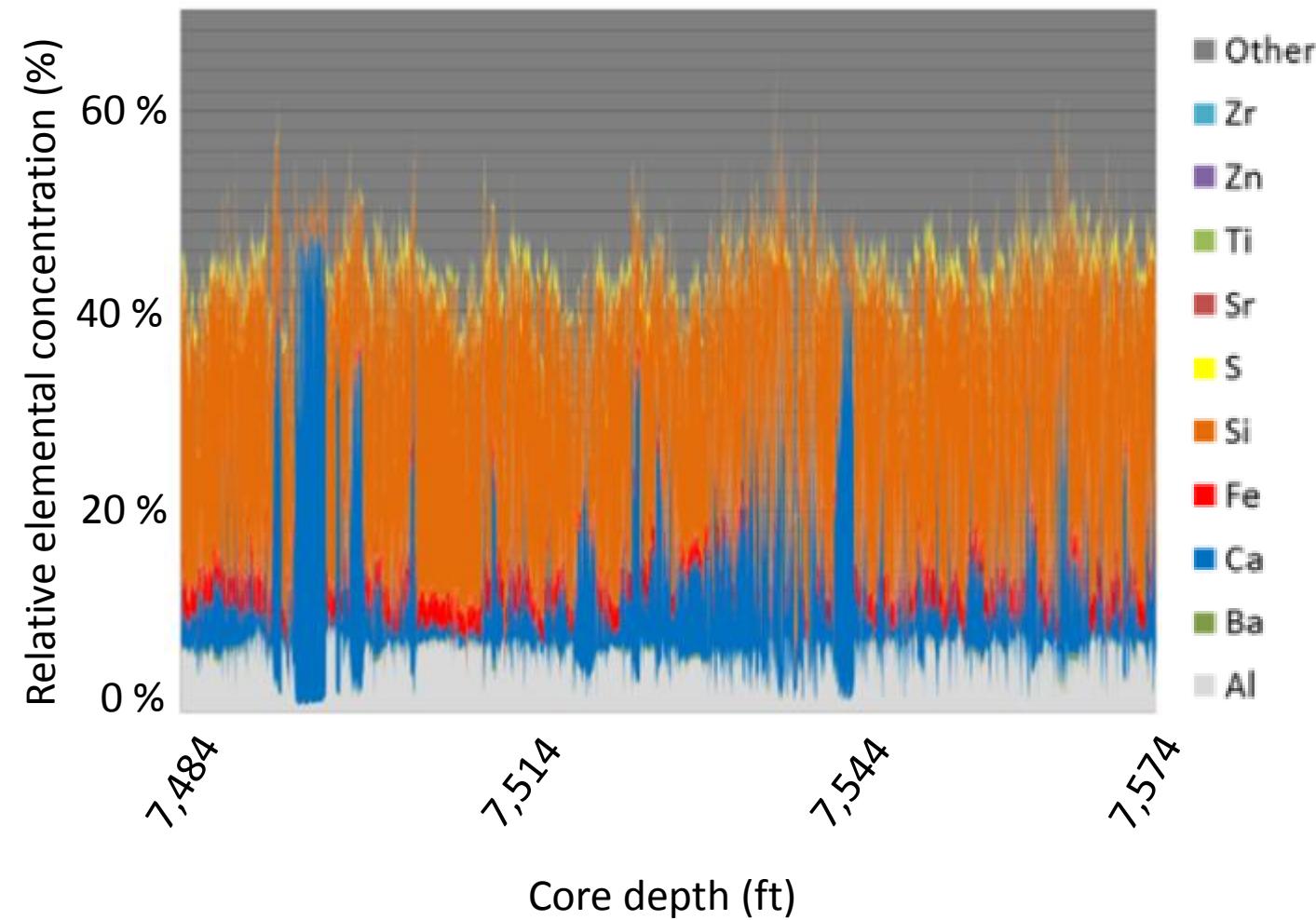


Figure 4

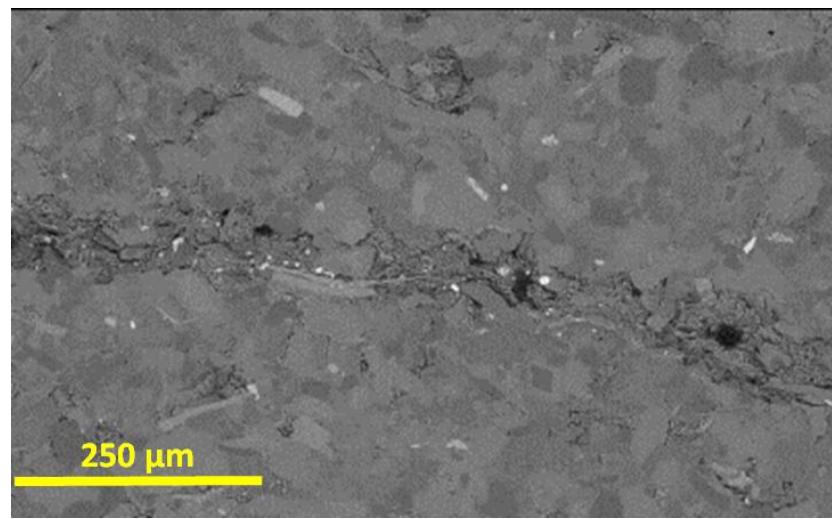


Figure 5

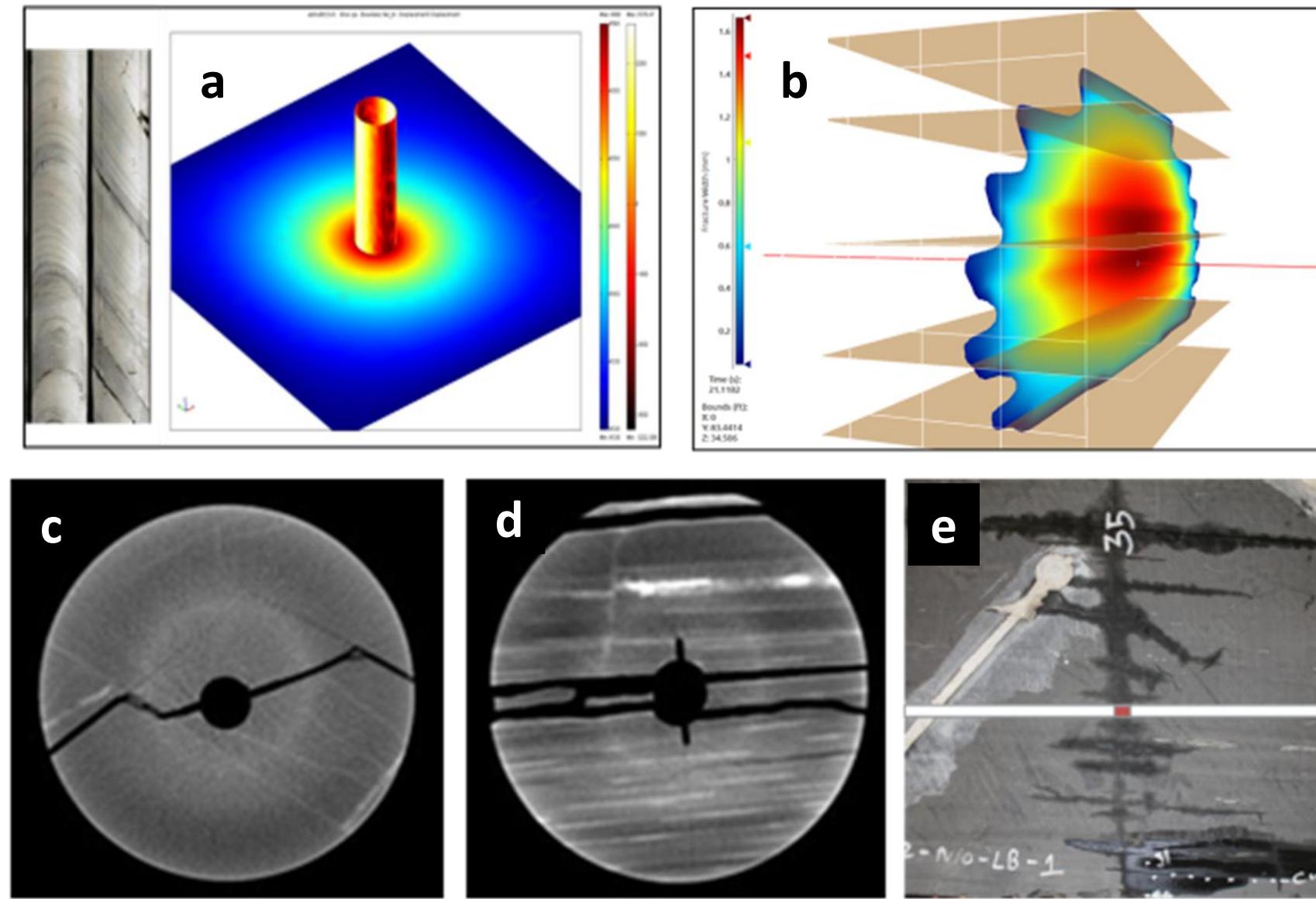


Figure 6

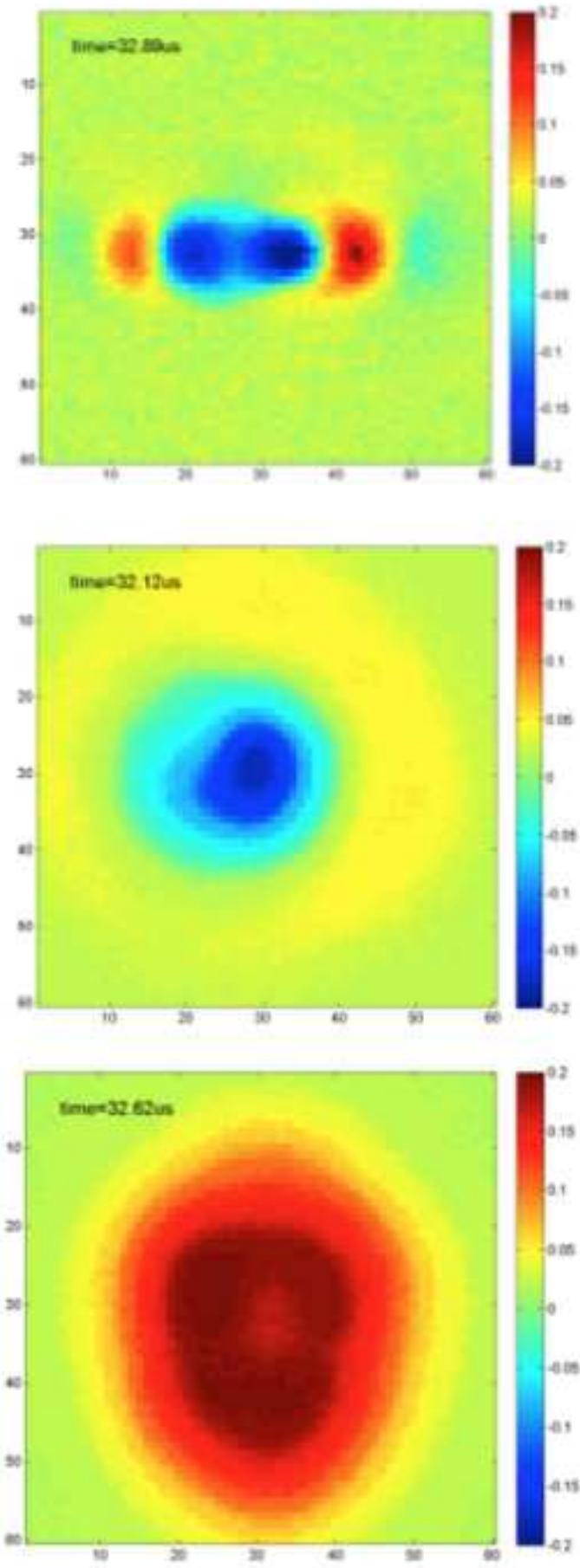
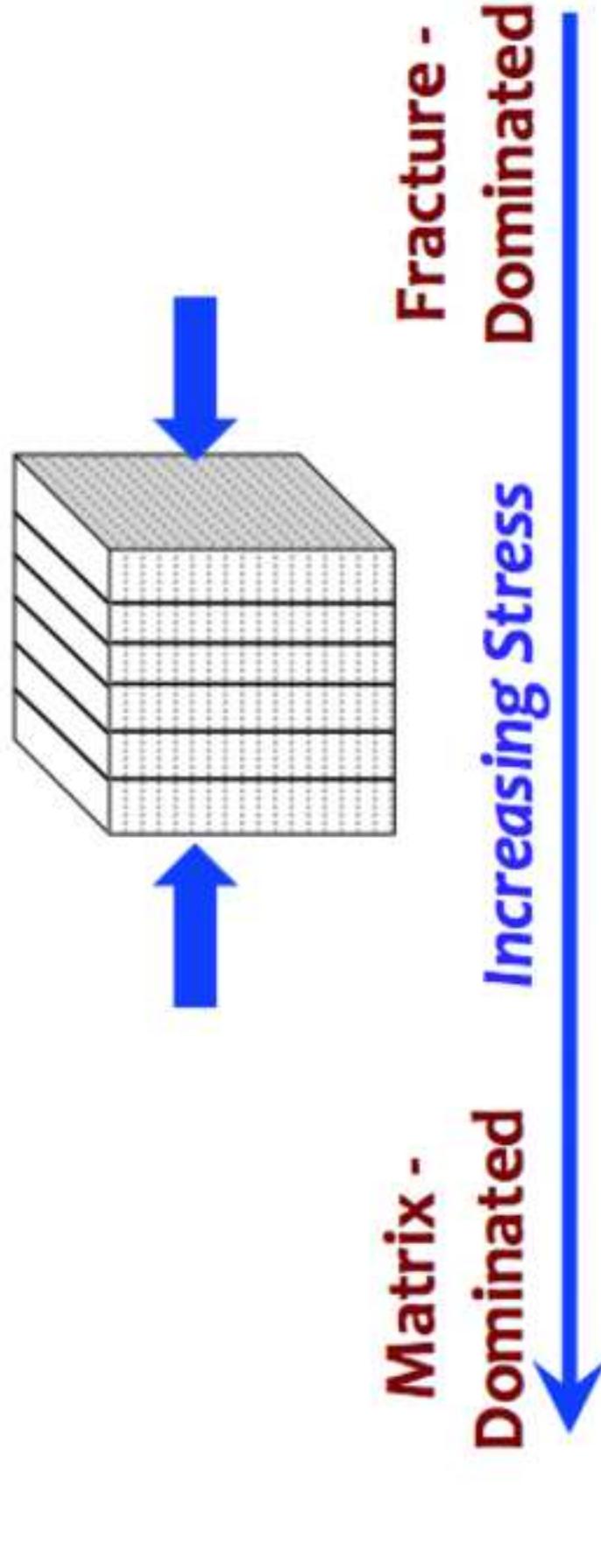



Figure 7

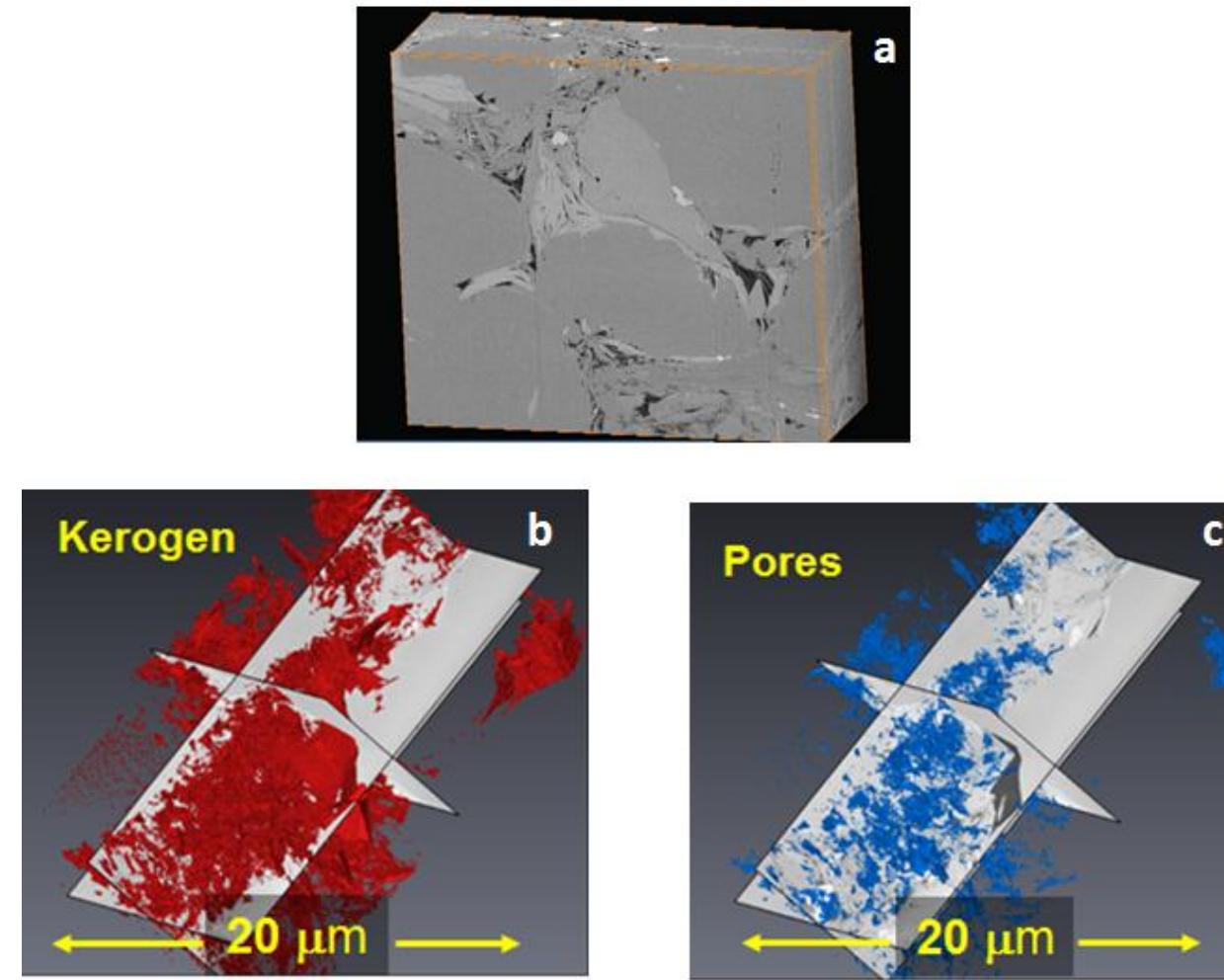


Figure 8

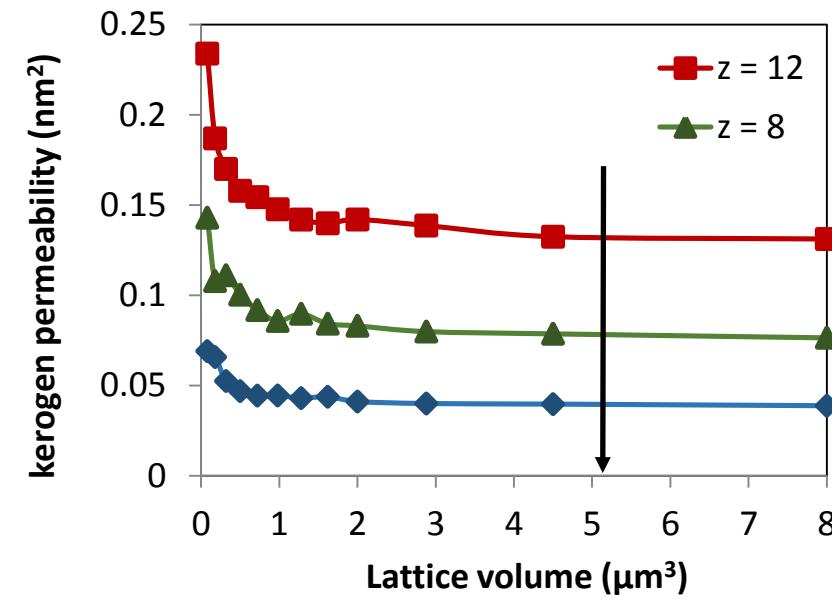
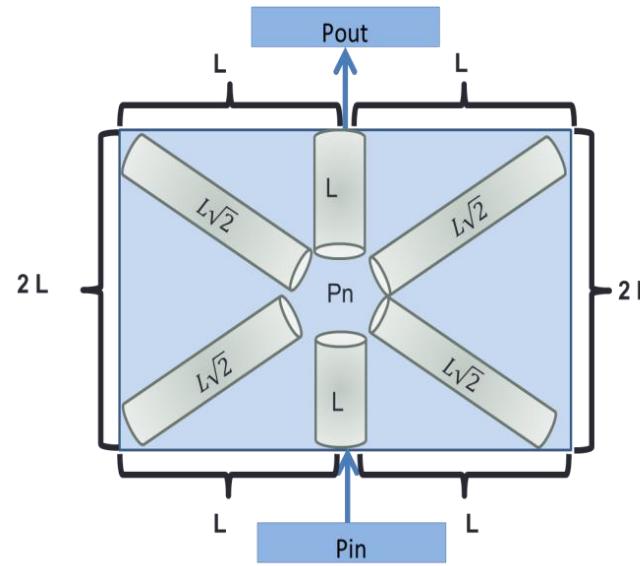



Figure 9

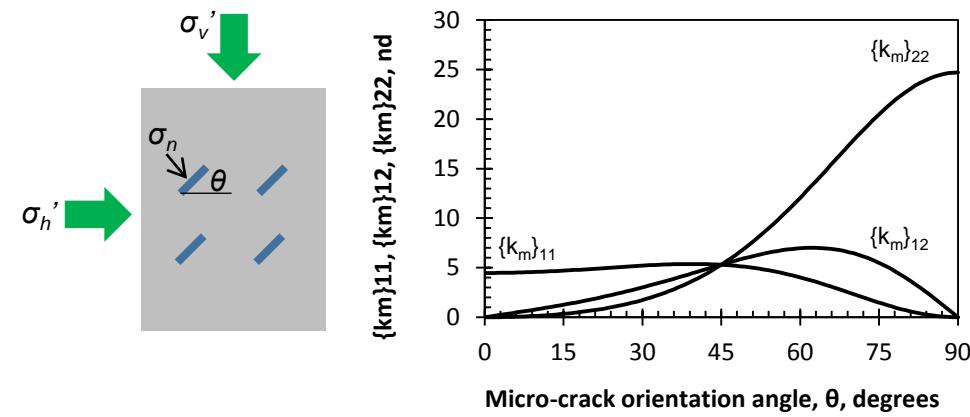


Figure 10

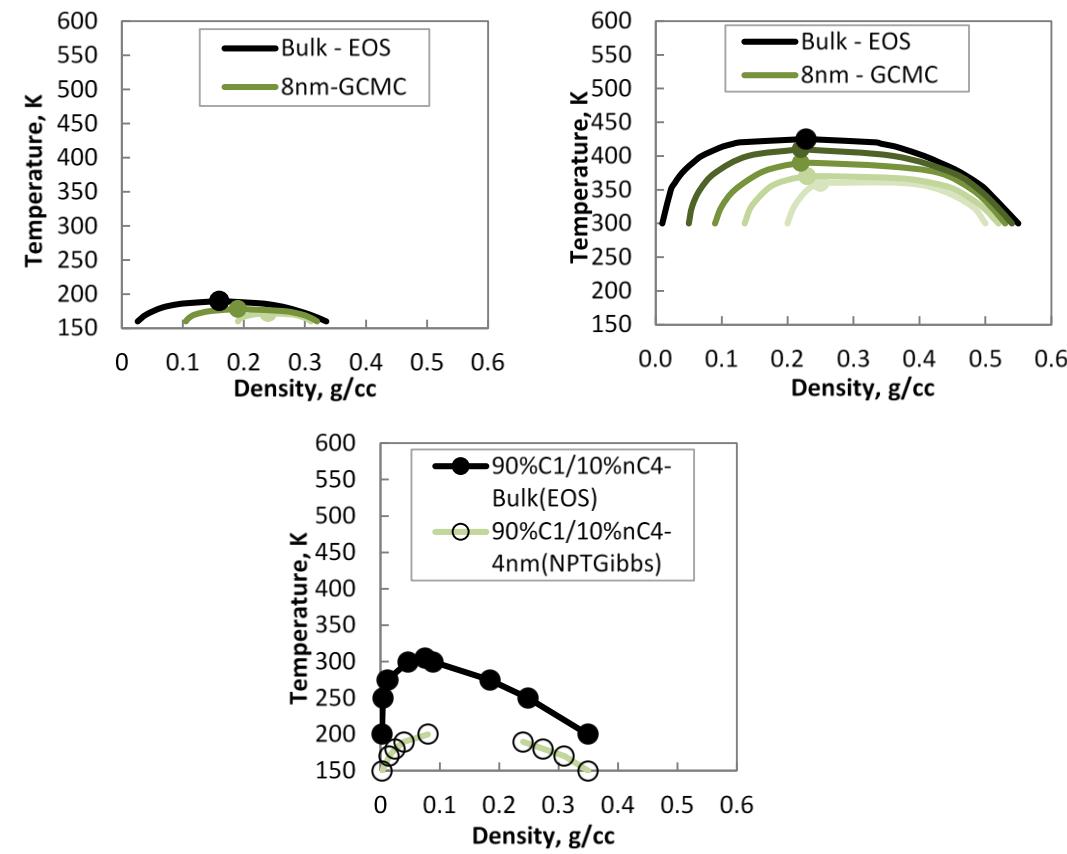


Figure 11

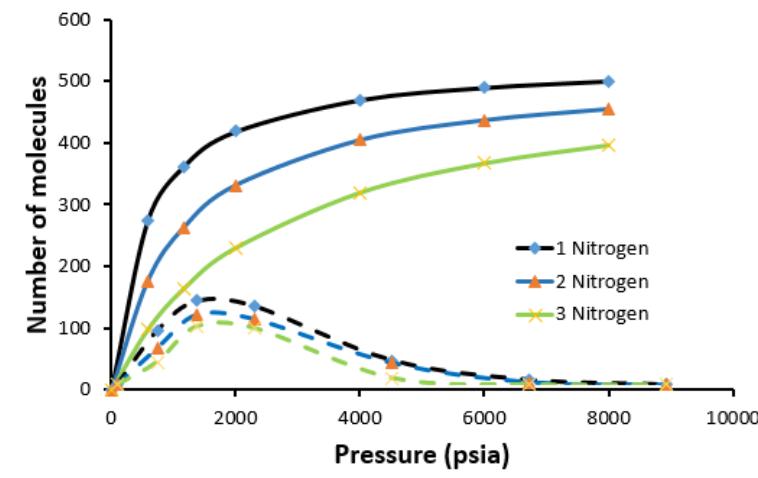
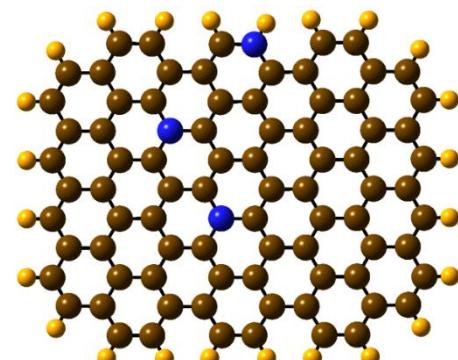



Figure 12

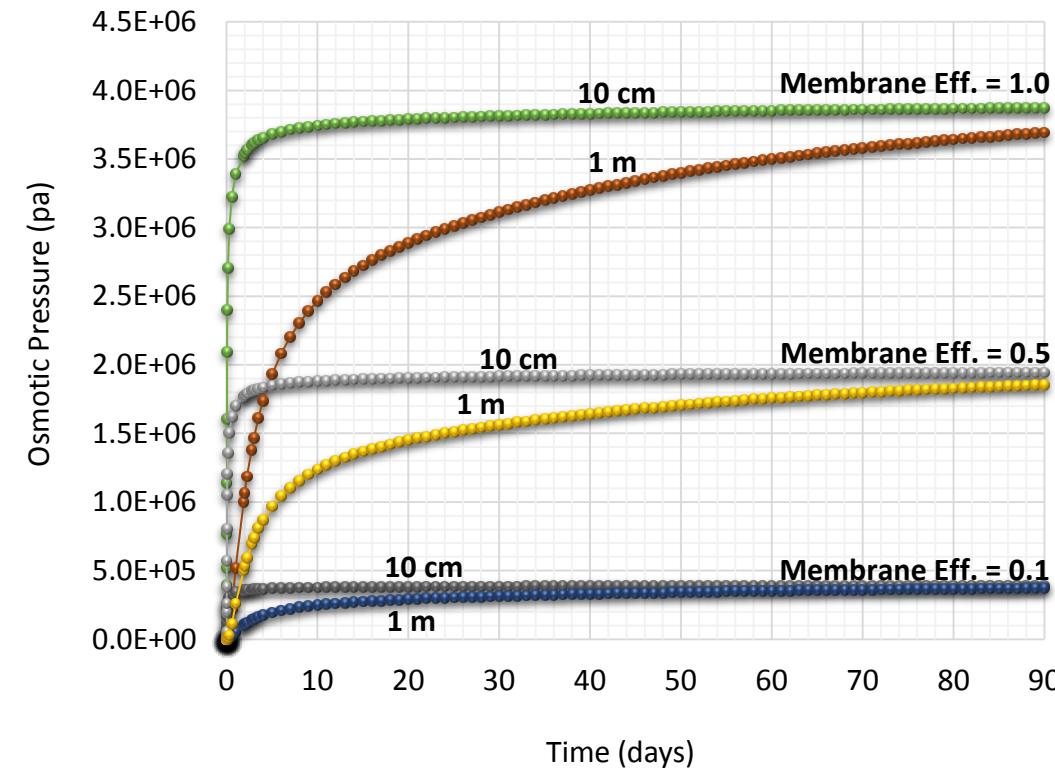
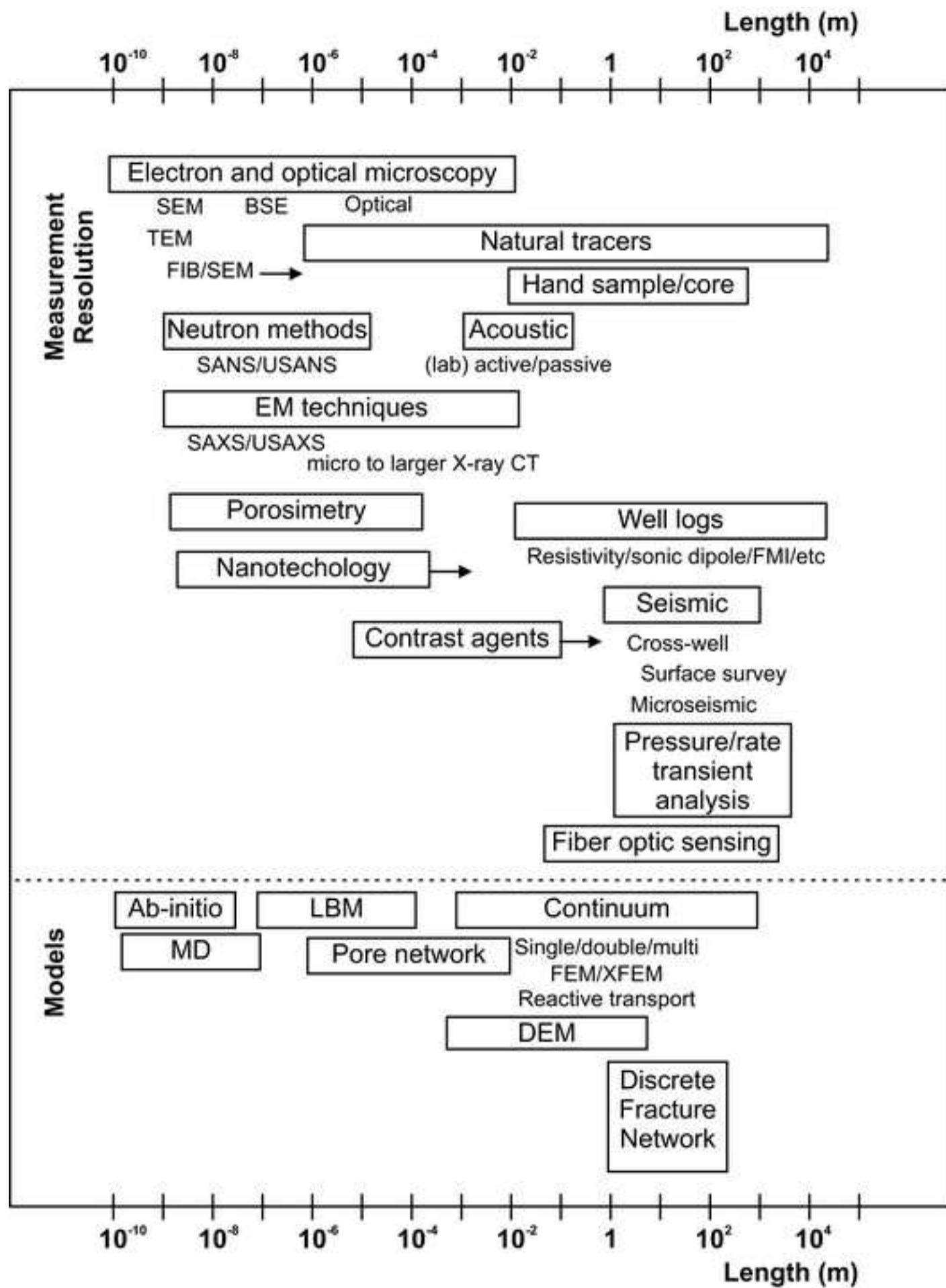



Figure 13

