‘ ! ! . LLNL-CONF-747403

LAWRENCE
LIVERM ORE
NATIONAL

womrony | Stre@mMIining the Target Fabrication
Request at the National Ignition Facility
(NIF)

C. Manin, G. Norman, R. Clark, E. Bond, A.
Casey

March 6, 2018

Grace Hopper
Houston, TX, United States
September 26, 2018 through September 28, 2018

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

ANITA
B

"'

Streamlining the Target Fabrication Request

at the National Ignition Facility (NIF)

Carla Manin, George Norman, Raelyn Clark, Essex Bond, Allan Casey
Lawrence Livermore National Laboratory

7000 East Avenue L-478, Livermore, CA 94550 USA

maninl@linl.gov

1. INTRODUCTION

National Ignition Facility (NIF) targets are complex
engineering marvels in tiny packages. Creating them
requires interplay among target designers, materials
scientists, and precision engineers. The laser drives a
target capsule inward at nearly a million miles an hour.
Because the targets are subjected to extreme
temperatures (greater than those in the Sun) and
pressures (similar to those found in the core of Jupiter)
during experiments, the targets must be designed,
fabricated, and assembled with extreme precision [1].

The target production lifecycle begins with submission
of a formal target request. Experimentalists and
project engineers create the target feature definition
based on dozens of existing and/or new parameters
determined by the physics requirements and the type
of shot. When the shot calls for an existing target, a
previous target fabrication request can be duplicated.
However, when it calls for a new type of target, a new
request must be created. And in those cases,
supporting documentation must be provided
describing the custom parts that will be needed in the
target build.

Before the commissioning of this project, experimen-
talists, project engineers and target fabrication team
members (“users”) first utilized a tool developed in
Oracle Application Express (Apex). This application
was developed as part of an existing tool suite called
Production Optics Reporting and Tracking (PORT). The
PORT-based target request tool had three major
limitations: underlying data architecture precluded
future automation in target order processing, data

was usually duplicated, and page loading times were
very slow.

Given the above limitations of the PORT-based tool,
and with an estimated 500 targets needed to be
produced each year, it became clear that users
urgently needed a new tool. The decision was made to
develop a completely new application versus
modifying the existing one.

2. APPROACH

The pressing needs from the Target Fabrication
organization resulted in a schedule that provided only
four months of development time to the NIF Shot Data
Systems (SDS) software team.

2.1 Approach

This limited development time was a key factor when
selecting the technologies for this project. We decided
to work with modern Web technologies that were
familiar to the team and that would allow for reuse of
software from other SDS tools. The main technologies
used were: Node.js, Express, JavaScript, KendoUI, and
Docker.

2.2 Architecture

The Target Request Tool (TRT) architecture is
composed of three main pieces.

Back-end

The back-end was built using Node.js and Express. We
used the Node.js-required file “package.json” for
listing application dependencies and scripts for start,
build, and clean.

The basic routing was done by creating an instance of
Express (var app = express()) and using the following

We envision a future where the people who imagine and build technology mirror the people and societies for whom they build it.

ANITA
B

structure: app.http-request-method(path, handler).
Individual pages were given their own path, i.e.: ‘/TRT/
view-all-orders’ for displaying all TR orders.

The Web server behavior and URL configurations were
done with the help of a few Node.js and Express
middleware modules: ‘body-parser’ for handling
JSON, Raw, Text and URL encoded form data, and
‘express.static’ for serving static files such as images
and third-party libraries.

The templating language we used for the view engine
was Embedded JavaScript (EJS). It is very easy to use,
complies with the Express view system, and allows us
to have nested views. At runtime, the template engine
replaces variables in a template file with actual values
and transforms the template into an HTML file sent to
the client [4].

The handling of data was done with routes/web ser-
vices by creating a router object (var router = ex-
press.Router()) and adding middleware and HTTP
method routes in the form of: router.get(path,
[callback, ...] callback) for pulling data, and
router.post(path, [callback, ...] callback) for inserting
data. If the response is successful, the resulting data
are sent to the front-end as a JSON object. Otherwise,
errors are handled and logged.

Database

Data managed by TRT are stored in an Oracle
database. The schema used for the PORT-based
application had to be refactored to avoid data
duplication and take advantage of the current target
fabrication process. Communication of the back-end
with the database was done with “node-oracledb”
and “orawrap.” The former creates the connection to
the database and the latter creates a listening pool on
the provided port. When querying data, orawrap
methods take an SQL command and parameter
value(s) (if any) to generate the results. This is done
using the execute() method embedded in the body of
the router methods (shown above).

Front-end

The front-end was developed with a model-view-
controller pattern using JavaScript, jQuery, Kendo Ul,
Bootstrap, HTML, and CSS. This pattern was selected

to provide a clear separation between view and logic,
to easily subdivide the Ul into multiple sections and
panels, and to provide flexibility to divide the work
among developers. This section separation was made
according to the type of data displayed. The result is
an interactive Ul with panels that appear from left to
right building the sections gradually after the user’s
selection.

The view is mainly composed by a mix of HTML items
(“div”, “table” and “list”). The model is created from a
set of mapping files for each of the Ul sections where
the HTML elements in the view are mapped to fields
in the database (HTML ID to database column). The
controller handles field updates, registers event
handlers, loads and injects templates, and renders
panels.

The most basic view (the first panel on the left is dis-
played) happens when a new TR is created. From
there, there is a minimum amount of menu options
the user must select to save the TR. This initial state is
the “Draft” state, which means that the TR is still in
progress and the user can close the TR and open it
later to continue working before submitting it. Also,
only the creator and a member of the experimental
team have the required permissions to edit the TR. All
permissions are handled by the Ul using the role
information obtained from the back-end and logic
applied to each panel.

3. RESULTS AND CONTRIBUTIONS

The resulting application is a website application that
runs in Chrome and Firefox web browsers.

The full Ul view is composed of the following sections:
Shot Pairing, Shot Planner Data, Target Menu, and
Target Status (see Fig. 1).

We have developed a software tool that supports a
more streamlined target fabrication process. The tool
provides faster loading time, great user interaction,
and data integration. The use of modern technologies
allowed the software team to meet the overall project
goals primarily within the development time
allocated.

We envision a future where the people who imagine and build technology mirror the people and societies for whom they build it.

ANITA
B

3.1 Current Status and Future Work

TRT is currently used by more than 50 users on a regu-
lar basis. Older TRs have been ported and are
accessible through TRT. It is hosted in the internal NIF
site together with other applications. It is actively
maintained and supported by the SDS team. Since its
first release, a few additions have been made, such as
automatic generation of TRs when a new experiment
is created and automatic logging of user actions that
affect the state of the TR.

Some work will be needed to modify the current back-
end code that uses orawrap. At the time of writing, the
orawrap library is no longer being maintained. It has
been added to the core Oracle database driver (node-
oracledb).

4. ACKNOWLEDGEMENT

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344. LLNL-CONF-747403

5. REFERENCES

[1] NIF Target Fabrication,
https://lasers.linl.gov/about/how-nif-works/seven-
wonders/target-fabrication

[2] Node.js Wiki, https://en.wikipedia.org/wiki/Node.js
[3] Express Wiki,
https://en.wikipedia.org/wiki/Express.js

[4] Express template guide,
http://expressjs.com/en/guide/using-template-
engines.html

NIF

© Cancel h. J Find TR by Number [od)

Fue)

Shot Date (FLIP Froposeq) 11022017

Cone Contng 1.01iE

BackiGher

ea Thickness

Heat Suisch

Intended Special Materiala Hone

Add Commerts

Shot Planner

Torget Recuest

IL Target St IL

Varlation Dugree Cusion

Torget Factory &

Shot Change Requests (SCRs)

Figure 1: An approved TR is shown. (a) Top menu with navigation links, user information and log-out button, TR search field,
and action buttons. The main sections are: (b)Shot Pairing, (c)Shot Planner Data, (d)Target Menu, and (e)Target Status.

