
LLNL-CONF-750770

A Semantics-Driven Approach to
Improving DataRaceBench#s OpenMP
Standard Coverage

C. Liao, P. Lin, M. Schordan, I. Karlin

May 3, 2018

The 14th International Workshop on OpenMP 2018
Barcelona, Spain
September 27, 2018 through September 28, 2018



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



A Semantics-Driven Approach to Improving
DataRaceBench’s OpenMP Standard Coverage

Chunhua Liao, Pei-Hung Lin, Markus Schordan, and Ian Karlin

Center for Applied Scientific Computing, Lawrence Livermore National Laboratory
Livermore, CA 94550, USA

{liao6,lin32,schordan1,karlin1}@llnl.gov

Abstract. DataRaceBench is a benchmark suite designed to systemati-
cally and quantitatively evaluate the effectiveness of data race detection
tools. Its initial release in 2017 contained 72 C99 microbenchmarks with
and without data races and was successfully used to evaluate several
popular data race detection tools.

In this paper, we describe a novel semantics-driven approach to improv-
ing DataRaceBench’s OpenMP standard coverage. Based on a traditional
definition of data races, we define several semantic categories for paral-
lelism, data-sharing attributes, and synchronization. This allows us to
assign semantic labels to constructs, clauses and data-sharing rules in
the OpenMP 4.5 specification. Based on these labels we then analyze
the coverage of the initial release of DataRaceBench and add 44 new C
and C++ microbenchmarks to improve the OpenMP standard coverage.
Finally, we re-evaluate two popular data race detection tools with the
new microbenchmarks, and show that the new version of DataRaceBench
gives new insights about the selected tools.

1 Introduction

Benchmarks are widely used in many research communities to measure and assess
research and development results in a common, reproducible and systematic
way. Good benchmarks help a community clarify problems to be solved, build
common evaluation metrics, guide future development, and foster collaborations.
For example, the SPEC (Standard Performance Evaluation Corporation) [1] and
LINPACK [8] play important roles in the high performance computing (HPC)
community for performance improvements.

In the HPC community, data race bugs are notoriously damaging while ex-
tremely difficult to detect. We have developed a dedicated OpenMP benchmark
suite, DataRaceBench [9], to help systematically and quantitatively evaluate
data race detection tools for their strengths and limitations. The initial release
in 2017, version 1.0.1 of DataRaceBench, included a set of OpenMP microbench-
marks with and without data races. It contained 72 C99 microbenchmarks and
was used to generate detailed accuracy reports for four popular data race detec-
tion tools[3,5,6,2].
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In this paper, we present a novel semantics-driven approach to analyzing
and improving the OpenMP standard coverage of DataRaceBench by examining
semantics of a data race. This process involves categorizing semantic categories
related to data races, identifying and labeling OpenMP constructs, clauses and
data-sharing attribute rules related to these semantic categories, analyzing cov-
erage of existing microbenchmarks with respect to the semantic labels, and fi-
nally adding new microbenchmarks to improve coverage. Using this approach,
we have added 44 new C and C++ microbenchmarks to DataRaceBench v1.2.0.
We used the new version of DataRaceBench to re-evaluate two popular data race
detection tools and discovered new insights.

The remainder of this paper is organized as follows. Section 2 gives an
overview of the original DataRaceBench. Section 3 describes semantic analysis
of data races and how we generate semantic labels for the OpenMP 4.5 specifica-
tion. Coverage analysis and improvements are described in Section 4. Section 5
shows evaluation results. Section 6 presents the conclusion and future work.

2 Original DataRaceBench

DataRaceBench is a dedicated OpenMP benchmark suite to evaluate data race
detection tools. The goal of this benchmark suite is two-fold: (1) to capture the
requirements related to data race detection in OpenMP programs, and (2) to
assess the status of current data race detection tools.

As shown in Figure 1, the initial release (v.1.0.1) of DataRaceBench con-
tains 72 microbenchmarks written in C99. There are 40 microbenchmarks with
known data races. They are called race-yes programs. The other 32 microbench-
marks are called race-no programs which are data race free. To enable scalable
experiments, some race-yes programs use C99 variable-length arrays to allow
user-specified input sizes as command line options.

Two scripts are also provided to run the benchmark suite and generate re-
ports.

Several design guidelines are followed when creating microbenchmarks for
DataRaceBench. The guidelines include:

– Each microbenchmark should be as small as possible to represent a pattern
with and without data race. For example, there are programs demonstrating
the use of one or more OpenMP constructs or a common parallel computing
pattern (for example, reduction, stencil, indirect array accesses, etc.).

– Each microbenchmark program has a main function to support dynamic
data race detection.

– We pair up race-yes programs with race-no programs, when necessary.
– If possible, a race-yes program should only contain a single pair of source

locations that cause data races. For static tools, this is used to check if
they can catch the right number of location pairs causing data races. For
dynamic tools, we can check if the tool consolidates multiple runtime data
races caused by the same pair of source code locations, into one data race.
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DataRaceBench
v 1.0.1

72 Microbenchmarks 2 Scripts

40 Race-Yes 
Programs

32 Race-No 
Programs

24 Fixed-length 16 Variable-length

Fig. 1: Overview of initially released DataRaceBench Version 1.0.1

Figure 2 and Figure 3 show a pair of race-yes and race-no programs included
in DataRaceBench. The first program has a pair of source code locations (two
references to variable x at line 5) which will trigger data races. The reason is
that there is loop-carried output dependence caused by the writes to the shared
variable x within a parallel region. The second program fixes the data race bug
by introducing a data-sharing clause, lastprivate, to make the accesses to x
private within the region and copy its local value within the last iteration to its
corresponding original variable after the end of the region.

// . . .
int i , x ;
#pragma omp paral le l for
for ( i =0; i <100; i++)
{ x=i ; }
p r i n t f ( ”x=%d” , x ) ;

Fig. 2: Race-yes example

// . . .
int i , x ;
#pragma omp paral le l for lastprivate ( x )
for ( i =0; i <100; i++)
{ x=i ; }
p r i n t f ( ”x=%d” , x ) ;

Fig. 3: Race-no example

Using a data race detection tool to analyze a microbenchmark of
DataRaceBench will generate several possible results. If the analysis tool detects
an existing data race it is called a true-positive (TP). If the tool reports a data
race for a given program, but de-facto the data race does not exist, it is called a
false-positive (FP) analysis result. Similarly, we can have true-negative (TN) and
false-negative(FN) results. With the numbers of positives and negatives reported
by the tool, several standard metrics, including precision (P), recall (R) and ac-
curacy (A), can be calculated. They are defined as follows: P = TP/(TP +FP ),
R = TP/(TP + FN), and A = (TP + TN)/(TP + FP + TN + FN). More
details of DataRaceBench can be found in a previous paper [9].
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3 Semantic Analysis of Data Races

In order to discover what should be included in DataRaceBench, we study the
semantics of a traditional definition [13] of data races, i.e., “A data race can occur
when two concurrent threads access a shared variable and when at least one ac-
cess is a write, and the threads use no explicit mechanism to prevent the accesses
from being simultaneous.” Based on this definition, the occurrence of a data race
depends on satisfying conditions related to at least five kinds of semantics: par-
allel (or concurrent), shared, variable, read/write access, and synchronization.
As a preliminary study, we only focus on parallel, shared and synchronization
semantics and examine the relevant C/C++ OpenMP constructs, clauses, and
data-sharing attribute rules defined in the latest OpenMP 4.5 specification.

3.1 Parallel Semantics

We define the parallel semantics as the information indicating if a code region
will be executed concurrently or not. Based on this definition, we categorize 26
directives (including their combined variants) specified in OpenMP 4.5 into this
semantic category. They include parallel, for, sections, single, master, simd,
for simd, task, taskloop, taskloop simd, parallel for, parallel sections, target

parallel, target teams and so on. For example, the sections construct contains
a set of structured blocks that are to be distributed among and executed by
the threads in a team. It implies concurrent execution. Similarly, the taskloop

construct specifies loop iterations will be executed in parallel using OpenMP
tasks. Its semantics literally has the word of parallel. Yet another example is
the master construct, which specifies a structured block that is executed by
the master thread of the team. It indicates the region will not be executed
concurrently, but by a single thread. Some clauses are also related to parallel
semantics. They include if , num threads, collapse and num teams.

To facilitate coverage analysis, we assign a semantic label (SID) for each rel-
evant directive or clause. The directives related to parallel semantics are labeled
as PD01 through PD26. The clauses are labeled as PC01 through PC04.

3.2 Shared Semantics

We define shared semantics as any information describing if a variable is visible
and accessible by multiple threads or not. OpenMP 4.5 uses an entire subsection
(Sec. 2.15) to describe its data environment, including data-sharing attribute
rules and clauses (Sec. 2.15.1). The high-level logic flow of the subsection is shown
in Figure 4. The decision about a variable’s data-sharing attribute starts with a
question (D1) about if a variable is referenced in some eligible OpenMP regions
(dynamic instances of OpenMP code blocks) including target, teams,parallel,
simd, task generating (task, taskloop) and worksharing (for, sections, single,
and workshare). Only a variable referenced in some regions is interesting and



Semantics-Driven Coverage Analysis of DataRaceBench 5

checked against the second question (D2): Is the variable referenced in a con-
struct (the lexical extent of an executable directive1)? If the answer is no, a set
of not-in-construct rules apply (defined in Sec. 2.15.1.2 in OpenMP 4.5). If yes,
three types of rules apply (defined in Sec. 2.15.1.1 in OpenMP 4.5): predeter-
mined, implicitly determined, or explicitly determined.

D1. Referenced in 
eligible regions? D3. Match Predetermined rules?

Yes

No

Begin

D2.Referenced 
in a construct?

No

Yes Yes

D5. Listed in data-sharing clause?

Yes

D4. Overridden by clauses?

Apply Implicitly Determined rulesApply Not-In-Construct rules

Yes

Follow Clauses

No

Apply Predetermined rules

No

No

stop

Fig. 4: Flowchart of the data-sharing attribute rules

Rules for Not Referenced in a Construct. OpenMP 4.5 uses six sentences
to describe when a variable is not referenced in a construct. We label them as
NIC1 through NIC6 based on the order the sentences appear in the specification.
Since the order of the rules in the specification is rather ad-hoc, we reorganize
them as follows:

– Declared inside the called routine
• NIC1: if the variable uses static storage, it is shared
• NIC6: otherwise, it is private

– File-scope or namespace-scope variable
• NIC2.1: threadprivate if the variable is in a threadprivate directive
• NIC2.2: shared otherwise

– Function arguments in C++
• NIC5.1: same as actual arguments if passed by reference
• NIC5.2: private if passed by values (not explicitly listed in OpenMP)

– Dynamic storage:
• NIC3 - objects with dynamic storage duration are shared.

– Static data members
• NIC4.1: threadprivate if within a threadprivate directive

1In OpenMP, an executable directive is a directive that is not declarative. It may
be placed in an executable context.
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• NIC4.2: shared otherwise

We split NIC2 into two sub rules (NIC2.1 and NIC2.2) since the original sen-
tence checks a condition and leads to two different data-sharing attributes. For
coverage analysis, it is better to have separated rules for different data-sharing
attributes. Similarly, NIC4 is split into NIC4.1 and NIC4.2. NIC5.1 only states
what happens when function arguments use pass-by-reference. We think NIC6
does not really cover function arguments passed by values, since a function ar-
gument is different from a variable declared inside a function body. We added
NIC5.2 to indicate a function argument passed by value should be private to be
consistent with other rules.

Rules for Predetermined Attributes. The rules for predetermined at-
tributes (prefix PDT) are summarized below. As with the NIC rules we perform
similar rule re-organization and splitting. For example, the original PDT5 rule
is related to a loop iteration variable associated with for-loops of four types of
constructs. We split it into four rules: one for each construct.

– Declared in a scope inside the construct

• PDT2: private if the variable has an automatic storage duration

• PDT8: shared if the variable has an static storage duration

– Declared in a scope outside of the construct

• PDT1: threadprivate if within a threadprivate directive

– Dynamic storage: PDT3 - shared if the variable has a dynamic storage du-
ration

– Static data member: PDT4 - shared if the variable is a static data member

– If loop iteration variables are in question:

• PDT5.1: private if in the associated for-loops of a for construct

• PDT5.2: private if in the associated for-loops of a parallel for construct

• PDT5.3: private if in the associated for-loops of a taskloop construct

• PDT5.4: private if in the associated for-loops of a distribute construct

• PDT6: linear if the loop is the only loop associated with the SIMD
construct

• PDT7: lastprivate if there are multiple loops associated with the SIMD
construct

– Array section: PDT9 - firstprivate if the variable is an array section mapped
within a target construct, and derived from a variable of a pointer type.

Note that unlike many NIC rules stating two choices for a condition (e.g. NIC1
and NIC6, NIC2.1 and NIC2.2), most PDT rules (e.g. PDT1, PDT5.1 through
5.4, PDT6, etc.) only state what will happen when certain conditions are met.
When these conditions are not met, the decision will be deferred to a later stage
using either implicitly determined rules or explicit data-sharing clauses.
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Implicitly Determined Rules. We label the seven sentences for implicitly
determined rules with IDs and re-organized them as follows:

– Default clause: IDT1 - for variables in a parallel, teams, task generating
constructs, follow the default clause if it is present

– In a Parallel construct: IDT2 - the variables are shared if no default clause
is present.

– In a Target construct:
• IDT4.1: variables that are not mapped are firstprivate.
• IDT4.2: variables that are mapped, follow data-mapping attribute rules

and clauses.
– Task generating construct:

• IDT5: In an orphaned task generating construct, formal arguments
passed by reference are firstprivate

• IDT6: A variable is shared when it is in a task generating construct
without a default clause, its data sharing attribute is not determined
by the above rules, and the same variable in the enclosing context is
determined to be shared by all implicit tasks bound to the current team.

• IDT7: In a task generating construct, a variable without applicable rules
above is firstprivate.

– Others: IDT3 - In constructs other than task generating or target constructs
(e.g. teams, simd and worksharing), these variables reference the variables
with the same names that exist in the enclosing context, if no default clause
is present.

Explicit Data-Sharing Clauses. Finally, there are seven clauses indicat-
ing data-sharing attributes, including default, shared, private, firstprivate,
lastprivate, reduction and linear. We categorize them into a DSC (data-sharing
clause) set (DSC01 through DSC07).

3.3 Synchronization Semantics

We define synchronization semantics as any information deciding if there is
any synchronization mechanism to prevent the shared accesses to a variable
from being simultaneous or not. We categorize the following OpenMP directives
and clauses as relevant to synchronization, including nowait, critical, barrier,
taskwait, taskgroup, atomic, flush, ordered (both clause and directive) and
depend. They are labeled as N01 through N10. N00 is reserved to indicate that
no explicit synchronization is specified.

4 Coverage Analysis and Improvements

For each semantic label, if there is a microbenchmark using the correspond-
ing construct, clause or rule, we claim that the label is covered in our cover-
age analysis. For example, a microbenchmark shown in Figure 2 covers PD12
(parallel for), PDT5.1 (predetermined to be private for an associated loop iter-
ation variable) and N00 (no explicit synchronization is specified).
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4.1 Analysis Methods

Some coverage information can be obtained by checking if some OpenMP key-
words (such as collapse, depend, and taskgroup) are used in our benchmark
suite. This gives us an overview of which semantic labels are covered and which
are missing.

To recognize complex code patterns beyond keywords, we built a simple
source analysis tool, namely CoverageAnalyzer, using the ROSE source-to-source
compiler framework [7,10]. CoverageAnalyzer parses source files into Abstract
Syntax Trees and finds code patterns satisfying conditions defined in data-
sharing attribute rules. For example, to check if PDT8 is covered, Coverage-
Analyzer tries to find all OpenMP regions first, then searches each region for
locally declared variables. If the variable is not declared static, we find a match
to the conditions corresponding to PDT8 and conclude that PDT8 is covered.

Sometimes we got lucky and did not have to implement condition search
for all rules in CoverageAnalyzer. For example, all NIC rules require a code
pattern in which a variable is referenced within an OpenMP region, but not
within an OpenMP construct. This can only happen through a function call.
CoverageAnalyzer finds that none of the existing programs in v1.0.1 has an
OpenMP region in which a function call to user-defined functions is made. So
we can safely conclude that none of NIC rules are covered.

4.2 Analysis Results

The coverage of semantic labels in each semantic category is summarized in
Table 1. In the parallel category, missed constructs include master, taskloop,
teams and their applicable combined directives. Within the shared semantic
category, NIC rules have zero coverage while two data-sharing clauses (default

and linear) in DSC are not covered. For PDT and IDT, uncovered rules include
those involving static variables, threadprivate, collapse, taskloop, distribute,
multiple loops associated with SIMD, orphaned task constructs using formal
arguments passed by reference and so on. For synchronization semantics, only
two out of ten relevant clauses are covered (nowait and depend).

Parallel Shared Sync.
NIC PDT IDT DSC

Semantic Label Count 30 9 12 8 7 10
Covered Labels PD1-4,6,8,11

12,14,15,PC02
2,3,5.1

5.2,6
2,3,4.1,6 2-6 1,10

Covered Label Count 11 0 5 4 5 2
Coverage Ratio 36.67% 0.0% 41.67% 50.0% 71.43% 20.0%

Table 1: Coverage Analysis Result for v1.0.1 of DataRaceBench
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4.3 Improving Coverage

Based on the coverage analysis results, we added 44 new microbenchmarks into
DataRaceBench Version 1.2.0 2 to cover the missed semantic labels. For sim-
plicity, we treat some combined constructs (e.g. target simd) as covered if their
individual constructs are covered by existing microbenchmarks. For example,
Figure 5 shows a new microbenchmark program to cover NIC4.1 and NIC4.2.
In the case of not referenced within a construct, a static data member should
be shared, unless it is within a threadprivate directive. Figure 6 covers both
ordered clause and directive. ordered(2), an OpenMP 4.5 addition, also asso-
ciates two loops and make their loop iteration variables private. target teams

and taskgroup are covered in Figure 7 and Figure 8 respectively.

class A {
public :

stat ic int c t r ;
stat ic int pctr ;

#pragma omp threadprivate ( pct r )
} ;
int A : : c t r =0;
int A : : pct r =0;
A a ;
void f oo ( )
{

a . c t r++;
a . pct r++;

}
int main ( )
{
#pragma omp paral le l

f oo ( ) ;
// . . .
}

Fig. 5: race-yes using static data mem-
bers

#include <s t d i o . h>
int a [ 1 0 0 ] [ 1 0 0 ] ;
int main ( )
{

int i , j ;
#pragma omp paral le l for ordered (2 )

for ( i = 0 ; i < 100 ; i++)
for ( j = 0 ; j < 100 ; j++)
{

a [ i ] [ j ] = a [ i ] [ j ] + 1 ;
#pragma omp ordered depend( sink : i −1, j ) \

depend ( sink : i , j−1)
p r i n t f ( ” t e s t i=%d j=%d\n” , i , j ) ;

#pragma omp ordered depend( source )
}

return 0 ;
}

Fig. 6: race-no using ordered(2)

As a result, DataRaceBench Version 1.2.0 covers all semantic labels from
each semantic group. This means that the new coverage ratios are all equal to
100%, as shown in Table 2.

Parallel Shared Sync.
NIC PDT IDT DSC

Semantic Label Count 30 9 12 8 7 10
Covered Labels all all all all all all
Covered Label Count 30 9 12 8 7 10
Coverage Ratio 100% 100% 100% 100% 100% 100%
Table 2: Coverage Analysis Result for v1.2.0 of DataRaceBench

2Available at https://github.com/LLNL/dataracebench/releases

https://github.com/LLNL/dataracebench/releases
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// . . .
double a [ l en ] ;

/∗ I n i t i a l i z e wi th some va l u e s ∗/
for ( i =0; i<l en ; i++)

a [ i ]= ( ( double ) i ) / 2 . 0 ;

#pragma omp target map( tofrom : a [ 0 : l en ] )
#pragma omp teams num teams(2 )
{

a [ 5 0 ]∗= 2 . 0 ;
}

Fig. 7: race-yes using target+teams

int r e s u l t = 0 ;
#pragma omp paral le l
#pragma omp single
{

#pragma omp taskgroup
#pragma omp task

{
s l e e p ( 3 ) ; r e s u l t = 1 ;

}
#pragma omp task

r e s u l t = 2 ;
}
a s s e r t ( r e s u l t ==2);

Fig. 8: race-no using
taskgroup

5 Evaluation

In order to assess if the new microbenchmarks in DataRaceBench v1.2.0 are
beneficial, we use them to evaluate two popular data race detection tools, Archer
and Intel Inspector. Archer [6] is an OpenMP data race detector that exploits
ThreadSanitizer [5] to achieve scalable happens-before tracking. It uses static
analysis to reduce false positives generated by the dynamic analysis performed
by ThreadSanitizer. Intel Inspector [3] is a dynamic analysis tool that detects
threading and memory errors in C, C++ and Fortran codes. It supersedes Intel’s
Thread Checker tool [12,11], with added memory error checking. The versions of
the selected tools used are listed in Table 3, with the compilers used with these
tools (either to build the tools, compile the microbenchmarks, or both).

Tool Version Compiler
Archer towards tr4 branch Clang/LLVM 4.0.1
Intel Inspector 2018 (build 522981) Intel Compiler 18.0.1
Table 3: Data race detection tools: versions and compilers

Intel Inspector provides different levels of analysis with varying config-
urations. We configure the maximum level analysis in our evaluation using
the command line: inspxe-cl -collect ti3 -knob scope=extreme -knob

stack-depth=16 -knob use-maximum-resources=true.
Our testing platform is the Quartz cluster hosted at the Livermore Comput-

ing Center [4]. Each computation node of the cluster has two Intel 18-core Xeon
E5-2695 v4 processors with hyper threading support. We ran each tool 5 times
for each microbenchmark using 72 threads. For each run, we use ten minutes as
a timeout limit to terminate potential runtime hanging.

5.1 Experiment Results

Table 4 shows our experimental results. The first column lists the file names
(each with a prefix such as DRB072 as a short ID) of all the newly added
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microbenchmark programs. The second column indicates if the program is known
to contain a data race or not (’Y’ or ’N’). During multiple runs for a given
program, a tool may report different numbers of data races detected. So ranges
of numbers (min race - max race) are given in Column 3 and 5 of the table. For
example, an entry of 0-0 means that no data race was found in any run of the
respective tool. An entry of 1-3 means in all five runs at least one data race was
detected. If a range such as 0-4 is reported, this means a tool generated mixed
results for a given program.

Column 4 and 6 (labeled as “type”) give a verdict for a tool’s result for a
given program. Based on the range numbers, the result is given as true negative
(TN), false positive (FP) or mixed TN and FP for a program without known
data races. Similarly, a tool’s result an be true positive (TP), false negative (FN)
or mixed TP and FN for a race-yes program.

In some cases, a tool may fail due to errors during compilation or runtime
steps. We mark the result as compile-time segmentation fault (CSF), unsup-
ported feature by a compiler (CUN), runtime segmentation fault (RSF) or run-
time timeout (RTO). If any error happens, we try to investigate log files to
identify any valid true or false positives. Negative reports are ignored since a
negative test report with errors is inconclusive. For example, a tool may trigger
a runtime timeout and generate partial logs with identified data races, which
should be counted. Table 5 summarizes the numbers of positive, negative and
unknown (marked as not available or N/A) results based on the information in
Table 4.

The results show that new benchmark programs generate new insights for
the two tools. Archer did not report any false positives or false negatives in the
experiments. However, 13 programs triggered the tool to have some compile-
time or runtime errors. Five of these error happened because the version of
Clang does not support the OpenMP 4.5 features used in DRB094, DRB095,
DRB096, DRB100 and DRB112 (marked as CUN). Another five errors are
compiler segmentation faults raised by a phase called InstrumentParallel, for
DRB085, DRB086, DRB087, DRB091 and DRB102 (marked as CSF). Runtime
segmentation faults happened for DRB097 and DRB116 (marked as RSF). A
runtime timeout (RTO) happened with DRB106. The tool generated partial re-
sults with true positives for DRB106. We are actively working with the Archer
developers to address these issues in their latest development branch.

In comparison, Intel Inspector reported mixed results (TN FP) for DRB096,
a program using taskloop combined with collapse(2) to cover PDT 5.3. In only
one out of the five runs, the tool reported a write-to-write race for loop itera-
tion variables. The tool also generated two false positives (FP) for DRB105 and
DRB107. DRB105 is a classic task implementation of Fibonacci number genera-
tion using taskwait. The tool reported a write-to-write data race for the line of
i=fib(n−1); For DRB107 (shown in Figure 8 using taskgroup), the tool reported
two tasks writing to result causing a data race. DRB094 (shown in Fig. 6) caused
a runtime timeout error (hanging) for Intel Inspector. In this program, the 2nd
loop is associated with ordered(2) so its loop interaction variable should be pri-
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Microbenchmark Program R Data Race Detection Tools
Archer Intel Inspector

min
race

-
max
race

type
min
race

-
max
race

type

DRB073-doall2-orig-yes.c Y 84 - 92 TP 2 - 2 TP
DRB074-flush-orig-yes.c Y 1 - 3 TP 1 - 1 TP
DRB075-getthreadnum-orig-yes.c Y 71 - 71 TP 1 - 1 TP
DRB076-flush-orig-no.c N 0 - 0 TN 0 - 0 TN
DRB077-single-orig-no.c N 0 - 0 TN 0 - 0 TN
DRB078-taskdep2-orig-no.c N 0 - 0 TN 0 - 0 TN
DRB079-taskdep3-orig-no.c N 0 - 0 TN 0 - 0 TN
DRB080-func-arg-orig-yes.c Y 71 - 71 TP 1 - 1 TP
DRB081-func-arg-orig-no.c N 0 - 0 TN 0 - 0 TN
DRB082-declared-in-func-orig-yes.c Y 71 - 71 TP 1 - 1 TP
DRB083-declared-in-func-orig-no.c N 0 - 0 TN 0 - 0 TN
DRB084-threadprivatemissing-orig-yes.c Y 71 - 71 TP 1 - 1 TP
DRB085-threadprivate-orig-no.c N - CSF 0 - 0 TN
DRB086-static-data-member-orig-yes.cpp Y - CSF 1 - 1 TP
DRB087-static-data-member2-orig-yes.cpp Y - CSF 1 - 1 TP
DRB088-dynamic-storage-orig-yes.c Y 71 - 71 TP 1 - 1 TP
DRB089-dynamic-storage2-orig-yes.c Y 71 - 71 TP 1 - 1 TP
DRB090-static-local-orig-yes.c Y 71 - 71 TP 1 - 1 TP
DRB091-threadprivate2-orig-no.c N - CSF 0 - 0 TN
DRB092-threadprivatemissing2-orig-yes.c Y 71 - 71 TP 1 - 1 TP
DRB093-doall2-collapse-orig-no.c N 0 - 0 TN 0 - 0 TN
DRB094-doall2-ordered-orig-no.c N - CUN 0 - 0 RTO
DRB095-doall2-taskloop-orig-yes.c Y - CUN 2 - 2 TP
DRB096-doall2-taskloop-collapse-orig-no.c N - CUN 0 - 4 FP TN
DRB097-target-teams-distribute-orig-no.c N 0 - 0 RSF 0 - 0 TN
DRB098-simd2-orig-no.c N 0 - 0 TN 0 - 0 TN
DRB099-targetparallelfor2-orig-no.c N 0 - 0 TN 0 - 0 TN
DRB100-task-reference-orig-no.cpp N - CUN 0 - 0 TN
DRB101-task-value-orig-no.cpp N 0 - 0 TN 0 - 0 TN
DRB102-copyprivate-orig-no.c N - CSF 0 - 0 TN
DRB103-master-orig-no.c N 0 - 0 TN 0 - 0 TN
DRB104-nowait-barrier-orig-no.c N 0 - 0 TN 0 - 0 TN
DRB105-taskwait-orig-no.c N 0 - 0 TN 3 - 4 FP
DRB106-taskwaitmissing-orig-yes.c Y 35 - 48 RTO TP 4 - 6 TP
DRB107-taskgroup-orig-no.c N 0 - 0 TN 1 - 1 FP
DRB108-atomic-orig-no.c N 0 - 0 TN 0 - 0 TN
DRB109-orderedmissing-orig-yes.c Y 71 - 71 TP 1 - 1 TP
DRB110-ordered-orig-no.c N 0 - 0 TN 0 - 0 TN
DRB111-linearmissing-orig-yes.c Y 73 - 85 TP 1 - 2 TP
DRB112-linear-orig-no.c N - CUN 0 - 0 TN
DRB113-default-orig-no.c N 0 - 0 TN 0 - 0 TN
DRB114-if-orig-yes.c Y 42 - 48 TP 1 - 1 TP
DRB115-forsimd-orig-yes.c Y 44 - 47 TP 1 - 1 TP
DRB116-target-teams-orig-yes.c Y 0 - 0 RSF 1 - 1 TP

Table 4: Evaluation report (column R: whether a program contains a data race)

Tool Race:Yes Race:No
TP TP/FN FN N/A TN TN/FP FP N/A

Archer 15 0 0 4 17 0 0 8
Intel Inspector 19 0 0 0 21 1 2 1

Table 5: The numbers of positive, negative and unknown results of the tools
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vate according to PDT5.1. Making j explicitly private will fix the hanging. We
have reported these issues to Intel.

6 Conclusion

In this paper, we presented a semantics-driven approach to analyzing and im-
proving DataRaceBench’s coverage of the OpenMP standard. We focused on
three semantic categories (parallel, shared and synchronization) and labeled a
set of relevant OpenMP language constructs, clauses and rules for coverage anal-
ysis. The application of our approach resulted in adding 44 new microbench-
marks which significantly increased DataRaceBench’s coverage. Finally, the new
microbenchmarks were used to re-evaluate two data race detection tools: Intel
Inspector and Archer. While these two tools performed almost equally well in
our original evaluation [9], the new microbenchmarks reveal that Intel Inspector
outperforms Archer in terms of supporting more microbenchmarks without any
errors. However, there is still room for improvements for Intel Inspector when
analyzing programs using taskloop, taskwait or taskgroup.

In addition, as an unexpected side effect of extracting semantics from the
OpenMP 4.5 standard, we found a misuse of the term “construct”. declare simd

is called a construct while it is a non-executable declarative directive and an
OpenMP construct must be an executable directive. We have reported this issue
to the OpenMP language committee. Another discovery is that the data-sharing
attribute rules in OpenMP are surprisingly difficult to understand. We had to
reorganize these rules, split some of them, and made previously hidden rules ex-
plicit to extract semantic labels. We suggest to the OpenMP language committee
to improve the clarity of the rules and define an official algorithm.

In the future, we plan to explore semantics related to variables and read-
/write accesses. We also want to increase DataRaceBench’s coverage of OpenMP
runtime library routines and environment variables. In the domain of scientific
computing, only a few computational patterns are covered in DataRaceBench,
such as stencil and matrix multiplication. Adding more representative numerical
computation patterns with and without data races may also be beneficial.
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