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Abstract—Signed graphs [11], which allow for both favorable
and adverse relationships, are becoming a common model choice
for various data analysis applications, e.g., correlation clustering
[1] and spectral clustering [9]. Unlike for unsigned graphs, there
is no collective agreement of a matrix representation that relates
to the unsigned graph Laplacian. There currently exists three
proposed matrix representations: [9] proposes a zero row-sum
preserving Laplacian (signed Laplacian), [8] proposes a physics
preserving Laplacian (Physics Laplacian), and [4] proposes an
expansion of the signed Laplacian into an unsigned Laplacian
with twice the number of degrees-of-freedom (Gremban’s expan-
sion.) We investigate these three proposed matrix representations
with respect to the quality of traditional (unsigned graph)
spectral clustering concepts. We provide three numerical tests
that use a stochastic block model with negative edge weights. We
observe that the best matrix representation for spectral clustering
depends on the underlying structure of a signed graph, which
may be unavailable. However, since the Gremban’s expansion
matrix provides higher quality clusters for more combinations of
inner and outer-connection probabilities for positive and negative
valued edges, we conclude that the Gremban’s expansion is the
most robust representation to use for spectral clustering.

Index Terms—signed graphs, Laplacian, spectral embedding,
spectral clustering, Gremban’s expansion

I. INTRODUCTION

Spectral clustering [12], a form of graph partitioning, groups or
clusters the vertices using spectral information of matrices associated
with the graph. An unsigned graph assumes that the connection
between vertices are positive (or favorable) and the spectrum of
the associated adjacency matrix and Laplacian are well known. A
classic spectral clustering approach for unsigned graphs is to use the
Feidler vector [3], the second smallest eigenvector associated with the
unsigned graph Laplacian. The values of the Fiedler vector identify
two partitions for the graph vertices.

Intuitively, a positive edge in a graph indicates a similarity, and a
negative edge indicates dissimilarity. A simple example of a signed
graph are friend-enemy social networks [11], where positive edges
represent “friends” and negative edges represent “foes.” The negative
edge weights provide extremely valuable information, that if ignored
in a spectral clustering algorithm, may result in a poor clustering ( [5],
[9], [10]). Currently in the literature, there have been three proposed
signed graph matrix representations that relate to the unsigned graph
Laplacian, the signed Laplacian, the Physics Laplacian, and the
Gremban expansion matrix.

The signed Laplacian, introduced in [9], is a sign-variant of
the unsigned Laplacian. Each diagonal elements of the unsigned
Laplacian is the sum of the off-diagonal elements in each row.
The signed Laplacian, instead, sums the absolute value of each off-
diagonal element, retaining a positive-semidefinite matrix where the

eigenvalues remain non-negative. The Physics Laplacian, introduced
in [8], argues that the original definition of the graph Laplacian
(the unsigned Laplacian) is a more natural choice based on spectral
clustering techniques for a classical model of a mass-spring system
with some springs having negative stiffness. Based on the numerical
results with respect to spectral clustering, the eigenvectors associated
with the smallest, possibly negative, eigenvalues produce clusters of a
higher quality than the signed Laplacian. Often, for unsigned graphs
the normalized Laplacian is used for spectral clustering, however,
since the degree matrix associated with the Physics Laplacian maybe
singular, the normalized signed variants of each representation will
not be discussed. Lastly, the Gremban expansion matrix, introduced
in [6] and studied specifically for signed graphs in [4], expands the
signed Laplacian into an unsigned Laplacian with twice the number of
degrees-of-freedom. It is argued, that even though the representation
is double the size, all the traditional concepts of an unsigned graph
can easily be generalized to the signed case. The signed Laplacian is
the most commonly used signed graph representation, however, [8]
and [4] make compelling arguments for alternative representations.
Thus, depending on the application, a different representation may
be more beneficial. In this paper we empirically investigate each of
these matrix representations with respect to spectral clustering.

The remainder of the paper is organized as follows. Section II
briefly reviews basic spectral clustering concepts and the proposed
signed graph matrix representations. Section III presents the nu-
merical results. Lastly, Section IV, concludes that the Gremban’s
expansion results in the most robust representation for spectral
clustering on a block stochastic model with negative edge weights.

II. BACKGROUND

A. Short discussion of spectral clustering
An unsigned, undirected graph, G(V; E ;w), relates a set of n

vertices, V , by m connections or edges in the set E with strictly
positive weights, w > 0. An edge (i, j) ∈ E between two vertices i
and j is undirected, meaning (j, i) is also in E , such that wij = wji.
The unsigned Laplacian is represented as Lu = D − A, where the
adjacency matrix, A, and degree matrix, D, are defined as

Aij =

{
wij > 0 (i, j) ∈ E
0 otherwise

and Dii =
∑

j Aij .
On a graph, G, the graph clustering problem is defined by grouping

the vertex set V into non-overlapping subgroups. It is well known
that spectral clustering is a form graph partitioning. A common
optimization problem for graph partitioning is

minRatiocut(V1, ·,Vk),

where
Ratiocut(V1, · · · ,Vk) =

∑
i

cut(Vi, V̄i)
|Vi|

,



cut(Vl,Vh) =
∑

i∈Vl,j∈j∈Vh
wij , and Vi are subsets of V . The

goal of the minimization problem is to find a partition of the graph
such that the edges between different groups have a very low weight.
For k = 2 the minimization problem can be relaxed to

min
v

vtLuv subject to vt1 = 0, where vi ∈ {−1, 1} (1)

which can be further relaxed to an eigenvalue problem [12]. More
formally, spectral clustering uses spectral information to perform
dimensionality reduction, then the vertex set may be partitioned in
fewer dimensions. The typical strategy, for a well-connected unsigned
graph, involves computing k eigenvectors associated with the k
smallest non-negative eigenvalues of the Laplacian, i.e.,

LVk = VkΛk

where the eigenvectors are the columns of Vk and the associated k
smallest eigenvalues in the diagonal entries of Λk. Then a clustering
algorithm is applied to a spectral embedding of the nodes defined by
the rows of Vk, i.e., V t

kei ∀ i, where ei is the canonical basis
vector.

For the purposes of this paper we will use a clustering algorithm
developed in [2] that is based on a column-pivoted QR factorization.
The algorithm is quite simple, the QR factorization with column-
pivoting of Vk is found, such that

VkΠ = QR,

where Π is a the permutation matrix. The number of eigenvectors
used in the spectral embedding, k, is typically chosen by the eigen-
gap, i.e., the largest difference between two successive eigenvalues.
Then each vertex is assigned to a cluster based on the index of the
largest value in each row, i.e.,

cj = argmax
i

(Qji).

The actual algorithm used in for this paper is slightly modified, using
a polar factorization on the first k columns found from the column
pivoting so that there is no preferential treatment to various vertices
based on the order of computations of the QR factorization. For more
details, please see [2].

B. Signed Graph Matrix Representations
For a signed, undirected graph, G(V, E = E+ ∪ E+), the edge

weights are signed meaning wij 6= 0, where positive edges in the
positive edge set (E+), wij > 0, represent “friends” and negative
edges in the negative edge set (E−), wij < 0, represent “foes.” Define
the negative-valued adjacency matrix as

(A−)ij =

{
wij (i, j) ∈ E and wij < 0

0 otherwise

Similarly define the positive-valued adjacency matrix as

(A+)ij =

{
wij (i, j) ∈ E and wij > 0

0 otherwise

The signed adjacency matrix can then be represented as the sum
of the positive and negative-valued adjacency matrix, A = A+ +
A−. Define the diagonal degree matrices (Dp)ii =

∑
j Aij and

(Ds)ii =
∑

j |Aij |. We can then define the Physics Laplacian,
Signed Laplacian, and the Unsigned Laplacian as

Lp = Dp −A, Ls = Ds −A, and Lu = Ds −A+ +A−,

respectively. Lastly, define the Gremban’s expansion matrix as

G =

[
Ds −A+ A−
A− Ds −A+

]
.

The signed Laplacian is the most studied of the three represen-
tations and has many nice theoretical properties. It is well known
that if the signed graph is balanced, meaning the vertex set V can be

partitioned into two groups such that the edges connecting the two
groups are strictly negative edges, then the spectrum of the signed
Laplacian maps directly to the spectrum of the unsigned Laplacian
( [13], [9]). This can easily be seen if we let y be a bipartition
that partitions the vertices of a balanced signed graph into two
groups, then Lu = diag(y)Lsdiag(y), where diag(y) is a diagonal
matrix with the components of the vector y along the diagonal. The
eigenvector associated with the signed Laplacian are thus a signed
variant of the eigenvectors of the unsigned Laplacian. The signed
Laplacian also remains positive semi-definite as one can see by the
quadratic form

xtLsx =
∑

(i,j)∈E
wij>0

wij(xi − xj)
2 +

∑
(p,q)∈E
wpq<0

|wpq|(xp + xq)2,

ensuring that the spectrum of the signed Laplacian remains non-
negative. If the graph is unbalanced, then the signed Laplacian is
strictly positive-definite [9].

Using simple signed graph examples, [8] demonstrates that for
spectral clustering there is an advantage to using the Physics Lapla-
cian over the signed Laplacian. For example, when using spectral
information associated with the signed Laplacian for a “dumbbell”
graph - a graph with two fully connected cliques each with six
vertices, connected internally with positive edges and connected
together by two positive and two negative edges - the smallest
nontrivial eigenvector associated with the signed Laplacian is unable
to fully capture one of the cliques. From the definition of the Physics
Laplacian, Lp, it might be possible to have zero diagonal entries in
the degree matrix, breaking the traditional concept of the Laplacian
of having non-negative eigenvalues. One can see, using the quadratic
form of the Physics Laplacian,

xtLpx =
∑

(i,j)∈E
wij>0

wij(xi − xj)
2 +

∑
(p,q)∈E
wpq<0

wpq(xp − xq)2,

that the Physics Laplacian is no longer guaranteed to be positive semi-
definite. Based on the numerical results and the mass-spring model,
[8] argues that one should use the eigenvectors associated with the k
smallest, possibly negative, eigenvalues. For the “dumbbell” graph,
the Physics Laplacian, using the eigenvector associated with the most
negative eigenvalue, perfectly clusters the two cliques.

The Gremban’s expansion, first introduced in [6], was first applied
to signed graphs in [4] for solving linear systems involving the
signed Laplacian, i.e., Lsx = b. The expansion decomposes any
diagonally dominant matrix, into a diagonally dominant Z-matrix and
a nonnegative matrix. One could then solve Lsx = b by solving the
larger system

Gw =

[
Ds −A+ A−
A− Ds −A+

] [
x
−x

]
=

[
b
−b

]
= z,

where G is an unsigned graph Laplacian and is amendable to
traditional graph Laplacian linear system solvers. Although, not inten-
tionally studied for its spectral properties, the Gremban’s expansion
of the signed Laplacian has many useful properties that relate to the
unsigned Laplacian. The graph of the Gremban’s expansion matrix
can be seen as an unsigned graph with twice the number of vertices.
The vertices form two distinct groups: those connected internally by
edges that relate to the positive-valued edges of the original signed
graph and those connected to each other by edges that relate to the
original negative-valued edges, as seen in Figure 1.

A well known random walk theorem for unsigned graphs was
generalized to signed graphs via the Gremban’s expansion matrix.
For an unsigned graph the kth power of the associated adjacency
matrix defines the number of k-length walks connecting the vertices
i and j. The k powers of the associated binary adjacency matrix of
the Gremban’s expansion graph defines an even or odd number of
negative-valued edges in a walk of length k between node i and j



Community 2: E+Community 1: E+

E−

Fig. 1: The graph of Gremban’s expansion matrix is an
unsigned graph with twice the number of vertices. Each
community is connected internally by edges that are associated
with the positive edges of the original signed graph. The two
communities are connected to each other by edges that are
associated with the negative edges of the original signed graph.

[4]. This theorem is simply an extension of the classical phrase “an
enemy of my enemy is my friend” and relates to the minimization
problem in Equation (1) since

ejL
†
sei =

[
ej0
]
G†
[
ei

0

]
−
[
ej0
]
G†
[
0
ei

]
can be seen as a difference between a friendly score and an unfriendly
score. Another useful property of the Gremban’s expansion matrix, as
shown in [4], is that the spectrum of G is the union of the spectrum
of Ls and Lu, i.e.,

σ(G) = σ(Lu) ∪ σ(Ls).

If (λ,v) and (µ,u) are eigenpairs of Ls and Lu, respectively,
then (λ,

[
v,−v

]t
) and (µ,

[
u,u

]t
) are eigenpairs of G. The union

spectrum theorem is useful if the signed graph has mostly unsigned
structure, then the spectral embedding will use the eigenvector asso-
ciated with unsigned Laplacian. The eigenvectors of the Gremban’s
expansion has twice the number of elements than necessary for the
spectral embedding. If only the first n elements of each eigenvector
are used for the QR clustering algorithm, then from the spectral
union theorem proved in [4] we know that the first n elements of
the eigenvectors are the eigenvectors associated with the signed or
unsigned Laplacian. The eigengap for G should be twice the number
of clusters however, this is not guaranteed. Thus, we will instead use
the true eigengap associated with the Gremban’s expansion matrix.
The QR clustering algorithm will cluster the larger graph associated
with the Gremban’s expansion matrix that has 2n vertices. The result
that is used to assess the clustering will only use the clusters that are
associated with the first n vertices.

In the next section, we will investigate using the QR spectral
clustering algorithm discussed in Section II-A with each of the three
proposed representations eigenvectors. Using classical block stochas-
tic graphs we hope to gain an understanding of which representation
provides eigenvectors that are robust to the underlying sign structure
of the signed graph.

III. NUMERICAL RESULTS

We measure the accuracy of a proposed clustering by pairwise-
recall and pairwise-precision [7]. Both precision and recall consider
every pair of vertices. Precision measures the fraction of the predicted
pairs that match the ground truth while recall measures the fraction
of ground truth pairs that are correctly represented in the predictions,
i.e.,

precison =
#true-positives

#true-positives +#false-positives

and
recall =

#true-positives
#true-positives +#false-negatives

.

As discussed in Section II-A, we chose to use a QR clustering
method described in [2], using the largest eigengap of each represen-
tation to determine the dimension of the embedding. For the Physics
Laplacian and the signed Laplacian, the number of eigenvalues found

to determine the eigngap is the number of ground truth clusters plus
ten extra eigenvalues. For the Gremban’s expansion we found twice
the number of ground truth clusters plus ten extra eigenvalues. Let k
be the index of the eigengap, then for all signed graph representations,
the eigenvectors associated with the k smallest eigenvalues are used
in the QR clustering method. Since the Gremban’s expansion matrix
has twice the degrees of freedom, only the clusters associated with
the first n vertices are used to evaluate the performance.

A. Test 1:
The first numerical example is designed to investigate how the

distribution of positive and negative edges effect the clustering for
various proposed matrix representations. Using a stochastic block
model with k communities, each with n vertices, we let p be the
probability of an inner-block connection. If there exists a connection
then there is a probability pneg that the connection has a negative
weight. The outer-block connections are formed in a similar way, q
is the probability of an outer-block connection with probability qneg

that the connection has a negative weight. For the sake simplicity, the
graph weights are chosen as −1 or 1, respectively. Let k = 2 and n =
100. For each combination of (p, q, pneg, qneg) we performed ten
trials and displayed the average precision and recall. Since k = 2, the
eigenvector associated with the smallest nontrivial eigenvalue is used
to distinguish the clusters. This is a relativity simple problem that
depends on the probabilities of the positive and negative connections.
Typically, for an unsigned graph, if p� q then the communities are
easy to distinguish with the eigenvector associated with the smallest
nontrivial eigenvalue. We would expect, if p > q and qneq > pneg ,
any of the signed matrix representations to be able to distinguish
the clusters using the eigenvector associated their smallest nontrivial
eigenvalue. We would also expect that for any p and q if there are
a large enough number of negative-value connections between two
communities, i.e., qneg � pneg , the clustering algorithm should be
able to provide high quality clusters.

Figure 2 displays the difference in recall and precision using the
eigenvectors associated with the Gremban’s expansion matrix and
the Physics Laplacian. For various pairs of (p, q), the probability
pneg and qneg are varied. The figures in the left column display the
difference in recall, while the figures in the right column display
the difference in precision. The value in each block is the precision
(or recall) with respect to the clustering using the eigenvalues of
the Gremban’s expansion matrix. For each sub-figure, the x-axis and
y-axis vary the values of pneq and qneg , respectively.

The top row is when (p, q) = (0.1, 0.1), the inner and outer-
block connection probabilities are the same and relatively low. For
these particular values, if only positive edges exists in the graph,
then the classic spectral clustering techniques would be unable to
distinguish between the two communities. Rationally, if there exists
proportionally more negative edges in the outer-blocks than the inner-
blocks then we should be able to distinguish the two communities,
thus, only the values were qneg ≥ pneg are considered. Otherwise,
the ground-truth of the block-stochastic matrix is no longer valid.
In most combinations, the Gremban’s expansion resulted in a higher
recall. If qneg � pneg then the Gremban’s expansion resulted in
better precision. When qneg ≈ pneg both representations had poor
precision, with the Physics Laplacian having slightly better precision
values. However, one could argue that we should not be able to
distinguish the clusters when qneg ≈ pneg .

For the second row (p, q) = (0.1, 0.9), the inner-block connection
probability is low while the outer-block connection probability is
large. In this case, only values where qneg ≥ 0.5 are considered,
otherwise the ground truth is invalid. In this case the clustering that
used the Gremban’s expansion eigenvector resulted in near perfect
precision and recall, while the Physics Laplacian struggled to produce
high precision and high recall for all combinations.

For the third row (p, q) = (0.9, 0.1), the inner-block connection
probability is large while the outer-block connection probability is
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Fig. 2: Difference in recall (left column) and precision (right column)
for spectral clustering using the eigen-embedding of eigenvectors
associated with the Gremban’s expansion matrix and the Physics
Laplacian. The printed value in each block is the precision (or
recall) with respect to the clustering using the Gremban’s expansion
matrix. The color displays by how much the precision (or recall)
of the Gremban’s expansion clustering is larger than that of the
Physics Laplacian clustering, e.g., blue indicates that the Gremban’s
expansion clustering outperforms Physics Laplacian clustering, and
red otherwise.

small, thus only pneg ≤ 0.5 is considered. In this case, both
representations had near perfect recall when pneg was small. For high
pneg , the Gremban’s expansion clearly out performed the Physics
Laplacian. However, again for the case when pneg ≈ 0.5, one could
argue that the ground truth is no longer valid.

Lastly, for the last row (p, q) = (0.9, 0.9), the inner and outer-
block connection probability are both large, thus only qneg ≥ pneg is
considered. Similar to previous results, the Physics Laplacian resulted
in better recall and precision for when qneg and pneg is small.
Otherwise, the Gremban’s expansion produced higher quality clusters.

The same test is presented in Figure 3, but displaying the difference
between recall and precision when using eigenvectors associated with
the Gremban’s expansion matrix and the signed Laplacian. Similar
conclusions can be drawn. When p ≈ q and pneg and qneg are
both low, the Gremban’s expansion results is lower precision and
recall than if the signed Laplacian is used. When the inner and
outer-connection probability is equal, both representations have poor
precision when qneg ≈ pneg . Otherwise, the Gremban’s expansion
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Fig. 3: Difference in recall (left column) and precision (right column)
for spectral clustering using the eigen-embedding of eigenvectors
associated with the Gremban’s expansion matrix and the signed
Laplacian. The printed value in each block is the precision (or recall)
with respect to the clustering using the Gremban’s expansion matrix.

better captures the two clusters than the signed Laplacian and has
near perfect precision and recall for most combinations of p, q, pneg ,
and qneg . Thus, we can conclude for this small block stochastic test,
that the eignevalue associated with the Gremban’s expansion matrix
resulted in a robust method. However, it should be noted that there
are combinations of p, q, pneg , and qneg , where the signed or Physics
Laplacian resulted in higher quality clusters.

B. Test 2:
The following tests consider graphs from the IEEE HPEC Stream-

ing Graph Challenge Stochastic Block Partition data sets [7]. Each
graph using a stochastic block model with unsigned weights with a
known ground truth. They are static graphs and have non-overlapping
communities. Since these graphs were created for only positive edge
weights, the inner and outer-block probabilities are known to be
p > q. Since the inner-block connection probability is higher than
the outer-block connection probability, only values of pneg ≤ 0.5 are
considered, otherwise, the standard clustering concepts do not apply.
To create a signed graph, we will deliberately switch the sign of some
of the edges at random. For a particular value of pneg and qneg , if
there exists an edge, then the sign of the edge is switched based on
the respective negative edge probability. We again will present the
difference in precision and recall for spectral clustering using the



eigenvectors of the various matrix representation as the probabilities
pneg and qneg vary. For each combination of pneg and qneg , ten
random trials are performed and the average recall and precision
values are presented.

Figure 4 presents the results with respect to the 50 node graph.
The left column presents the difference with respect to recall and the
right column presents the difference with respect to precision. The top
row is the difference in recall (or precision) of the clustering using
the eigenvalues of the Gremban’s expansion matrix and the Physics
Laplacian. The value displayed in each block is the the recall (or
precision) of the clustering with respect to the Gremban’s expansion.
Again we see similar results as the first test. Both the Physics
Laplacian and the Gremban’s expansion do not have high precision
when both qneg and pneg are low. If pneg is low, the performance of
both matrix representations improves as qneg is increased. However,
as pneg increases, the Gremban’s expansion has a much higher recall
and precision than the Physics Laplacian. It should again be noted that
as pneg increases the validity of the ground truth becomes arguable.

The middle row is the difference in recall (or precision) of
the clustering using the eigenvalues of the signed Laplacian and
the Physics Laplacian. The value displayed in each block is the
recall (or precision) of the clustering with respect to the signed
Laplacian. For small pneg , meaning not many of the inner-block
connections are negative-valued, both representations have high recall
and precision, with the signed Laplacian performing better than the
Physics Laplacian. However, as pneg increase we again see the
performance of both representations degrade.

The last row is the difference in recall (or precision) of the cluster-
ing using the eigenvalues of the Gremban’s expansion matrix and the
signed Laplacian. The value displayed in each block is the recall (or
precision) of the clustering with respect to the Gremban’s expansion.
For low pneg and qneg the clustering using the signed Laplacian is
much better than using the Gremban’s expansion. However, as qneg

and pneg increases the Gremban’s expansion produces higher quality
clusters than the signed Laplacian.

Figure 5 displays the same test but for the 1000 vertex block
stochastic model. Similar results to the 50 vertex model can be con-
cluded. For low pneg , both the clustering using the signed Laplacian
and the Physics Laplacian had higher precision (or recall) than using
the Gremban’s expansion. As pneg increases the clustering using
the Gremban’s expansion {out performed the signed and Physics
Laplacian.}.

C. Test 3
Using the static block stochastic graphs with non-overlapping

ground-truth provided by the Graph Challenge [7], we investigate
how the spectral clustering performs using the eigenvectors of
each signed matrix representations as the graph size increases with
n = [50, 100, 500, 1000, 5000]. With predetermined values of pneg

and qneg , if there exists an edge, then based on the negative edge
probability, the sign of the edge is switched. We again will present the
difference in precision and recall for the various matrix representation
as the probabilities pneg and qneg vary. For each combination ten
trails were computed and the average value is displayed. From Test
1 and Test 2, if pneg and qneg were small the clustering using
the Gremban’s expansion matrix typically performed worse than the
signed or Physics Laplacian. Thus, we consider pneg = 0.1 and study
how increasing qneg effects the performance.

Figure 6 displays the average recall and precision using the
eigenvectors associated with each signed graph matrix representation.
The x-axis displays the size of the graph and the y-axis represents the
precision (or recall). The blue markers depict the precision (or recall)
using the eigenvectors associated with the Gremban’s expansion, the
green markers using the signed Laplacian, and the orange markers
using the Physics Laplacian. The top row is when qneg = 0.2 and
the bottom row is when qneg = 1.0, with qneg = 0.6 displayed in
between. For all values of qneg the clustering using the Gremban’s
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Fig. 4: Difference in recall (left column) and precision (right column)
for the 50 vertex ground truth model. (a)-(b) Difference using the
Gremban’s expansion verse the Physics Laplacian (G − Lp). The
printed values are with respect to the Gremban’s expansion matrix.
(c)-(d) Difference using the signed Laplacian verse the Physics
Laplacian (Ls−Lp). The printed values are with respect to the signed
Laplacian. (e)-(f) Difference using the Gremban’s expansion verse the
signed Laplacian (G − Ls). The printed values are with respect to
the Gremban’s expansion matrix.

expansion improves in both precision and recall as qneg increases.
This is unsurprising as we saw a similar result in the previous tests.
Also, as the graph increases in size the Gremban’s expansion average
performs better, however, there are a few cases where either and/or
both the signed Laplacian and Physics Laplacian produces higher
quality clusters. Figure 7 displays the same test but for pneg = 0.2.
With a slight increase in the probability for negative connections
in the inner-block community, the Gremban’s expansion is able to
capture the clusters well as the size of the graph increases. The
performance of Physics Laplacian and the signed Laplacian are erratic
and do not scale with the size of the graph. Thus, it can be concluded
that performance of each method depends on the underlying sign
structure. However, using the eigengap and the eigenvectors associ-
ated with the Gremban’s expansion matrix consistently provided high
quality clusters than the signed and Physics Laplacian for varying
combinations of (p, q, pneg, qneg).

IV. CONCLUSION

In this paper we empirically studied classical spectral clustering
concepts of signed graphs using three different signed graph matrix
representations: the signed Laplacian, the Physics Laplacian, and the
Gremban’s expansion. No one representation was able to produce the
highest quality clusters for all combinations of graph size, and the
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Fig. 5: Difference in recall (left column) and precision (right column)
for the 1000 vertex ground truth model. (a)-(b) Difference using the
Gremban’s expansion verse the Physics Laplacian (G − Lp). The
printed values are with respect to the Gremban’s expansion matrix.
(c)-(d) Difference using the signed Laplacian verse the Physics
Laplacian (Ls−Lp). The printed values are with respect to the signed
Laplacian. (e)-(f) Difference using the Gremban’s expansion verse the
signed Laplacian (G − Ls). The printed values are with respect to
the Gremban’s expansion matrix.

connection probabilities for positive and negative edge weights. The
signed Laplacian and the Physics Laplacian usually produced higher
quality clusters when both the inner and outer-block connection
negative-valued probabilities were relatively small. Otherwise, the
Gremban’s expansion produced a higher quality result. Thus, de-
pending on the sign structure and the edge densities one could argue
for any one of the representations. However, since the internal sign
structure will be unknown in real-world signed graphs, we conclude,
that the Gremban’s expansion is the most robust representation for
spectral clustering.
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