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Motivation

 At the forefront of convergence between High Performance 
Computing (HPC) and Large-scale Data Analytics (LSDA)
 Each are based on distributed systems and many-node architectures

 Each have drastically different system software ecosystems

 Research in LSDA platform services have made advancements 
towards utilization of HPC resources and clusters
 However, need crosscutting measure to help bridge the gap

 Introduction of High Performance Virtual Clusters (HPVCs)
 Can build user-defined software ecosystems on supercomputers

 Can provide method for in-situ simulation and analytics

 Can enable LSDA to leverage advanced HW and networks found in 
HPC
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Virtual Clusters

 Clusters have been a key aspect of distributed systems. 
 Can build virtual clusters using collections of Virtual Machines (VMs)

 Virtual Clusters provide:
 Dynamic resource allocation of VMs

 Clusters built atop VMs

 OS, software, and apps provisioned by users

 Leverage both node-local and cluster-wide tools for VM management

 Cloud-based such as OpenStack IaaS

 Cluster-based such as batch queueing system 

 User experience is cluster based, not individual VM based

 Resource consolidation possible through oversubscription

 Dynamic scaling of VC through add/delete of VMs

 Back-end virtual storage through persistent storage

 Many Examples: COD, Grid5000, Chameleon, EC2 4



Hypervisors and Containers

 Type 1 hypervisors insert layer below host OS

 Type 2 hypervisors work as or within the host OS

 Containers do not abstract hardware, instead provide 
“enhanced chroot” to create illusion of VM

 Where abstraction is inserted can have impact on performance

 All enable custom software stacks on existing hardware
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KVM 

 KVM was chosen for providing custom software ecosystems 
on supercomputers

 Type 2 hypervisors provide good way to augment existing 
vendor software stacks
 Simple module within existing Linux kernel

 Minimal disruption of existing Vendor SW stack

 Demonstrated by Palacios VMM

 Does not preclude using container solutions like Docker for 
image management & provisioning
 Provides additional isolation & security

 Could provide advanced VM features like live migration & 
cloning in future
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Related Research

 Many efforts have focused on improving performance of VMs 
or providing user flexibility in HPC

 Few projects focus specifically VMs for HPC 
 Palacios VMM & Hobbes project 

 FutureGrid & Chameleon NSF projects for grid/cloud/hpc

 Adaption of VMs to utilize advanced HW – GPUs, InfiniBand

 Containerization efforts for SW flexibility in HPC
 Shifter, Singularity, CharlieCloud, etc

 Provide user-defined software stacks on compute nodes

 Similar to Docker but without root
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Design of a High Performance 
Virtual Cluster

 Commodity clusters different than advanced Supercomputing 
MPP resources – see top 10 of Top 500 list

 Providing virtualization on a supercomputer like a Cray XC-
series system is not the same as a small cluster
 NOT Ethernet and InfiniBand interconnect

 Have specialized node OS: Kitten, Catamount, modified Linux, etc.

 Separated I/O and storage nodes

 Specially tuned MPI and other HPC system libraries

 If HPVCs can be realized, users can benefit from both extreme 
scale and performance as well as increased usability 
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Volta – XC30 Testbed

 Volta is part of the Advanced Systems Technology Testbeds 
project at Sandia through the NNSA’s ASC program

 Cray XC30 rack design
 Dual-socket ”Ivy Bridge” E5-2695v2 processors 

 2x12 cores cores total 

 64GB DDR RAM

 Cray Aries Interconnect

 Cray Compute Node Linux (CNL)
 Cray’s tuned Linux OS  (ver. 5.2.UP04) 

 3.0.101 Linux kernel

 Volta a testbed similar to ACES Trinity supercomputer
 #10 supercomputer on the Top500
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Guest Performance

 Running VMs must be 
performant, so tuning is key

 Ways to significantly reduce 
overhead in KVM

 Tuning with Libvirt is possible, 
but has to be a holistic approach
 CPUs & cores

 Memory 

 NUMA

 Network

 Disk

 Time

<memoryBacking>
<hugepages>
<page size="2" unit="M" nodeset="0"/> 
<page size="2" unit="M" nodeset="1"/> 
</hugepages> 
<nosharepages/>

</memoryBacking> 
<cpu match=’exact’>
<model>IvyBridge</model> 
<topology sockets=’2’ cores=’12’ threads=’1’/> 
<vendor>Intel</vendor> 
<numa> 
<cell id=’0’ cpus=’0-11’ memory=’30’ unit=’GiB’/> 
<cell id=’1’ cpus=’12-23’ memory=’30’ unit=’GiB’/>
</numa>

</cpu> 
<numatune>
<memory mode=’strict’ nodeset=’0-1’/> 
<memnode cellid="0" mode="strict" nodeset="0"/> 
<memnode cellid="1" mode="strict" nodeset="1"/> 

</numatune> 
<vcpu>24</vcpu> 
<cputune> 
<vcpupin vcpu=’0’ cpuset=’0’/> 
<vcpupin vcpu=’1’ cpuset=’1’/>
... 
<vcpupin vcpu=’23’ cpuset=’23’/> 

</cputune> 10



Guest CPU & NUMA Configuration

 Provide same processor architecture in guest as host
 Includes IvyBridge AVX and other instruction sets

 Specify CPU topology – cores and treads

 Assign and pin all available cores to guest VM with <cputune>

 Specify NUMA configuration explicitly
 Cores utilize local memory & cache

 Avoid QPI saturation across sockets

 Timing is important!
 Use kvm-clock for host timing via MSR

 Ensure constant_tsc for invariant clock
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Hugepages

 Back entire Guest VM with Hugepages for performance boost
 Use 2MB pages in guest and host, not 4KB default

 Why?
 Nested page tables often more efficient than shadow paging

 Page miss cost decreases by 9 reads for 2MB pages

 TLB miss count decreases due to increased TLB reach

 Result is memory intensive codes avoid walking page table

 Use Libvirt’s <hugepage> and <memorybacking>

 Cray doesn’t support transparent hugepages (THP) on host
 Have to manually use Cray hugepages

 HUGETLB_DEFAULT_PAGE_SIZE=2M env variable

 Pre-allocate hugepages is important

 Enable THP or Libhugetlbfs within guest OS
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Interconnect Utilization

 Cray’s interconnect is a differentiating factor from clusters

 Exposing the true potential of the underlying hardware to the 
guest is challenging
 Aries was never meant for virtualization

 Proprietary drivers rule out PCI Passthrough

 Copying vendor libraries to guest not portable

 SR-IOV not available for Aries 

 Need to leverage Ethernet-over-Aries emulated NIC
 Bridge Aries Ethernet device like normal Eth

 Match last 3 octets of MAC address

 Add static ARP entries to all OSes

 Set MTU size to 65520 for best bandwidth

 Ethernet-over-Aries interconnect creates ~40% overhead
 Still better than state-of-art 10Gb Ethernet or perhaps even InfiniBand 13



Experimental Evaluation

 Ran experiments on 32 nodes of Volta testbed, 24 ppn

 Utilize existing HPC tools for initial evaluation

 HPCC Benchmark Suite
 HPL, DGEMM, FFT, STREAM, RA, PingPong, etc

 High Performance Conjugate Gradient (HPCG)
 Provides “bookend” to HPL, real-world performance

 More related to mission apps of interest at Sandia

 Evaluate both intra-node performance as well as weak 
scaling

 Evaluation of Apache Spark

 Significant big data analytics tool for LSDA

 Not usable on standard Cray XC30 (at time of writing)
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Test Suite Configuration

 Cray native software configuration – CLE 5.2
 Cray-Intel programming environment

 Intel C/C++ compiler 16.0.1 

 Cray MPI library, UGNI protocol, etc

 LibSci math libs, as well as Intel MKL (explained later)

 Cray 2MB Hugepages

 HPVC software configuration
 Standard RHEL 7 guests with stock 3.11 Linux kernel

 HPC VC

 MPICH 3.2 MPI library

 Intel 2017 parallel studio cluster suite 

 Apache Spark VC

 Java SDK 8 & Maven for Apache Spark v2.1.0
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Intra-Node FLOPS
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Intra-Node GUPS
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Intra-Node STREAM
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Intra-node MPI Performance
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Weak Scaling HPCG
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Take-aways

 Single-node performance looks to be “near-native”
 Compiler & library selection more important than virtualization 

overhead

 MKL/Libsci selection accounts for FLOPS  differences

 Intra-node PP BW limited by not using XPMEM

 Hugepages relives TLB pressure and helps memory-intensive codes

 Multi-node scaling limited by interconnect
 Emulated Ethernet-over-Aries not capable of native performance

 Still able to achieve ~89% performance @ 768 cores

 Likely better than Ethernet solutions deployed today
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LSDA – Apache Spark

 Built Apache Spark virtual cluster on Volta Cray XC
 32 VMs configured as slave, 1 VM master & 1 NFS server

 Used TeraSort benchmark with 10 and 100 GB sizes
 All-to-all shuffle between the Map and Reduce phases

 Stresses data movement significance

 Terasort: 3m9s for 10 GB size, 8 hrs for 100GB size
 Stressing limits of NFS server – no node-local disk on Cray

 Leads to future work w/ Burst Buffers

 Expect Lustre performance to be much better
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Spark-Perf Results

Scale Throughput
Aggr-by-

key
Aggr-by-
key-int

Aggr-by-
key-naive

Sort-by-key Sort-by-key-
int Count Count-filter

0.001 2.6585 0.106 0.1085 0.199 0.114 0.1125 0.034 0.0575

0.01 2.6285 0.219 0.1905 0.4135 0.3065 0.3765 0.0395 0.0935

0.1 2.683 0.474 0.437 0.9605 0.839 0.7075 0.056 0.1495

1 2.6975 2.24 1.886 5.19 2.976 1.797 0.162 0.2665

10 2.642 15.429 47.629 32.9335 5.378 3.9455 1.1095 1.1935 23

 Spark_perf benchmark suite - tests common operations in 
MapReduce platforms

 Runtime doubles for 10x problem size for smaller scales

 Aggregate-by-key benchmarks see roughly a 4-5x increase 

 Aggregate-by-key with at 10x scale over-saturates cluster
 Aggr 4b records with 10m unique values for 400t unique integers



Conclusion

 Created first High Performance Virtual Cluster on a Cray 
supercomputer

 Demonstrated both HPC and LSDA workloads on virtualized 
infrastructure
 HPC benchmarks utilized to evaluate & tune performance

 Apache Spark workloads run on Cray

 Single-node approaches near-native performance

 Scale limited by Ethernet-over-Aries network emulation
 SR-IOV or new NIC design would help in the future

 Still on-par or better(!) than commodity Ethernet

 Vendor-specific libraries would also help integration

 Success on XC30 testbed demonstrates feasibility to support 
VMs on Trinity supercomputer 24
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Thanks!

Questions?
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