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Abstract

A reduced order modeling capability has been developed to reduce the computational
burden associated with time-domain solutions of structural dynamic models with linear
viscoelastic materials. The discretized equations-of-motion produce convolution
integrals resulting in a linear system with nonviscous damping forces. The challenge
associated with the reduction of nonviscously damped, linear systems is the selection
and computation of the appropriate modal basis to perform modal projection. The
system produces a nonlinear eigenvalue problem that is challenging to solve and
requires use of specialized algorithms not readily available in commercial finite
element packages. This SAND report summarizes the LDRD discoveries of a reduction
scheme developed for monolithic finite element models and provides preliminary
investigations to extensions of the method using component mode synthesis. In
addition, this report provides a background overview of structural dynamic modeling
of structures with linear viscoelastic materials, and provides an overview of a new code
capability in Sierra Structural Dynamics to output the system level matrices computed
on multiple processors.
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1. INTRODUCTION

1.1. Background

Linear viscoelastic materials are commonly used in mechanical, biomedical and aerospace
engineering disciplines due to their unique properties. For example, the aerospace and
automotive industries often incorporate viscoelastic materials into mechanical designs to
passively reduce excessive vibration levels seen during operation [1]. Constrained layer damping
treatments add a lightweight, viscoelastic core between two stiff panels or components to
mitigate vibrational energy and reduce weight. Core materials such as polymers and foams
quickly dissipate energy and are excellent choices for achieving the desired performance.
Viscoelastic materials are also used to encapsulate critical structural components such as
payloads or electronics in order to isolate them from the potentially damaging environments.
Because of the importance of these materials throughout the engineering sciences, there is a need
to develop accurate and efficient models that capture their time-dependent physical behavior in
the time-domain. Finite element analysis (FEA) is a powerful technique to generate structural
dynamic models of components with complicated geometries and constitutive laws describing
viscoelastic behavior.

The challenge associated with solving structural dynamic models with viscoelasticity is the fact
that classical modal decomposition approaches are no longer valid. Time-domain solutions of
high-fidelity models with millions of degrees-of-freedom (DOF) require direct numerical
integration of the full-order model. This approach demands enormous computational resources
compared to traditional modal methods. Additionally, current reduced order modeling (ROM)
techniques, such as the Hurty/Craig-Bampton (HCB) method [2, 3], are developed for linear
elastic FEA models, but they cannot incorporate the time-dependent material behavior exhibited
by foams, rubbers, or composites. This SAND report documents the results from a three-year,
early-career LDRD project titled "Reduced Order Models of Structures Incorporating Complex
Materials". We proposed to develop a ROM capability that incorporates time-dependent
material behavior to significantly improve the computational efficiency and accuracy of large,
component-level simulations of dynamic loading events. This document provides a summary of
the project outcomes and demonstrates how the team was able to deliver on its objectives.

The focus of this work was to develop reduction methods for FEA models with Prony series
representations of the time-dependent moduli of viscoelastic materials. A number of constitutive
models for viscoelastic materials are available in the literature [4, 5], but the Prony series was
chosen since it is i.) easily implemented into computational tractable numerical integration
schemes, and ii.) is currently the only implementation within the Sierra Structural Dynamics
(Sierra/SD) finite element code [6] at Sandia National Laboratories (SNL). One of the most
common reduction techniques in structural dynamics is the projection-based method, where a
subset of deflection shapes are projected onto the system matrices of the governing equations-of-
motion (EOM). Model reduction techniques are typically evaluated based on their efficiency to
reduce the online computational costs of the model, as well as their accuracy to preserve the
model predictions in comparison to the full-order model. Rouleau et al. [7] recently published a
paper reviewing projection-based methods as applied to frequency-domain solutions of linear
viscoelastic FEA models.
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As Rouleau et al. concludes, the greatest challenge associated with projection-based methods is
the selection of the appropriate basis vectors. For linear structural dynamics models with light,
viscous damping, the superposition of real-valued eigensolutions supplemented with static
correction vectors [8, 9] serve as the optimal choice to reduce the EOM. These bases ignore
damping forces in their calculation and are readily selected based on the frequency bandwidth of
interest. Bilasse et al. [10] examined the use of four different mode shapes to create ROMs of
FEA models of viscoelastic sandwich beams. They explored the use of real eigenmodes,
improved real eigenmodes, approached complex eigenmodes and exact complex eigenmodes.
The results suggest that the two bases involving complex eigenmodes work well, and the real
modes present erroneous results but could be improved by linearizing the frequency dependent
matrices about a non-zero frequency. Bilasse and Oguamanam [11] reduce the frequency-domain
equations of sandwich plate structures using real eigenmodes and exact complex eigenmode
basis. They found that complex modes work best for higher damping levels (albeit at a higher
upfront computational cost), while real modes work sufficiently well for lower damping levels.

Much of the existing literature addresses techniques applied to frequency-domain solutions, and
few researchers address ROMs that are solved in the time-domain with numerical integration. de
Lima et al. [12] utilize the static residual basis [13] to reduce a time-domain FEA model and use
Newmark integration schemes to solve the equations. The constitutive behavior was modeled
with a four parameter fractional derivative model [14]. Other time-domain reduction techniques
reduce the Golla-Hughes-McTavish (GHM) model [15], but the use of internal variables greatly
increases the order of the equations to be solved. The objective of the early-career LDRD project
was to develop a viscoelastic ROM framework that could be solved in the time-domain, provide
accurate and efficient response predictions, maintain parametric dependence on
temperature/frequency, and minimize the offline costs associated with computation of the
reduction basis. The next subsection summarizes the project outcomes that meet each of these
objectives to deliver a novel ROM capability that accounts for viscoelasticity.

1.2. Summary of LDRD Publications

The LDRD project was able to document the research discoveries made in various conference
and journal papers throughout the three year term. The most notable contribution from this
project is the journal article titled "Two-Tier Model Reduction of Viscoelastically Damped Finite
Element Models" [16]. Two conference papers were also written prior to this to disseminate
developments of the work to the greater research community. This served as a valuable tool to
discuss ideas and methods with other researchers. The first conference paper published from the
project was presented at the 2016 ISMA conference titled "Time Domain Model Reduction of
Linear Viscoelastic Finite Element Models" [17]. One year later, another conference paper was
published and presented at the 2017 IMAC XXXV conference titled "Substructuring of
Viscoelastic Subcomponents with Interface Reductioe [18]. A brief summary of these works are
provided below, but the interested reader should refer to the full publications for complete detail.

Analogous to model reduction theory for linear systems, the complex, frequency-dependent
modes of the linear viscoelastic system generally serve as an ideal reduction basis. These mode
shapes take into account the nonviscous damping forces in the governing equations and allow for
frequency-based mode selection. As discovered by Bilasse et al. [10], the exact complex modes
provide highly accurate results, particularly in the case when damping forces are large.
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Unfortunately, one must solve a nonlinear eigenvalue problem that is challenging to compute
numerically compared to its linear counterpart. These modes require specialized solvers not
typically available in commercial finite element codes with parallel processing capabilities.
Several researchers have developed advanced algorithms capable of solving such problems [19-
21], but these algorithms remain computationally expensive when applied to large-scale
problems. The LDRD research addresses this issue by developing a novel, two-tier reduction
scheme [16] that efficiently obtains an approximation of the exact complex modes and reduces
the full-order EOM using these ideal shapes.

The first reduction, termed the tier-one reduction step, uses the Multi-Model (MM) approach
[22] developed by Balmès to compute several modal bases using real eigensolutions linearized
about various frequency discretizations of the viscoelastic material. The mode calculations
leverage real eigenmode solvers commonly found in commercial FEA codes. The tier-one
reduction preserves the parametric temperature dependence since the model is sampled at
multiple points on the material time-temperature scale. The tier-two reduction follows by fixing
the operation temperature of the material and exactly solving the nonlinear eigenvalue problem
using Newton's method [23] within the tier-one reduced space. This basis reduces the EOM
using the real and imaginary parts of the complex eigenvectors and allows for mode truncation
based on frequency content. The offline cost of solving the nonlinear eigenvalue problem in the
tier-one reduced space is significantly lower in comparison to the solution of the full-order
equations. This approach builds upon the original work presented in [17], which uses an iterative
approach to approximate the exact modes from the full-order model. This motivated the
theoretical developments in [16] to derive an efficient approach to compute the exact complex
mode shapes without needing to solve nonlinear eigenvalue problems of the full-order model.

The model reduction technique was applied to a finite element model of a cantilevered sandwich
plate to evaluate accuracy and efficiency. The inner, constrained layer served as the core material
and was modeled as a viscoelastic solid with properties of 828 DEA. The outer two layers were
structural components and were modeled as linear elastic with properties of Aluminum 6061-T6.
The mesh is shown in Figure 1.

Figure 1. Finite element mesh of cantilevered sandwich plate.

The results from the tier-two ROMs were evaluated by predicting the transient response to a
haversine impulse with a peak of 20 lbf and 0.004 s pulse duration. Each tier-two ROM was
created by first choosing an operating temperature of the model, and then calculating the exact
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complex mode solutions. Three different ROMs were evaluated as having cut-off frequencies of
750 Hz, 1000 Hz, and 1250 Hz. A direct comparison of the transient displacement predicted
from the ROM and full-order model was computed using the Global Relative Error (GRE) metric
proposed by Farhat et al. in [24]. The GRE for each tier-two ROM over the full temperature
spectrum is plotted in Fig. 2.
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Figure 2. GRE for transient response predicted by each tier-two ROM.

The accuracy obtained with the tier-two models were extremely high as GRE's over the full
temperature range were less than 0.1 %. As with all reduced order modeling techniques, there are
offline costs associated with the computation of the modal reduction basis, and the online costs
associated with numerical time integration. A summary of the computational costs of each tier-
two ROM is provided in Table 1. The offline costs correspond to calculation of the tier-one and
tier-two modal bases, which are compared alongside the online cost of the total simulation time
required to numerically integrate the response to the haversine load. Each comparison is for the
numerical simulation at an operating temperature of 95 °C with the same time step and period of
At = le — 6 s and 0.1 s, respectively, resulting in a total of 100,000 numerical solves. The tier-
two ROMs are five to six orders of magnitude faster than the full-order model when computing
the time integrated solution. This significant speedup shows how efficient the models are in
terms of online cost.

Table 1. Computational cost of mode calculations and time integration.

ROM Total DOF Tier-one
mode

calculation

Tier-two
mode

calculation

Offline cost
(mode

calculation)

Online cost
(numerical
simulation)

Full-order Model 130,305 - - 0 s 4.51E+06 s
Tier-2 7x-750 Hz 30 832.4 s 13.8 s 846.2 s 7.2 s

Tier-2 7x-1000 Hz 38 832.4 s 16.4 s 848.8 s 12.8 s
Tier-2 7x-1250 Hz 48 832.4 s 20.6 s 853.0 s 14.5 s
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A component mode synthesis approach was developed [18] using an iterative approach to
approximate the exact, complex fixed-interface modes from each subcomponent model. An
interface reduction was also applied to the reduction basis to further reduce the boundary DOF
associated with the connection points. The approach achieved similar levels of accuracy as the
work presented in [17], but was never extended to the two-tier approach due to time constraints
of the project. Future works could extend the two-tier approach in [16] to component mode
synthesis techniques to provide an efficient modal basis that preserves parametric dependence of
operating temperature. This would provide a powerful simulation tool that would enable analysts
to specify different operating temperatures of the subcomponents within an assembly and
perform efficient, parametric simulations to explore the global system response at various
temperatures.

1.3. Outline of Report

The interested reader should refer to the external publications [16-18] for details related to the
ROM approaches developed for monolithic and substructure models. The remainder of this
report describes the relevant background related to structural dynamics modeling. Section 2
provides a complete background of the finite element modeling theory for structures modeled
with viscoelastic materials described by Prony series representations. This overview is intended
to prepare the reader with the appropriate background to understand the model reduction
schemes developed in the external papers. In Section 3, an overview of a newly developed
Sierra/SD code capability is described. The code development team created MATLAB scripts to
properly reassemble system matrices and displacements output on multiple processors. This
capability was needed to allow the ROM approach to scale to large-order models common to
those developed at SNL. Conclusions from the report are provided in Section 4.
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2. REVIEW OF LINEAR VISCOELASTIC FINITE ELEMENT MODELS

This section provides background information regarding spatial discretization of finite element
models with linear viscoelastic materials modeled with a Prony series representation. The
Sierra/SD finite element code at SNL utilizes this generalized formulation to solve time- and
frequency-domain analyses. This sections provides an overview of the governing equations,
projection-based model reduction, nonlinear eigenvalue problem, and frequency- and time-
domain solution algorithms.

2.1. Governing Equations

Finite element modeling is a common approach to solve structural dynamic problems of
components or systems with complicated geometries. The time-domain, space discretized
equations-of-motion with linear viscoelastic constitutive models are obtained using standard
finite element techniques [8],

Mx + Ck + KK f: K(t — -c)*(r)dr + KG .1: (G(t — r)*(x)d-c + Kcox = f(t) (1)

The coupled integro-differential equations consist of real, symmetric N x N matrices for mass,
M, viscous damping, C, viscoelastic bulk stiffness, KK, viscoelastic shear stiffness, KG, and
elastic stiffness, K. The physical displacements are the N x 1 vector x where the overdot
corresponds to the derivative with respect to time. The N x 1 vector f(t) is the external time
varying force applied to the model.

The discretization in Eq. (1) assumes an isotropic, linear viscoelastic solid whose three-
dimensional constitutive stress equation is separated into dilatational and deviatoric components
of the strain,

dEkko-ii(t) = f 0 3K (t — (-
1 
3 6 ij 1,) dr + 2G (t — r) (—

clEij 
— 
1 (5 dEkk) dr

dr 3 Ej dT
(2)

The time dependent stress, au (t), is written in Einstein summation form where i, j = 1, 2 or 3. In

Eq. (2), Su is the Dirac delta function, Eii is the strain, t and r are the time and integration time

variables, respectively, and Ekk = E22 E33. The summation of two independent
viscoelastic functions for the bulk relaxation modulus, K (t), and shear relaxation modulus, G(t),
may have different time dependence. The advantage of using dilatational and deviatoric
components in the constitutive equation is that the viscoelastic terms in Eq. (2) are separated into
two viscoelastic functions that allow a constant matrix to be factored out when discretizing the
equations. Other representations, such as those written in terms of Young's modulus and
Poisson's ratio, do not produce a decoupled form and complicate model order reduction
operations.

The bulk and shear relaxation moduli are written in a general form in Eq. (2). There are a variety
of functional forms that describe the material behavior, such as the four-parameter fractional
derivative model [14] or the Golla-Hughes-McTavish (GHM) model [25, 26]. Adhikari [4] and
Lakes [5] review several functions to describe linear viscoelastic constitutive models. The shear
and bulk relaxation used throughout this work are described by a series of exponential functions
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of varying amplitudes and decay constants, referred to as the Prony series model. Other
references refer to this as the Biot model [27]. Since both the bulk and shear relaxation moduli
have the same series exponential form, only the bulk Prony series is developed for brevity. The
bulk relaxation modulus from Eq. (2) has the form,

K (t) = + (K9 — IC,YK(t) (3)

where
-t

(lc (t) =

and the coefficients are normalized to unity,

(4)

= 1 (5)

The rubbery and glassy moduli, Koo and K9, respectively, are considered the long-term (soft) and
short-term (hard) moduli of the viscoelastic material. The time-dependent kernel function, (t),
is a summation of NK exponential functions with an amplitude coefficient Ri for a prescribed
time constant TK,i. The shear and bulk Prony terms are obtained by fitting experimental master
curves for the material of interest. In general, K(t) is restricted to be continuous and
monotonically decreasing [28], thus requiring that Ri and Tio be positive values.

For thermorheologically simple viscoelastic materials [29], the principle of time-temperature
superposition holds and allows for the temperature dependent material properties to be described
by shifting the effective time scale of the material. A change in temperature causes the properties
to strictly move horizontally along either the time or frequency axis of the master curve. The
shift factor, aT, is an empirical value obtained by measuring material properties at different
operating temperatures, T. When the temperature is above the glass transition temperature, the
shift factors are fit to the WLF equation [30],

)Ci(T-Tref log(aT) = VT Tref (6)
CZ+(T-Tref)

Below the glass transition temperature, the shift factor is fit to the following equation [6],

log(aT) = A1 (1 — eA2(T-Tref)) V T < Tref (7)

The scalar constants A1, A2, C1, and C2 depend on the material of interest. To shift the material
parameters to a operating temperature away from the reference temperature, Tref , the Prony
series is shifted by multiplying the shift factor by each time constant, i.e. aTT Kj. In Eq. (1), the
viscoelastic damping matrices are independent of the kernel functions K (t) and (t), and
hence the matrices do not need to be reformulated for each temperature.

2.2. Model Order Reduction

A projection based reduction scheme can be utilized to reduce the physical equations in Eq. (1)
onto a lower order subspace. The reduction basis must be formulated to be sufficiently small to
reduce the size of the time-domain equations. For model reduction schemes, the main objective
is to achieve computational speedups while maintaining acceptable accuracy in reference to the
full order model solutions. In general, a so-called modal-based reduction approximates the
physical DOF, x, in Eq. (1) with a reduced dimensional subspace, q, using a set of shapes,
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x Tq (8)

The transformation matrix, T, has dimension N X Arr whose columns are a collection of shape
vectors used to define the kinematics of the reduction space. In general, these shapes may consist
of vibration modes or static deflections that describe the dynamics in response to arbitrary time-
varying loads, or other shapes computed from proper orthogonal decomposition. Since the
reduction is applied in the time-domain, the matrix T is restricted to be real valued. The reduced,
generalized coordinates, q, are a Nr x 1 vector of time-varying functions that described the
amplitude of each shape. A Galerkin projection of Eq. (8) onto the finite element equations in
Eq. (1) is written as,

TTMTei + TTCTq + TTKKT f(t) (K(t — r)14(x)dr TTKGT fot (G(t — -1-)4(x)dr + TTK„Tq = TTf(t)

(9)

where (.)T is the transpose operator. The reduced order equations in Eq. (9) are rewritten in
condensed form,

Mti CI4 KK _rot ic(t — 1-)4(r)dr + KG f: G(t — T)qW& + Koji = f(t) (10)

The reduction is applied directly to the equations-of-motion by compressing the matrices offline.
This operation is straightforward when using the separated formulation with shear and bulk
viscoelastic terms since the matrices do not need to be reformulated for different operating
temperatures. The reduced equations in Eq. (10) are then efficiently solved either in the time-
domain using numerical time integration schemes, or in the frequency-domain by performing a
Laplace transformation on the reduced equation. Once a solution of the generalized coordinates,
q, is obtained, the physical DOF responses are recovered through the transformation in Eq. (8).

2.3. Nonlinear Eigenvalue Problem

One natural choice of basis vectors to use would be the complex, frequency-dependent
eigenvectors computed from the linear viscoelastic equations. Posing the eigenvalue problem
from the autonomous form of Eq. (1) results in a nonlinear eigenvalue problem,

NK  kt NG  Oi 
(41VI + A, C + ArICK Ei=i Ar+ltrict+ ArKG Ei=14+11,G,i + K„) (Vit = 0 (11)

The N x 1 vector I); is the complex mode shape and Ai.. is the complex eigenvalue. The
eigensolutions computed from Eq. (11) would form an ideal reduction basis in Eq. (8), analogous
to real eigenvectors for undamped or lightly damped systems, since the shapes can be truncated
based on the frequency content of interest. This nonlinear eigenvalue problem is challenging to
solve numerically compared to its linear counterpart and its solvers are not readily accessible in
commercially available finite element codes or in the Sierra finite element codes. Several
researchers have developed advanced algorithms capable of solving such problems [19-21] but
they remain computationally expensive especially for large-scale problems. Others have
proposed solving the nonlinear eigenvalue problem by linearizing the eigenvalue term, Ar, in the
denominator of the Prony series about a chosen frequency and iteratively solving a linearized,
quadratic eigenvalue problem [31-33]. Many finite element codes are capable of solving
quadratic eigenvalue problems, however this approach requires several iterations to solve each
complex mode solution and becomes prohibitively expensive for large-scale models. As
mentioned in Section 1.2, a novel two-tier approach was developed in [16] to approximate the
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exact complex modes without needing to run specialized, iterative algorithms on the full-order
model.

2.4. Steady-state Response to Harmonic Excitation

The full-order model in Eq. (1) or the ROM in Eq. (10) can be solved in the frequency-domain
by performing a Laplace transform on the equations-of-motion and assuming null initial
conditions. The steady-state equations become,

vNK  di254 _F koc MCI( Lq=i i0)+1/Tic,,-F itOKG ENi=i 
G 

 ko+1/TG,E(—a) + Kcz,) X = F (12)

where the N x 1 vectors X and F are the complex response and input force vector, respectively.
The response is computed by inverting the left-hand side of Eq. (12) for a particular input
frequency. For large-scale model, the steady-state response becomes expensive to solve
numerically since the matrix needs to be updated for each frequency line prior to inversion. A
reduced order modeling approach significantly decreases the computational burden by reducing
the size of the matrix.

2.5. Transient Response with Numerical Time Integration

Direct numerical integration of the full-order model in Eq. (1) or the ROM in Eq. (10) requires
evaluation of the convolution integrals for the shear and bulk viscoelastic forces at the current
time step. Computing these integrals or storing the history of the viscoelastic force quickly
becomes intractable for reasonably large problems integrated over long periods. It is preferred to
store a single history variable that updates at each time step to track the loading history of the
material. The following subsections present computationally efficient recursive algorithms that
compute a viscoelastic history variable and continuously updates it at every time step without
having to store state variables from all previous time steps [15]. In Section 2.5.1, this approach is
combined with an implicit Newmark-Beta integration scheme [34] for second-order accurate
time integration that is unconditionally stable. Section 2.5.2 presents the adaptation as applied to
the explicit central difference method which is also second-order accurate but conditionally
stable.

2.5.1. Implicit Newmark-Beta

The Newmark-Beta method assumes that the displacement and velocity are approximated by the
weighted average of the approximate acceleration,

qn+1 = qn + Ate& + '6t22 [(1 2fl)iin 2fliin+1] (13)

eln+1 = + At[(1 y)iin + Ytin+i] (14)

The subscript n denotes the current time step with the convention that qn = q(4,), and step n+1
is the new time step to be solved. The algorithm assumes a constant time step throughout the
integration period such that At = tn+1 tn Vn. The numerical factors, y and )6, control the
numerical damping, stability and accuracy of the implicit scheme.

Since Newmark-Beta is an implicit method, the ROM equations in Eq. (10) are enforced at the
tn+1 time step,
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Mtin+1 + C4n+1 + KK .1":11+1 ic(tn+1 r)4(T)dr + KG fotn+i G (41+1 — r)4(r)dr Rcogri+1 = f (tn+1)

(15)

The expressions in Eqns. (13) and (14) could be directly substituted into Eq. (15) to express the
algebraic equations in terms of ifin+i, however the kinematic approximations are rewritten in a
way to depend on velocity, 4n+i, as,

qn + y qn+i + At (1 — 12) qn + —A2t2 (1 —
Aat

tin+1 (4n+1 tin) — (y1— 1) tin

The kinematics are written in this form to better accommodate the convolution integral which
explicitly depends on velocity. Given the approximation of displacement and acceleration in
Eqns. (16) and (17), these equations are substituted into Eq. (15) to discretize the equations-of-
motion in time,

M + e +
yAt

f (tn+1)

4n+1 =

Ryt Roo] qn+

m [yAlt eh,

qn
2fl)

1 + KK fotn+1 (IC (tn+1 1-)4(T)dr + KG fctl n+1 G(tn-Fi r)q(r) dr =

+ — 1) Cid + K „ [— qn + At (E — 1) + ffy — 1) elni

The convolution integral is addressed by assuming the material is unstressed for t < 0, such that
the bulk viscoelastic damping forces in the time-domain have the general form,

(16)

(17)

(18)

KK f:n SKltn. — T)14(1-)ch (19)

The derivation that follows is the same for the shear viscoelastic damping forces, and therefore is
withheld for brevity. A history variable is defined at time tn for each exponential term in the
Prony series,

tn-T

hio (tn) = fctin Rie TK.i q(1-)th- (20)

such that Eq. (19) is defined as,

KK f:n ic(tn 1-)14(1-)c/T = KK EliV_Ki (tn)

The history variable in Eq. (20) accounts for a single term in the kernel function, so the
cumulation of exponential functions is accounted for through the summation in Eq. (21). The
history variables are defined here to allow for recursive updating of the viscoelastic damping
forces with each time step, thus avoiding the need to integrate the convolution integrals over the
entire bounds (i.e. 0 to tn+1) at each time step.

At time tn+1, the viscoelastic damping force is expressed as,

KK fotn+1 7
SK AW&T = RK hK,i(tn+i)

where the updated history variable is defined as,
tn+At-T 

hic,i(tn+l) = ftn+1Kie 4(T)CIT

The summation rule for definite integrals allows Eq. (23) to split into two parts,

(21)

(22)

(23)
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tn+At-t tn+At-T

hK,i(tn,l) = fotn Rie K,i q(r)ch- + fttnn+1 kie 40-)d-t-

From the first part of the split integral, the product law of exponentials allows the history
variable at time step tn to be factored out as,

At tn-T At

f
t
n Kie TICje T" ifi(r)dr = e hK,i(tn)

(24)

(25)

The second integral in Eq. (24) is evaluated by assuming a midpoint velocity representation for

4(T),
4(r) = 4(tn)+4(tn+1)

2

Substituting this approximation into the second integral in Eq. (24) results in,
At Tn-T At tn-T

Rie f
tn

+i etn 1 -  
el(T)dT = Kie TK,i(4(tn) + 4(tn+l)) e dr

2 

ftl: 1

Evaluating the integral term produces,

tn-T 

At
r t 

I

11+1 e 1-10 dr = 1-10 eT - 1
Ln

Substituting Eqns. (25), (27) and (28) into Eq. (24) produces the history variable at tn+1,

(26)

(27)

(28)

At At At
^ 

= e 1 
hici(tn)+ Kirici 1— e + 2 KiTici (1 — e TK'Offin+1 (29)

The form of the viscoelastic damping force used within the Newmark-Beta algorithm becomes,

KK f:tt+1 
SIC T)4(T)d-C =

-

At At At

KK Ei=i[e 
T K,Ehicikro 

1 ̂  1

+ e TK,i) ein + -2 Kir KJ - e .n+1
NK • / 

(30)

By utilizing the derivation of the bulk and shear viscoelastic terms presented in Eq. (30) and
combining these with Eq. (18), the final time-discretized equations-of-motion become,

V, Fs; -11 1 - NG [,-. flAt Tr— I
yAt
M C + KI(Ei21 iT K 1— e TIO uiro 1 - e 4n+1

f(tn+1) [ eln (
1

1) eln] [— qn + At(1,-1) 4 n + c(L'y - 1) elnj -
At At At At q

NK KK Ei=l [e kci(tn)+ ic) 4
n
I- RGENi2l[e- 2G hG,i(tn) + irG,i (i - e TG,i •

(31)

The integration scheme solves for the new velocity, tin+i, by directly solving the algebraic
equations in Eq. (31), and then updating the displacements, accelerations, and history variables
using Eqns. (16), (17) and (29), respectively.

2.5.2. Explicit Central Difference

The explicit integration procedure begins by dividing the time interval of interest [0, T] into
subintervals,

[0, = UnNt_o[tn, tn+11 (32)
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and defining a constant time increment as At = tn+1 tn Vn. Here, T is the termination time of
the analysis, tn is the time at the beginning of the step, tn+1 is the time at the end of the step, and
Nt is the number of time steps.

The explicit central difference method is derived frorn the three-parameter Hilber-Hughes-Taylor

(HHT) method [35] by setting the parameters a = 0, = 0, and y = 112. The method is
second-order accurate and has conditional stability of the time step increments. The general form
of the integration scheme adapted to Eq. (10) becomes,

= —M f otn+1 K(tn-F1 r)4(T)dT
(33)

KG fotn+1 (tn+1 — TAW& + R00% — f(t)]

, 
2 
At2

qn+i = qn + Attin + qn (34)

At2 (..
qn+1 = tin 2 lqn 9n+1) (35)

The integration scheme in Eqns. (33) - (35) is driven by displacement; that is, the displacement at
tn+1 is computed first from the displacement, velocity, and acceleration from the preceding time
step tn, as shown in Eq. (34).

This displacement-driven algorithm is ideal for numerical implementation of time-domain
viscoelastic integration schemes. Following the derivation used in Section 2.5.1 for the implicit
Newmark-Beta method, the structure is assumed to be unstressed for t < O. The viscoelastic
forces in the time domain can similarly be cast in the same form as Eq. (19), and the same
derivation follows up through Eq. (25). Instead of utilizing a midpoint velocity representation for
q(z) for the central difference scheme, the second mean-value theorem for integrals is used to
evaluate the second term in Eq. (24) as,

tn+At-T tn+At-T
tn+1 dq(k) ftn+i e TIOftn Kie el(t)clz = (36)

dr itn

where k E [tn, tn+1]. Using the central difference rule (which satisfies the bound restriction on
k), Eq. (36) is recast as,

At )tn+At-T TIO
dq(k)

r 

it

n

n+i k.e TK,i 
At (qn+1 — qn)d Jt 

Combining Eqns. (25), (36), and (37), Eq. (24) may be expressed in a form that is explicitly
dependent upon displacements rather than velocities,

At

At )

hK,i(tn+l) = e 
At

hK,i(tn) +  (cln+i qn)

The final, displacement-driven viscoelastic force used within Eq. (33) becomes,

(37)

(38)
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At

At

f tn+1 
SKV- 

r N k
1"K 

t 
n+1 r)el(r)dr = RK Ei= e hio (tn)  

At (qn+1 — qn)

(39)

It is important to note that Eq. (39) only requires storage of hK,i(tn) and qn from the preceding
time step to compute the updated force at tn+1. The same derivation is used to evaluate the
viscoelastic shear forces.
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3. EXTRACTING SYSTEM MATRICES FROM SIERRA/SD

This section explains how to extract the system matrices assembled within the Sierra/SD finite
element code. These matrices are required to perform the model order reduction within a
numerical computation package, such as MATLAB. The code enhancements discussed here are
generic and can be used to support other research or analysis activities that necessitate the
extraction of system matrices, mode shapes, etc.. on parallel processors. Section 3.1 provides
specifics about extracting the matrices of a linear viscoelastic finite element model. Section 3.2
details the extraction of matrices or displacements when computing on multiple processors.

3.1. Viscoelastic Matrices from Elastic Matrix Assembly

In Sierra/SD [6], the constitutive model for an isotropic linear viscoelastic material uses a
normalized Prony series to describe the time-dependent decay from the glassy moduli to the
rubbery moduli. Following the theoretical development of the finite element formulation in the
theory manual, the element stiffness matrices are cast as,

kK = (K9 — K„) f BTDKBdV (40)

kG = (G9 — G„) f BTDGBdV (41)

ke = Koo f BTDKBdV + G„ f BTDGBdV (42)

The matrix B is the strain-displacement matrix that depends on the element shape function, while
the scalar parameters K„, Kg, G„ and G9 represent the rubbery (subscript oo) and glassy

(subscript g) bulk and shear moduli. Both DK and DG are the constitutive matrices for the bulk
and shear terms, respectively. These element stiffness matrices (along with the element mass
matrix) are then assembled using standard finite element techniques, resulting in Eq. (1) in
Section 2.1.

The system level matrices (M, KK, KG, and Koo) can be directly assembled and output from
Sierra/SD by writing out the matrices of an isotropic linear elastic FEA model. The mass and
stiffness matrices for the a-set DOF are written to .m files when using the dump solution type in
the input deck. The mass matrix extraction is straightforward since it only depends on the
density; however, extracting the individual stiffness matrices is more complicated. A method for
extracting the system-level stiffness matrices using the dump solution type is given in Table 2.
The table lists what values to set for the elastic bulk and shear moduli when assembling the
particular stiffness matrix. Note that for the viscoelastic matrices, all other material blocks
should be set to zero such that the matrix only accounts for the contribution from the viscoelastic
material block of interest.

Table 2. Linear elastic material parameters to output system-level
stiffness matrices using the dump solution type.

Output Matrix in Eq. (1) Input Bulk Moduli Input Shear Moduli
K co Koo Goo

KK Kg — Koo 0

KG 0 G — Gg oo

An example of the input is shown below to extract the KK stiffness matrix.
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SOLUTION
case 'dump matrices'
dump

END

FILE
geometry_file 'plate_9by9inch.exo'

END

ECHO
mass

END

BLOCK 1
hex20
material 1

END

//K_g = 9.8039e6
//K_inf = 7.0e6
//G_g = 3.7594e6
//G_inf = 2 .5 e 6

MATERIAL 1
Isotropic
G= le-4 // essentially zero
K= 2.8039e6 // = K_g — K_inf
density=0.00024739

END

Figure 3. Example Sierra/SD input deck to dump assembled matrices.

3.2. Parallel Matrix Extraction from Sierra/SD

As a massively parallel finite elements code, Sierra/SD provides a robust way of solving large
problems in a scalable way. Its workflow specifically involves dividing a mesh before
dispatching the processors to simultaneously obtain results on a sub-portion of the mesh. Final
results and quantities of interests are then recovered by reassembling each sub-processor results.
In this way, Sierra/SD produces accurate results in a significantly reduced amount of time.
However, this parallel process masks much of the internal and intermediary steps.

To solve this problem in parallel, Sierra/SD divides each component of the system into n-sub-
components that n-processors will solve. This involves creating n-stiffness submatrices,
displacement vectors, and forcing vectors. At the end of the simulation, while results such as
displacement and forces can easily be comprehended, the submatrices of the stiffness matrix are
not. These matrices may be prohibitively large, making the storage and use of it in further
analysis intractable. As such and if requested, Sierra/SD will only output parallel results and
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intermediary files for additional post-processing in MATLAB. A capability was implemented to
i.) reassemble the mass and stiffness matrices for comprehensibility and ii.) provide analysts with
ways to parallelize their own operations. This allows users to extract key system information
(e.g. stiffness matrix) in addition to potentially further their own analysis by allowing processor-
level matrix-vector operations. The following scripts are developed to support this effort, as it
demonstrates the ability to reconstruct parallelized matrices and produces the mapping required
for other assembly.

3.2.1. How to Run Code

What does this code do? What scripts are there?

The developed MATLAB scripts are to be used as a post-processing step and run only after
Sierra/SD has completed its analysis. The Sierra/SD input deck should request intermediary files
by turning on the mfile option; this produces a large number of MATLAB-supported files
required by the scripts for a reassembly process. The scripts reassemble the processor
submatrices first reading in processor mappings (global ids and Fetimap) and specific FE results
such as the stiffness matrix, mass matrix, and displacements. The scripts then provide a mapping
from the processor level to a global level; this can be thought of converting all of the parallel
outputs to that of a serial one. Finally, reassembly occurs by applying the mapping to the
processor-specific components. The scripts demonstrate the reassembly process by forming the
global stiffness and mass matrices from a parallel run, and they are verified by comparison to the
results of a serial Sierra/SD run and by checking that the reassembled results satisfy the
eigenvalue problem. When using the scripts, the following functions should be loaded in the
MATLAB workspace,

Table 3. List of MATLAB scripts.

Function Name Description
assembleMatrices.m Main script (to be edited and run by user)
loadStiff.m Sub-function to load processor stiffness sub-matrices
loadMass.m Sub-function to load processor mass sub-matrices
loadDisp.m Sub-function to load processor eigen vectors
loadGids.m Sub-function to load processor global IDs
loadMaps.m Sub-function to load processor FetiMap
parallelmap.m Supporting function to determine processor (parallel)

mapping to global (serial) mapping
triplet.m Supporting function to connect FetiMap to global IDs
getDofPerNode.m Supporting function to find max number of dofs per

node; currently returns 8 and only supports models with
8 or less dofs per node

isVolumetric.m Supporting function to check FetiMap and globalID
consistency

getLastGlobalRow.m Supporting function to find maximum size of global
matrices
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Note that the user should only be editing assembleMatrices.m. This is the main function that
calls the other functions. The remaining functions can be divided into two groups: sub-functions
that load results from the Sierra/SD run into MATLAB, and supporting functions which provides
the logic and algorithm needed to reassemble the matrices. The current version of the MATLAB
scripts require that the Sierra/SD input deck have the "mfile" output option and the
"mfile format 3column" parameter option, which is discussed later. Any users of this capability
are asked to please report any and all bugs to the authors.

Obtaining the right version of sierra/SD

When using these MATLAB scripts for post-processing, it is important to note that this only
supports Sierra/SD 4.49.6+. While earlier versions of Sierra/SD may produce output .m files
when requested, the previous formats were often slower and not optimized for loading into
MATLAB. As of 4.49.6, an enhancement was made to the "mfile format" of the parameters
section to turn the .m file outputs to a .csv output as a 3 column sparse format. This significantly
speeds up run time, and as such makes the updated version of Sierra/SD a requirement. The
syntax for the "mfile" and "mfileformat 3column" options are shown below.

OUTPUT
Mfile

END
PARAMETERS

Mfile_format 3colurnn
END

Figure 4. Notable part of Sierra/SD input deck.

Setting up the input parameters to run the scripts

The start of the main script (assembleMatrices . m) sets up the problem parameters.
Specifically, the parameter descriptions can be found in Table 4 below. Note that running this
script requires that all the relevant Sierra/SD runs are completed and all results stored in the
correct directories.
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Table 4. List of AssembleMatrices script parameters.

Variable name Argument Type Example Description
Input_name String capacitor_model .inp file name
Model_name String Capacitor_with_ns .exo file name
Num_proc Int 60 Number of processors

used
Num_modes Int 10 Number of modes

requested in .inp
Serial_files_dir String Npl/ Relative file path to

serial files (if
serial/parallel results
are to be compared)

Parallel_files_dir String Np60/ Relative file path to
parallel files

checkParallelWithSerial Bool (0 or 1) 0 Boolean to check
parallel results against
serial results

path_to_matlab_funcs String ../../ Relative path to
supporting MATLAB
functions

For validation purposes, the "checkParallelWithserial" flag may be turned on if both serial
and parallel results are obtained. This option will output the 2-norm of the differences between
the assembled and serial matrices. The MATLAB equation is as follows,

Error = norm ( K_serial — K_assembled, 2)

Setting up folder paths

(43)

While the script allows for control over where the files are located, the following structure is a
suggested workflow. The main script (assembleMatrices .m) and exodus-matlab file
(exodus_filename mat) are placed in a working directory. A subdirectory is then created to store
all the results of the parallel and/or serial Sierra/SD runs. Another directory (either subdirectory
or another directory located elsewhere) is formed to hold all of the supporting MATLAB sub-
functions. A picture representation of a possible file storage scheme can be seen in Fig. 5. Note
that the sub-functions are stored in an external directory for this case.

Current Folder

DINarne L
npl

Ei np40
assembleMatrices.m

D sandplate_9by9inch.exo
sandplate_9by9inch.mat

D sandplate_828DEA_9inch_modal.inp

Figure 5. Suggestion of file organization.
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What files do I need from the Sierra/SD run?

After turning on the "mfile" output option, there may be a variety of .m and .csv files produced,
depending on the particular solution case. The following table lists the files that should always be
present as they are required to reassemble the matrices.

Table 5. List of Sierra/SD results files.

File Description
Input_Deck_Name_gid_X.csv Global ID Mapping (on processor X)*
FetiMap_a_X.csv FetiMap for local node to dof mapping (on processor X)*
Stiff X.m Processor Stiffness Matrix
Mass_X.m Processor Mass Matrix
Kssr_X.m Processor Reduced Stiffness Matrix
Mssr_X.m Processor Reduced Mass Matrix

*these files are required for the logic behind reassembling the matrices

For an eigenanalysis, a possible subset of the outputted files is the following:

• Input_Deck_Name_ad_M_X.csv
• Input_Deck_Name_DispM_X.csv
• Input_Deck_Name_Disp_aM_X.csv

where M is the mode number and X is the processor number. It is important to note that only the
reduced set (or the active set) is used in the reassembly process of the eigenvectors. This is
because the files FetiMap_a and *_gid only include information on the active sets. There is no
current capability to solve for the inactive sets. As such, from the list above, only
Input_Deck_name_Disp_aM_X.csv is used in the reassembly.

Interpreting results and verification

The results of the script have been verified in two ways: i.) by comparing the serial results with
the assembled results and ii.) verifying the mass normalized mode orthogonalize the mass matrix
to unity (i.e. 0TM:0 = I). A sample results output is shown below. Note how i.) the norms of
the differences between the assembled and serial matrices are close to 0 and ii.) the identity
matrix is a product (DTMO.
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RESULTS: sandplate_82BDEA_9inch_modal.inp
Mum Proc Used: 40, lumber of Modes: 10
Total Run Time: 202.B94034s

Stiffness Matrix
Serial K Norm: 2.3635e+68, Assembled K Norm: 2.3635et0B, Oiff Norm: 9.75.78e-15
Time for loading parallel K: 92.756104s

Mass Matrix
Serial M Norm: 1.3676e-05, Assembled M Norm: 1.3676e-05, Diff Norm: 7.5056e-15
Time for loading parallel M: 31.131017s

Phi Matrix
Serial Phi Norm: B.9692e+02, Assembled Phi Norm B.9696e+02. Diff Norm: 1.9996e4-00
Time for loading parallel Phi: 40.381065s

Misc Timings
Time for loading serial data: 107.3283130s
Time far total assembly process: 0.666077s
Time far calculating resulting values: 1.3619565

Matrix Operation Check
Multiplying Phi-T M Phi... Oming assembled matrices):

1.0000 -a.oeee -a.aaae -0.0080 -0.0000 e.eeee -0.0000 -e.fflea 0.0000 0.0000
-0.0000 1.0000 0.0000 -0.6000 0.0000 0,0000 0.0000 -0.0000 -0.0000 0.0000
0.0000 0.0900 Laaae 8,0000 -0.0000 0,0000 -0.0000 -0.0000 0.13000 e.e990
-0.0008 -e.aeee 'Lame 1.0500 'Lame -8.0030 -0.0000 -0.0030 -0.0080 -e.eeee
-0.0000 0.0000 -0.0000 0.0000 LOOM 0.0000 -0.0000 -0.0000 MOH -0.0000
9.0000 0.0000 0.0000, -0.6000 0.0009 1.0000 -BAB99 9.0000 0.0000 -0.0009
-0.0000 iheeee -0.0000 -8.0000 -e.eeee -0.6100 1.0060 e.eeee -0.6000 -e.eeee
-0.0000 -0.0000 -0.0000 -6.0000 -0.0000 0.0000 ammo 1.0000 -0.0000 -0.0000
9.0000 -0.0000 0.0000, 0.0000 0.0000 0.0000 0.0000 -9.0000 1.0000 -0.6009
9.6060 0.0000 0.0610 -theeae, -e.eeee -8,eeee -0.9090 -0.0600 -0.6000 Lame

END DF PRIXRAN

Figure 6. Example results output from matrix reassembly verification.

How to use this script for other assembly processes

The main workhorse of the script occurs in parallelmap .m. This sub-function produces
"globalRow," which is how one can map the processor outputs to a single global output. For
other potential parallel matrix operations, those results should be able to be assembled by using
globalRow. The variable globalRow is an n-cell variable, where n is the number of processors
and each cell is a vector of global DOF numbers. For example, globalRow{2} will produce the
following vector,

globalRow{2} = [37 38 39 40 41 42 ... 84] (44)

That vector is the ordering for the submatrix from processor 2 (e.g. Kssr_l.m) to the global Kssr
matrix. Row 1 of Kssr_l.m is assembled into row 37 of the global Kssr matrix, and row 2 of
Kssr_l.m is put into row 38 of the global Kssr matrix, and so on.

3.2.2. Assembly Process

The process of reassembling the matrices revolves around using the global ID maps (gids) and
the FetiMap (FetiMap_a). These two files are generated per processor, and they indicate the
nodes and node ordering on each specific processor. Additionally, this process requires the
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(global) node numbering map. This map is generated with the complete exodus file, and it can be
found by running exo2mat on the input .exo file and examining the resulting .mat file in
MATLAB. Note that this works only for the active set DOF because Sierra/SD makes only that
node numbering available (e.g. fetimap_a). While other full results may be obtained (e.g.
Stiff X, Mass_X), the assembly script only works on the reduced set (Kssr_X, Mssr_X).

The bulk of the logic in recovering the matrices comes from the parallelmap function. This
returns the localMap and globalRow. The localMap variable supports the logic by forming a
processor-specific mapping of "processor global dof numbeC, "node numbeC, and "processor
local dof number." The localMap is then used in conjunction with the (global) node num map to
identify the (global) active DOF as well as generate a vector of numbers corresponding to row
indices of the global assembled matrix (nodeBegvec). These data (node num map, active DOF,
and nodeBegvec) can then be used to map from the processor nodes to the corresponding global
matrix row order (globalRow). The variable globalRow is the (per-processor) ordering of the
parallel outputs.

For example, for a 3-processor parallel Sierra/SD run producing submatrices Stiff 0, Stiff 1, and
Stiff 2, the reassembled matrix (K_global) can be found by the following operations:

K_global(globalRow{ 1 }(, globalRow{ 1}) += Stiff 0;

K_global(globalRow {2}, globalRow {2}) += Stiff 1;

K_global(globalRow { 3 }, globalRow { 3 }) += Stiff 2;

(45)
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4. CONCLUSION

This SAND report summarizes the project outcomes of a three year, early-career LDRD project
tasked with developing model order reduction approaches to efficiently and accurately solve
structural dynamics models with linear viscoelastic material behavior. Three external
publications have been produced [16-18] to provide the technical details of the approaches for
both monolithic and substructure finite element models. The sections of this report provide an
overview of the structural dynamics modeling in Sierra/SD that was utilized for the development
of reduced order models. The Prony series representation of the constitutive model provides a
tractable model for numerical implementation that is flexible enough to fit to experimental
master curves. A new code capability was added to Sierra/SD to allow for the mass and stiffness
matrices output to multiple processors to be reassembled for use in numerical computing codes
such as MATLAB. This enhancement allows for the reduced order modeling approach to be
scaled to large order models that can benefit most from model reduction schemes.

Future research in this area could extend the two-tier reduction approach to substructuring
techniques. In addition, further development is needed to populate a database of Prony series
terms of common viscoelastic materials used in engineering sciences. It is important that proper
testing be performed to obtain the time-dependent material behavior. An exemplar problem
demonstrating the ability of a ROM to accurately predict damping of a component model would
help motivate the adoption of this work as a predictive analysis tool to predict structural damping
from material constitutive behavior.
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