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Abstract

In this report, we present preliminary research into nonparametric clustering methods
for multi-source imagery data and quantifying the performance of these models. In many
domain areas, data sets do not necessarily follow well-defined and well-known probability
distributions, such as the normal, gamma, and exponential. This is especially true when
combining data from multiple sources describing a common set of objects (which we call
multimodal analysis), where the data in each source can follow different distributions and
need to be analyzed in conjunction with one another. This necessitates nonparametric den-
sity estimation methods, which allow the data to better dictate the distribution of the data.
One prominent example of multimodal analysis is multimodal image analysis, when we an-
alyze multiple images taken using different radar systems of the same scene of interest. We
develop uncertainty analysis methods, which are inherent in the use of probabilistic models
but often not taken advance of, to assess the performance of probabilistic clustering methods
used for analyzing multimodal images. This added information helps assess model perfor-
mance and how much trust decision-makers should have in the obtained analysis results.
The developed methods illustrate some ways in which uncertainty can inform decisions that
arise when designing and using machine learning models.
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Chapter 1

Introduction

Many machine learning and statistical models output point estimates that provide an-
swers to analysis questions. However, quantifying the uncertainty of the obtained estimates
so the trustworthiness of the estimates can be assessed usually does not accompany the mod-
els” outputs. This uncertainty information can be very important in decision-making. For
example, in the problem of detecting malicious URLs using supervised classification meth-
ods, uncertainty quantification of the classifiers’ results allows us to gauge the reliability of
the classifiers, particularly in deployed settings where observations may not be well covered
by the original training and validation data (Darling and Stracuzzi, 2018).

In our primary motivating example for this report, we want to segment images containing
different types of information about a particular scene (which we call multimodal imaging
data). We want to know the quality of the analysis of each individual image and the value
of each image to aiding the understanding of the scene of interest, which can have significant
ramifications on potential decisions (Stracuzzi et al., 2017a, 2018). In the problem of mul-
timodal image analysis, or multimodal data analysis in general, one of the primary issues
is that different data sources can obey different probability distributions or different data
structures, such as discrete and continuous. Furthermore, even if two data sources follow
similar distributions independently, when we combine the data sources, the combined data
may follow a completely different and unknown distribution.

Nonparametric statistical methods allow for flexible distributional modeling of datasets
that are not best described by parametric distributions. We report preliminary results in
several areas of analysis when applied to the problem of segmenting multimodal imagery data.
First, we report results on applying nonparametric clustering models to the imagery data and
compute and visualize their clustering uncertainty results. Second, we report results on a
Bayesian consensus clustering (BCC) method, which considers the source-specific clusterings
for each data source to obtain a “consensus” clustering that factors in the multiple data
sources at hand. We apply the BCC method to the imagery data and compute and visualize
the associated clustering uncertainty results.

In chapter 2, we provide some background information on nonparametric methods and the
challenges in applying these methods. In chapter 3, we discuss our implemented methods in
details and the results we obtain when applying the methods to examples of multimodal im-
agery data and the clustering uncertainty results we compute. We implement three methods:
nonparametric modal clustering method (Li et al., 2007), nonparametric mixture model (Be-

11
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naglia et al., 2009a), and Bayesian consensus clustering (BCC) (Lock and Dunson, 2013a). In
chapter 4, we discuss our results and the meanings and implications of the obtained results,
including comments on directions for future work, and we finish with concluding remarks.
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Chapter 2

Background

Recent advances in the technologies of computation and data collection has given rise
to models that exploit data in order to describe events and systems of interest. Data sets
are often incomplete, imprecise and, increasingly, too large for human comprehension —
expanding the need to quantify uncertainty about known and unknown influencing factors.
In the context of machine learning, uncertainty quantification asks the question: What is
the range of responses that a model might make given the available data and what are the
relative likelihoods of each?

Models that produce probabilistic labels provide a deeper understanding than an all-or-
nothing class assignment. A probability value indicates goodness-of-fit for candidate labels,
so a label predicted with high probability indicates that it fits a data point well given
the model. An uncertainty analysis increases understanding a step further by providing a
measure of a model’s credibility when it assesses particular examples. Therefore, a high
uncertainty (low credibility) model output indicates that alternate valid interpretations of
the data point exist and the degree to which the model can distinguish among them.

In order to obtain probabilistic labels and quantify the uncertainty of the labeling, we
need to determine the distribution of the data. In many data sets, the distribution of the
data is not best described by parametric distributions, such as the normal, exponential, and
gamma. This necessitates methods like nonparametric density estimation methods. The
classic nonparametric method for density estimation is kernel density estimation (Rosen-
blatt, 1956; Parzen, 1962). Let (z1,z2,...,x,) be a univariate independent and identically
distributed (i.i.d.) sample drawn from some distribution with an unknown density f. The
kernel density estimator of the shape of the function f is

A 1 T — x;
fule) = (=),

where K is the kernel, a symmetric, non-negative function that integrates to one, and h > 0
is a smoothing parameter called the bandwidth. There are a range of kernel functions that
are commonly used, such as the Gaussian, uniform, triangular, biweight, triweight, and
Epanechnikov. The bandwidth is often chosen by Silverman’s rule of thumb (Silverman,
1986) when the Gaussian kernel is used, or by selecting the bandwidth using the criterion of
the expected Ly risk function, also termed the mean integrated squared error:

~

MISE(h) = E| / (Fula) - f(z))da).

13



Evaluation Only. Created with Aspose.Pdf. Copyright 2002-2014 Aspose Pty Ltd.

Rather than be fixed, the length of the bandwidth can also be adapted and varied. Adaptive
or “variable-bandwidth” kernel density estimation varies the size of the bandwidth depending
upon either the location of the samples or the location of the test point. It is a particularly
effective technique when the sample space is multi-dimensional. A common method of vary-
ing the kernel width is to make it inversely proportional to the density at the test point Z,
written as P(Z):

k

"= p@)

where D is the number of dimensions of & and k is a constant (Terrell and Scott, 1992).

Depending on the nature of the data set, challenges can arise with nonparametric density
estimation. If the distribution of the data set is very complicated, it can be difficult to
select an appropriate kernel function and to accurately vary the bandwidth of the kernel
density function. Due to this, kernel density estimation can be computationally expensive.
Furthermore, being able to characterize a nonparametric density estimate is often difficult.
Even with estimating the mean and variance of the density estimate, as is often done with
parametric distributions, they cannot characterize all of the changes in the shape of the
distribution. The sampling distributions of resulting analysis estimates are related to the
nonparametric density function. However, the nonparametric density function is not very
well-defined, which makes interpreting and using uncertainty estimates difficult when the
data follows a well-defined parametric distribution.

Another problem more specific to the analysis task of segmenting multimodal imagery
data is consensus clustering, which obtains one clustering factoring in multiple data sets
that contain different types of information over a common set of objects, such as the same
number of pixels over multiple images covering the scene of interest. Existing consensus
clustering methods either cluster each image separately and then use distance metrics to
find a consensus clustering, or the multiple data sets are concatenated together and the
combined data set is segmented. However, we are interested in quantifying the uncertainty
of each image’s clustering and uncertainty the uncertainty contributions of each image to the
overall uncertainty we have about a particular scene. This suggests a method that segments
each individual image and borrows information from the image-specific clustering and the
consensus clustering to obtain the best clusterings and uncertainty estimates. We will discuss
this in depth in section 3.3.

14
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Chapter 3

Methods and Results

3.1 Nonparametric Modal Clustering

We utilize the nonparametric clustering approach of Li et al. (2007), which forms clusters
by sample points that ascend to the same local maximum (mode) of the nonparametric
density function through the use of two algorithms. The data is modeled using kernel density
functions. Given a density estimate in the form of a mixture, a new algorithm, the Modal
EM (MEM) finds an increasing path from any point to a local maximum of the density,
that is, a hilltop. The clustering algorithm groups data points into one cluster if they are
associated with the same hilltop. This approach is called modal clustering. A new algorithm,
the Ridgeline EM (REM), is also developed to find the ridgeline linking two hilltops, which
is proven to pass trough all the critical points of the mixture density of the two hills (Li
et al., 2007).

For our purposes, we only use the MEM algorithm to find the clusters in the data. We use
this algorithm to cluster multimodal imagery data and investigate methods for quantifying
the uncertainty of the clustering results and combining the clusterings of multiple images.
We review the relevant algorithms and visualization techniques, and then we present the
results of their implementation on multimodal imagery data.

3.1.1 Modal EM (MEM) Algorithm

The MEM algorithm solves a local maximum of a mixture density by ascending iterations
starting from any initial point. The algorithm is named Modal EM because it comprises
two iterative steps similar to the expectation and maximum steps in the EM algorithm
(Dempster et al., 1977). However, the objective of the MEM algorithm is different from
the EM algorithm. The EM algorithm aims to maximize the likelihood of data over the
parameters of an assumed distribution. On the contrary, the MEM seeks to find the local
maxima, that is, modes, of a given distribution.

Let a mixture density be f(z) = S_n | mfi(2), where 2 € R%, m; is the prior probability
of mixture component k, and fi(x) is the density of component k. Given any initial value
2 MEM solves a local maximum of the mixture by alterating the following steps until a

15
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stopping criterion is met. Start with r = 0.

1. Let
T fr (")
=——" k=1,.., K.
Pk f(.lf(r)) ) 5 ¢ oy

2. Update

K
Y = arg maXZpk log fi(z).
w k=1

The first step is the “Expectation” step where the posterior probability of each mixture
component k, 1 < k < K, at the current point (") is computed. The second step is the
“Maximization” step. We assume that Zszl prlog fr(z) has a unique maximum, which is
true when the f;(x) are normal densities. In the special case of a mixture of Gaussians with
common covariance matrix, that is, fx(z) = ¢(z|ux|X), where ¢(-) is the pdf of a Gaussian
distribution, we 20 = 3K p i

3.1.2 Mode Association Clustering (MAC) Algorithm

Given a data set {zy, s, ...,7,}, ; € R%, a probability density function for the data is
esitmate nonparametrically using Gaussian kernels. As the kernel density estimate is in the
form of a mixture distribution, MEM is applied to find a mode using every sample point z;,
¢ =1,...,n, as the intial value for the iteration. Two points z; and z; are grouped into one
cluster if the same mode is obtained from both. When the variances of Gaussian kernels
increase, the density estimate becomes smoother and tends to group more points into one
cluster. A hierarchy of clusters can thus be constructed by gradually increasing the variances
of Gaussian kernels.

Let the set of data to be clustered by S = {z, 72, ..., 2, }, 7; € R% The Gaussian kernel
density estimate is formed:

£@) = 3 ~olale, ),

where the Gaussian density function is

1

(el ) = = exp(—%(:v )z — ).

We use a spherical covariance matrix ¥ = D(0?) = diag(c?, 02, ...,0?). The standard devia-
tion is also referred to as the bandwidth of the Gaussian kernel.

With a given Gaussian kernel covariance matrix D(o?), data are clustered as follows:

16
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1. Form kernel density
n

flals, o) =3

=1

$(@lzs, D(0?)).

2. Use f(z|S,0?) as the density function. Use each x;, i = 1,2, ...,n, as the intial value in
the MEM algorithm to find a mode of f(x]S,c?). Let the mode identified by starting
from z; be M, (z;).

3. Extract distinctive values from the set {M,(z;),7 = 1,2,...,n} to form a set G. Label
the elements in G from 1 to |G|. In practice, due to finite precision, two modes are
regarded equal if their distance is below a threshold.

4. If My (x;) equals the kthe element in G, z; is put in the kthe cluster.

In the basic version of the algorithm, the density f(x|S,0?) is a sum of Gaussian kernels
centered at every data point. However, the algorithm can be carried out with any density
estimate in the form of a mixture. The key step in the clustering algorithm is the identi-
fication of a mode starting from any z;. MEM moves from z; via an ascending path, or
figuratively, via hill climbing, to a mode. Points that climb to the same mode are located
on the same hill and hence grouped into one cluster. We call this the Mode Association
Clustering (MAC) algorithm.

3.1.3 Density Estimation

The density of each cluster is not explicitly modeled by MAC, but a pdf for each cluster
can be obtained. These density functions facilitate soft clustering as well as cluster assign-
ment of samples outside the data set. Denote the set of points in cluster k, 1 < k < |G|, by
Cy. The density estimate for cluster k is

a@)= 3 ﬁgb(:cm,z)(a?)). (3.1)

z;:x;€Ck

Because we do not assume a parametric form for the densities of individual clusters, this
methods tends to be more robust and characterizes clusters more accurately when the at-
tempted parametric assumptions are violated.

It is known in the literature of mixture modeling that if the density of a cluster is
estimated using only known points assigned to this cluster, the variance tends to be un-
derestimated, although the effect on clustering may be small. The under estimation of
variance becomes more severe for poorly separated clusters, which often decay towards zero
too quickly on leaving the cluster. We will see a similar phenomenon here with gx(z) having
over fast decaying tails. A correction to this problem is to use soft instead of hard clustering.
Every point is allowed to contribute to every cluster by a weight computed from the posterior
probability of the cluster.

17
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Under this spirit, we can make an ad-hoc modification on the density estimation. With
gr(z) in (3.1) as the initial cluster density, compute the posterior of cluster k given each z;
by pir o %gk(x), k =1,..,|G|, subject to Zflzl pir = 1. Form the updated density of

cluster £ by
> i1 Pigd(z]zi, D(0?))

=117,

3.1.4 Hierarchical MAC (HMAC) Algorithm

When the bandwidth o increases, the kernel density estimate f(z|S,0?) in (1) becomes
smoother and more points tend to climb to the same mode. This suggests a natural approach
for hierarchical clustering. Given a sequence of bandwidths o, < 09 < ... < 0, hierarchical
clustering is performed in a bottom-up manner. We start with every point x; being a
cluster by itself. The set of cluster representatives is thus Gy = S = {xy,...,x,}. This
extreme case corresponds to the limit when o approaches zero. At any bandwidth o;, the
cluster representatives in (G;_; obtained from the preceding bandwidth are input into MAC
using the density f(z|S,0?). Note that the kernel centers remain at all the original data
points although modes are identified only for cluster representatives when [ > 1. The modes
identified at this level form a new set of cluster representatives GG;. This procedure is repeated
across all o;’s. This hierarchical clustering algorithm is the Hierarchical MAC (HMAC)
algorithm and corresponds to the mappings z; — M., (x;) = My, (Mg, (2;)) — -+ -.

Denote the partition of points obtained at bandwidth o; by P;, a function mapping z;’s
to cluster labels. If K clusters labeled 1,2, ..., K, are formed at bandwidth o;, P;(z;) €
{1,2,..., K}. HMAC ensures that P,’s are nested, that is, if P;(z;) = Pi(x;), then Py (z;) =
Pi=1(x;). Recall that the set of cluster representatives at level [ is G;. HMAC starts with
Go =1z, ...,z } and solves G}, [ — 1,2, ..., n, sequentially by the following procedure:

1. Form kernel density
n

F(@1S,07) = 3 ~o(alzs, D(o7).

i=1

2. Cluster G;_; by MAC using density f(z|S,07). Let the set of distinct modes obtained
be Gl.

3. If Piq(x;) = k and the kth element in G, ; is clustered to the k’th mode in G,
then Py(x;) = k'. That is, the cluster of x; at level [ is determined by its cluster
representative in Gj_;.

3.1.5 Visualization

In order to visualize clusterings for data of higher than two dimensions, we need to project
the results into lower dimensions. Principal component analysis (PCA), a widely used linear

18
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projection method, is not designed to reveal clustering structures. Section 5 of Li et al.
(2007) describe a novel linear projection method that reveals clustering structures.

Modal clustering provides an estimated density function and a prior probability for each
cluster. Suppose K clusters are generated. Let the cluster density function of z, x € RY,
be gix(r), and the prior probability be 7, k = 1,2,..., K. For any # € R, its extent of
association with each cluster k is indicated by the posterior probability py(x) o mpgx(z). Tp
determine the posterior probability pi(z), under a given set of priors, it suffices to specify
the discriminant functions log g;((( )), ..., log g;(i(l(;c) Without loss of generality, we use gx ()
as the basis for computing the ratios. Our projection method attempts to find a plane such
that log j}’z((z)), k=1,..,K —1 can be well approximated if only the projection of data into
the plane is specified. By preserving the discriminant functions, the posterior probabilities
of clusters will remain accurate.

Let the data set be {x1, 7, ..., 7, }, 7; € R%. Denote a particular dimension of the data set
by @y = (z14, T2, ..., Tny)', L =1,...,d. For each k, k = 1,..., K — 1, the pairs (z;,log gk(“))

gk (xi) )
. Linear regression is performed based on the

9i(xi)
‘ gk (w4)
pairs (x;, ¥ix), ¢ = 1,...,n, to acquire a linear approximation for each discriminant function.

Let Br.o, Bes Br.2, ---» Bra be the regression coefficients for the kth discriminant function. De-
note Sy = (Br.1, Br.2; - Pra)’ and the fitted values for log 1) by Gix = Bro + Bizi. Also
denote 9; 1, = ﬁ,ﬁxi = Uik — Bro. For mathematical tractablhty, we convert the approxi-
mation of the discriminant functions to the approximation of the linearly regressed values
(ins Uiz s Yik—1), © = 1,...,n, which is equivalent to approximate (9; 1, Ui 2, ..., Uik 1), since
the two only differ by a constant. To precisely specify (91, ¥iz2, ..., Ji,k—1), we need the pro-
jection of x; onto the K — 1 directions, (1, (s, ..., Bx_1. If we are restricted to showing the
data in a plane and K — 1 > 2, further projection of (g;1,%i2, ..., Jix—1) is needed. At this
stage, we employ PCA on the vectors (i1, 2, ... Ui xk—1) (referred to as the discriminant
vectors), i = 1, ..., n, to yield a two-dimensional projection. Suppose the two principal com-
ponent directions for the discriminant vectors are v; = (Vj1, ..., Vj.k-1)" 7 = 1,2. The two
principal components v;, j = 1,2, are

t=1,...,n, are computed. Let y; = log

U1, Yia Y1,K-1
~ ~ d K-1
V2,5 Y21 Y2, K—1
Sl =l | ek : g V5 6Bk
B ~ =1 k=1
Un,j Yn Yn,K—1
To summarize, the two projection directions for x; are
K-1 K—1 K—1
t .
( E Y5 kBk.15 E Vi kBk,25 s E YikBra)sJ = 1,2. (3.2)
k=1 k=1 k=1

The two projection directions in (3.2) are not guaranteed to be orthogonal, but it is easy
to find two orthonormal directions spanning the same plane.
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3.1.6 Experiments on “Vee” Multimodal Imagery

We implement the nonparametric modal clustering method on a data set we refer to as
the “Vee data,” which consists of one optical image of size 103 x 103 pixels and one lidar
image of size 100 x 100 pixels covering a concrete “V” located on the south side of Kirtland
Air Force Base in Albuquerque, New Mexico. One leg of the “V” consists of an elevated
concrete strip extending to the right from the center of a concrete circle, and the other leg
is a slightly elevated gravel path extending in a southwest direction from the lower left-hand
curve of the concrete circle. Below in Figure 3.1 are the original optical and lidar images.

- S e

Figure 3.1: Original optical (a) and lidar (b) images.

In order to visualize the performance of the clustering model, we will need to reduce the
size of the data to a dimension of two. However, we also want to plot the input data itself so
the clusters can be interpreted. Since lidar data measures of the heights of the objects in a
particular pixel, no changes to the data are necessary. However, for the optical image, which
contains the colors of the objects in a pixel and contain the red-blue-green (RGB) values of
each pixel, we decide to convert the optical image to a gray-scale image, so that each pixel’s
data value is a scalar. Alternatively, we could have applied PCA to the optical image and
obtain the first two principal component values to reduce the size of each data point from
three dimensions to two. However, principal components are often not interpretable.

Below in Figure 3.2 are the cluster assignments and the contour plots for both the optical
and lidar images. For the optical image, the nonparametric modal clustering methods finds
the optimal number of clusters to be 33, and thus, they are all very small in size and do not
really have any semantic meanings. The cluster assignments don’t correspond well at all with
the contents of the image. We cannot make out any significant features, such as the “V” or
the concrete circle. Two reasons why this may be the case are the color differences between
the objects in the image are big enough for the HMAC algorithm to distinctly cluster those
objects, and the principal components computed do not correspond well to the objects in
the image. For the lidar image, the optimal number of clusters is only seven, and the most
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prominent clusters are at the bottom center of the image (by far) and at the top center of
the image, to a much lesser extent. While the plot of the data seems to capture the “V”
a bit better than with the plot of the optical data, and one of the clusters may be able to
capture one leg of the “V”, the HMAC algorithm doesn’t capture the “V” that is the center
of the scene very well. This is likely due to the fact that the “V” is only slightly elevated
from the ground, and the height difference between the “V” and the ground may not have
been big enough for the HMAC to distinguish the “V”.

We note that the cluster assignments are based on the hard assignments made by the
HMAC algorithm for each pixel. An alternative method is assigning clusters by selecting
the maximum estimated density value over all of the possible clusters, gi(x). However, we
find that the cluster assignments chosen from the maximum estimated value of gi(z) do not
always agree with the cluster assignments made by the HMAC algorithm. This indicates
that the density estimation method is not an accurate and robust method for estimating the
cluster probabilities for each pixel. One possible explanation is that the density estimates,
gr(x), are computed outside of the HMAC algorithm, but this does not necessarily describe
the cluster probability, which is a parameter estimated as part of the clustering algorithm
seen in methods such as the Gaussian mixture model and the nonparametric mixture model
(Benaglia et al., 2009a). Because the clustering probability results are not trustworthiness,
we do not perform an uncertainty analysis.
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Figure 3.2: Cluster assignment and contour plots for the nonparametric modal clustering
method applied to a 103 x 103 optical image converted to gray scale (a) and to a 100 x 100
lidar image (b). For the optical image, the image is segmented into 33 clusters. For the lidar
image, the image is segmented into seven clusters.

3.1.7 Discussion and Future Work

One of the biggest drawbacks of the nonparametric modal clustering method is that
the posterior clustering probabilities, which estimate the probabilities of each data point
belonging to a specific cluster after the data point has been observed, is estimated outside
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of the clustering algorithm. This is unlike the EM algorithm for fitting Gaussian mixture
models, when the posterior clustering probabilities are estimated as the number of clusters
and the cluster assignments for each data point are determined. Therefore, modifying the
method to estimate the posterior clustering probabilities is a big area of future work that
would greatly aid in computing the uncertainty of this model’s performance in clustering
image data.

3.2 Nonparametric Mixture Model

Benaglia et al. (2009a) propose an EM-like algorithm for fitting a non-parametric mixture
model to multivariate random vector data. Suppose the vectors X4, ..., X, are a simple
random sample from a finite mixture of m > 1 arbitrary distributions. The density of each
X; may be written

mm=2&mm, (3.3)

where x; € R", o' = (A, ¢") = (A1, ...; Ay @1, ..., @) denotes the parameter, and the A,
are positive and sum to unity. We assume that the ¢; are drawn from some family F of
multivariate density functions (say, absolutely continuous with respect to Lebesgue measure).

A common restriction placed on F is that each joint density ¢;() is equal to the product
of its marginal densities. In other words, the coordinates of the X; vectors are independent,
conditional on the subpopulation or component (¢; through ¢,,) from which X; is drawn.
Therefore, model (3.3) becomes

9006) = > N [ Firlan), (3.4)

=

where the function f(-), with or without subscripts, will always denote a univariate density
function. Another special case of the model is in which the density f;(-) does not depend on
k, that is, in which the X; are not only conditionally independent but identically distributed

as well:
90(c0) = > A [ filan), (3.5)
=1 k=1
where we assume that f;1(-) =... = f;-(-) for all j.

To encompass both the special case (3.5) and the more general case (3.4) simultaneously,
we allow that the coordinates of X; are conditionally independent and that there exist blocks
of coordinates that are also indetically distributed. These blocks may be all of size one so
that case (3.4) is still covered, or there may exist only a single block of size r, which is base
(3.5). If we let by denote the block to which the kthe coordinate belongs, where 1 < b, < B
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and B is the total number of such blocks, then equation (3.4) is replaced by

m

Z/\ H Fiv (Tix) (3.6)

The nonparametric EM algorithm begins with given initial values ¢ = (A° f°). Then
for t = 1,2, ..., we follow these three steps:

1. E-step: Calculate the “posterior” probabilities (conditional on the data and ¢') of
component inclusion,

Py = Pye(Zy; = 1|x:) (3.7)
_ AT St -
Z/ 1 ] . lf’bk(xlk)
foralli=1,..,nand j=1,....m
2. M-step: Set
B = % ipgj (3.9)
i=1

forj=1,...m

3. Nonparametric density estimation step: For any real u, define for each component
j €{1,...,m} and each block | € {1, ..., B}

t+1 _ %ZT:I Z?ﬂ pﬁjl{bk = Z}K(M)
fi(w) = kZZ 12? T =T} (3.10)

:nhcxﬂzzpw”bk I}K (= z’k) (3.11)

k=1 i=1

where K (-) is a kernel density function, h is a bandwidth chosen by the user, and

r

Cr=) I{bp=1}

k=1

is the number of coordinates in the [the block. Note that in the case in which b, = k
for all k, equation (3.10) becomes

mzk
1 () W — Z P K . (3.12)
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Figure 3.3: Original Philadelphia optical (a) and lidar (b) images.

3.2.1 Experiments with Philadelphia Multimodal Imagery

We fit the nonparametric mixture model to the Philadelphia optical and lidar images,
which we reproduce in Figure 3.3 for convenience.

The model fit is done using the R package mixtools (Benaglia et al., 2009b), which is
associated with Benaglia et al. (2009a). The bandwidth is chosen using the method of
Benaglia et al. (2011). The implementation is very slow, and we are only able to run 10
iterations though the EM-like algorithm. Below in Figure 3.4 are the category confusion plots
showing the entropy only (top row) and the entropy overlaid onto the most probable category
(bottom row) for optical (a) and combined (b) imagery. In the top plots of columns (a) and
(b) that contain the black-and-white plots of the entropy values for the cluster probabilities
at each pixel, where whiter colors indicate entropy values closer to one and thus, higher
uncertainty, we see that there are many more whiter colors when we only consider the
optical image (column (a)) than when we also incorporate the lidar image (column (b)). In
the bottom plots of columns (a) and (b) that contain the cluster assignments overlaid on to
the entropy values, we can see more distinct clusterings of objects, such as the shadows cast
by the building, when we incorporate the information from the lidar image.

Below in Figure 3.5 are the category uncertainty plots showing the standard deviation
of the posterior distribution alone (top row) and overlaid onto the most probable category
(bottom row) for optical (a) and combined (b) imagery. In the top plots of columns (a)
and (b) that contain the black-and-white plots of the standard deviation values for the
cluster probabilities of the assigned cluster at each pixel, where whiter colors indicate higher
standard deviation values, and thus, higher uncertainty, we see that there are many more
whiter colors when we also incorporate the lidar image (column (b)) as opposed to only
considering the optical image (column (a)). This is especially true for the building, which is
very distinct and has very lower uncertainty in the optical image. However, when we look
at the bottom plots of columns (a) and (b) that contain the cluster assignments overlaid on
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Figure 3.4: Category confusion plots showing the entropy only (top row) and the entropy
overlaid onto the most probable category (bottom row) for optical (a) and combined (b)
imagery.

to the standard deviation values, we can see more distinct clusterings of objects, such as the
shadows cast by the building, when we incorporate the information from the lidar image,
even though there seems to be more variance in the estimated clustering probabilities.

Below in Figure 3.6 are the violin plots for a roof pixel showing the change in posteriors
before (a) and after (b) incorporating lidar data into the analysis. For this particular pixel,
we see that after incorporating lidar data, we now have five classes instead of only four
for when we only consider the optical data. For the optical clustering probabilities, class
two and class three are fairly close in variability (as indicated by the length of the bar),
while classes one and four have much lower variability. For the combined data, we see much
higher variabilities for classes one, two, and four, while there is much lower variabilities for
classes three and five. This indicates that for this particular pixel, incorporating the lidar
data increases the level of clustering uncertainty, as there is more variability in the cluster
probabilities.

Finally, below in Figure 3.7 are the probability maps showing green category pixel proba-
bilities based on optical data (a), combined optical and lidar (b), and the difference between
the two (c). Panel (d) shows the K-L divergence between the category posteriors associated
with panels (a) and (b). From panel (c¢), we see that the largest differences between the pixel
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Figure 3.5: Category uncertainty plots showing the standard deviation of the posterior
distribution alone (top row) and overlaid onto the most probable category (bottom row) for
optical (a) and combined (b) imagery.
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Figure 3.6: Violin plots for a roof pixel showing the change in posteriors before (a) and after
(b) incorporating lidar data into the analysis.
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probabilities between the optical data (panel (a)) and combined data (panel (b)) is in the
roof region of the building. In the K-L divergence plot in panel (d), we see that the biggest
differences between the probability distribution of the cluster probabilities lies in the roof
region of the building.

(c) =Bkt | (d)

Figure 3.7: Probability maps showing green category pixel probabilities based on optical
data (a), combined optical and lidar (b), and the difference between the two (c). Panel (d)
shows the K-L divergence between the category posteriors associated with panels (a) and

(b).

Through using measures such as Shannon’s entropy and standard deviation to represent
the clustering uncertainty at the pixels of an image, we can assess the differences in cluster
probabilities and the level of variance and uncertainty in the cluster probabilities at each
pixel. This gives insight into the value of each image into the usefulness of our analysis to-
wards decision-making. In the Philadelphia imagery example, we see that after incorporating
the lidar image along with the optical image, we get more distinct cluster assignments and
there are certain classes with much higher probabilities compared to other classes. However,
there can be more variance in the cluster probabilities for the assignment cluster, which
means greater uncertainty in the estimates of the cluster probabilities. Overall, in this ex-
ample, lidar gives more information for distingishing the important features in this scene in

Philadelphia.
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3.2.2 Discussion and Future Work

We now visually compare the results of the NMM to the fit of the GMM (see Chapters 4
and 5 of Stracuzzi et al. (2017a) for an in-depth analysis of these results) by using the same
visualization we use for the NMM results. For the GMM, the entropy plots are in Figure 3.8,
the standard deviation plots are in Figure 3.9, the violin plots for the same roof pixel are in
Figure 3.10, and the probability maps and KL-divergence plot are in Figure 3.11.

Figure 3.8: GMM category confusion plots showing the entropy only (top row) and the
entropy overlaid onto the most probable category (bottom row) for optical (a) and combined
(b) imagery.

In the NMM, the clusterings are much messier and it is much more difficult to identify
potential semantic meanings for the clusters. There is also higher uncertainty when applying
the NMM as opposed to the GMM. This is evident when comparing the entropy, standard
deviation, probability maps, and K-L Divergence plots. One possible reason that we spec-
ulate for this is the NMM allows the data to dictate the distributions of the clusters, and
therefore, there is much more potential variability and error in the model fit. However, this
needs to be investigated further. In addition, the results presented here are obtained after
running one iteration through the EM algorithm and with 10 bootstrap samples. This is
largely due to the computational cost and the very slow speed that the algorithm runs at. In
addition to seeing how we can implement the NMM much faster, we also need to investigate
how does uncertainty change with different numbers of iterations through the EM algorithm
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(b)

Figure 3.9: GMM category uncertainty plots showing the standard deviation of the posterior
distribution alone (top row) and overlaid onto the most probable category (bottom row) for
optical (a) and combined (b) imagery.

and the number of bootstrap samples, and the reasons for these changes. Additional areas
of future work include improved parameter tuning for the NMM, integration of supervised
labels (like with Experiments 3 and 4 described in section 4 of Stracuzzi et al. (2018)), and
a mathematical framework for multimodal uncertainty analysis with the NMM.
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Figure 3.10: GMM violin plots for a roof pixel showing the change in posteriors before (a)
and after (b) incorporating lidar data into the analysis.

3.3 Bayesian Consensus Clustering

In multimodal data analysis, consensus clustering (also called ensemble clustering) deter-
mines an overall partition of the objects that agree with the most source-specific clusterings.
In other words, after clustering each data source, what is the overall clustering that factors
in all data sources?

There have been exploratory methods that simultaneously model shared features and
features that are specific to each data source have been developed as flexible alternatives to
separate analyses of each data source and methods that perform joint analysis while ignoring
the heterogeneity of the data (Lock et al., 2013; Lofstedt and Trygg, 2011; Ray et al., 2014;
Zhou et al., 2012). Most application of clustering multisource data follow one of two general
approaches:

1. Clustering of each data source separately, potentially followed by a post hoc integration
of these separate clusterings.

2. Combining all data sources to determine a single ’joint’” clustering.

Under approach (1), several functions and algorithms to perform consensus clustering
have been proposed [see Nguyen and Caruana (2007) for a survey]. Most of these meth-
ods do not inherently model uncertainty, and statistical models assume that the separate
clusterings are known in advance (Wang et al., 2010, 2011). Consensus clustering is most
commonly used to combine multiple clustering algorithms, or multiple realizations of the
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Figure 3.11: GMM probability maps showing green category pixel probabilities based on
optical data (a), combined optical and lidar (b), and the difference between the two (c).
Panel (d) shows the K-L divergence between the category posteriors associated with panels
(a) and (b).

same clustering algorithm, on a single dataset. These approaches models source-specific fea-
tures and determines an overall clustering. However, the two-stage process of performing
entirely separate clusterings followed by post hoc integration limits the power to identify
and exploit shared structure.

Approach (2) effectively exploits shared structure, at the expense of failing to recognize
features that are specific to each data source. Within a model-based statistical framework,
one can find the clustering that maximizes a joint likelihood. Assuming that each source
is conditionally independent given the clustering, the joint likelihood is the produce of the
likelihood functions for each data source. This approach has been used in the context of
integrating gene expression and DNA methylation data (Kormaksson et al., 2012). The
iCluster method (Mo et al., 2013; Shen et al., 2009) performs clustering by first fitting a
Gaussian latent factor model to the joint likelihood, and then the clusters are determined by
K-means clustering of the factor scores. Rey and Roth (2012) propose a dependency-seeking
model in which the goal is to find a clustering that accounts for associations across the data
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sources.

More flexible methods allow for separate but dependent source clusterings. Dependent
models have been used to simultaneously cluster gene expression and proteomic data (Rogers
et al., 2008), gene expression and transcription factor binding data (Savage et al., 2010), and
gene expression and copy number data (Yuan et al., 2011). Kirk et al. (2012) describe a more
general dependence model for two or more data sources. Their approach, called Multiple
Dataset Integration (MDI), uses a statistical framework to cluster each data source while
simultaneously modeling the pairwise dependence between clusters. However the pairwise
dependence model does not explicitly model adherence to an overall clustering.

We use the Bayesian consensus clustering (BCC) approach (Lock and Dunson, 2013a),
which we summarize below. BCC differs from traditional consensus clustering in three key
aspects.

1. Both the source-specific clusterings and the consensus clustering are modeled in a
statistical way that allows for uncertainty in all parameters.

2. The source-specific clusterings and the consensus clustering are estimated simultane-
ously, rather in two stages. This permits borrowing of information across sources for
more accurate cluster assingments.

3. The strength of association to the consensus clustering for each data source is learned
form the data and accounted for in the model.

3.3.1 Finite Dirichlet mixture models

The Bayesian consensus clustering (BCC) method is an extension of the Dirichlet mixture
model to accommodate data from multiple data sources. We begin with a description of the
finiste Dirichlet mixture model for clustering a single dataset. Given data X,, for N objects
(n=1,...,N), the goal is to partition these objects into at most K clusters. Typically, X,
is a multidimensional vector, but it can assume more complex data strictures. Let f(X,|0)
define a probability model for X,, given parameter(s) 6. For example, f may be a Gaussian
density defined by the mean and variance § = (u,0?). Each X, is drawn independently
from a mixture distribution with K components, specified by the parameters 64, ..., 0. Let
C,, € {1,..., K} represent the component corresponding to X,,, and 7, be the probability
that an arbitrary object belongs to cluster k:

Then, the generative model is

X, ~ f(:|6x) with probability 7.

Under a Bayesian framework, one can put a prior distribution on IT = (7, ..., mx) and
the parameter set © = (6, ...,0k). It is natural to use a Dirichlet prior distribution for II.
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Standard computational methods can then be used to approximate the prior distribution
for TI, ©, and C = (C4,...,Cy). The Dirichlet prior is characterized by a K-dimensional
concentration parameter 3 of positive reals.

3.3.2 Integrative model

The integrative model is the extension of the Dirichlet mixture model to accommodate
data from M sources Xy, ..., X;;. Each data source is available for a common set of N objects,
where X,,, represents data m for object n. Each data source requires a probability model
fm(Xn|0m) parameterized by 6,,. Under the general framework presented here, X,, may
have disparate structure. For example, X;,, may give an image where f; defines the spectral
density for a Gaussian random field, while X5, may give a categorical vector where f, defines
a multivariate probability mass function.

We assume there is a separate cluster of the objects for each data source, but that there
adhere loosely to an overall clustering. Formally, each X,,,, n =1,..., N, is drawn indepen-
dently from a K-component mixture distribution specified by the parameters 6,,, ..., 0,k
Let Ly, € {1,..., K} represent the component corresponding to X,,,. Furthermore, let
X, € {1,..., K} represent the overall mixture component for object n. The source-specific
clusterings LL,, = (L1, ..., Lmn) are dependent on the overall clustering C = (C4, ..., Cy):

P L= k|C:) = vk, G, O,

where «,, adjusts the dependence function v. The data X, are independent of C condi-
tional on the source-specific clustering L,,,. Hence, C serves only to unify Ly, ...,Ls;. The
conditional model is

P(Lmn = k|an7 Cna emk) X V(k7 C’ru am)fm(an|9mk)
Throughout this article, we assume v has the simple form

if =L
Uk, Co ) = {?Z:m if C, mn

K-17

(3.13)

otherwise

where o, € [%, 1] controls the adherence of data source m to the overall clustering. More
simply, «, is the probability that L,,, = C,,, so that if a,,, = 1, then LL,, = C. The a,, are
estimated from the data together with C and L, ..., L,,.

Let 7 be the probability that an object belongs to the overall cluster k:
We assume a Dirichlet() prior distribution for II = (7, ..., mx). The probability that an
object belongs to a given source-specific cluster is

1—a,,

P(Lmn:k|H):7Tkam+(1_7Tk)K_l

(3.14)
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A simple application of Bayes rule gives the conditional distribution of C:

M
P(Cp = k|L, I, @) o< . [ [ ¥(Linn, K, otm),

m=1

where v is defined as in (3.13). Integrating over the overall clustering C gives the joint
marginal distribution of Ly, ..., Ly:

K M
P({Lyn = by }M_|T1, @) Zﬂ'k H V(km, ky o).
k=1 m=1

3.3.3 Estimation

We implement a general Bayesian framework for estimation of the integrative clustering
model. A Gibbs sampling procedure is used to estimate the posterior distribution for the
parameters. No specific form for the f,, and the parameters 6,,; is assumed.

We assume that X; has a normal-gamma mixture distribution with cluster-specific mean
and variance. Mathematically,

an\Lmn =k~ N(,unma ka)y

where

® [k is a D, dimensional mean vector, where D,, is the dimension of data source m.

e X, isa D, x D, diagonal covariance matrix, ¥,x = Diag(omk1, .., OmkD,, )-

We use a D,, dimensional normal-inverse-gamma prior distribution for ,,x = (fmk, Lmk)-
That is,
Ok ~ NI (mos Moy Amos Bmo),

where 7,0, Ao, Amo, and B,,o are hyperparameters. It follows that u,,, and ¥, are given
by

. 021kd ~ Gamma(A,04, Bmoa), and
m

g

® fimkd ~ N(Nmo, i”:d) ford=1,...,D,,.

We set \g = 1 and estimate 0, Ao, and B, from the mean and variance of each variable
in X,,.

We also use conjugate prior distributions for «,,, and II.

34



Evaluation Only. Created with Aspose.Pdf. Copyright 2002-2014 Aspose Pty Ltd.

e «,, ~ TBeta(a,, = 1,b,, = 1, %), the Beta(a,, by,) distribution truncated below by %
By default, we choose a,, = b,, = 1, so that the prior for «,, is uniformly distributed

1
between 7 and 1.

e II ~ Dirichlet(5y = (1,1, ..., 1)), so that the prior for IT is uniformly distributed on the
standard (M — 1)-simplex.

Markov Chain Monte Carlo (MCMC) iteratively samples from the following conditional
distributions:

e 0,|X, Ly ~ 0 (0| X, L) for k=1, .., K

emk ~ NF_I(T/mka )\ka AmOa BmO)

Lol X, Oms iy C ~ P(k| X n, Cry Ok, i) for n=1,..., N, where

P<k|an7 Cnuemkuam) X I/(k, Cn;am>fm<an|9mk)

& |C, Ly, ~ TBeta(am + Tmy b + N — T, %), where 7, is the number of samples n
satisfying L,,, = C,,.

o C|L,,, 1T, ~ P(k|IL, { Ly, 0 }M_,) for n =1,..., N, where
M
Pk, { Linn, 0} ) o H vk, Lo, O, )
m=1

II|C ~ Dirichlet(5y + p), where pj, is the number of samples allocated to cluster k in C
Lock and Dunson (2013a,b)

3.3.4 Multimodal Uncertainty Quantification

We extend the work of Lock and Dunson (2013a) by quantifying the uncertainty of
the parameter estimates and mathematically relating the uncertainties between the source-
specific clustering results to the uncertainty in the overall clustering results. We use the
variance as our measure of uncertainty in the results obtained after implementing the BCC
method. Thus, the uncertainty of the overall clustering is the variance of the distribution of
the cluster probabilities. This can be written as Var[P(C,, = k)| for the overall consensus
clustering. The uncertainty of the source-specific clusterings are Var[P(Ly,, = kp,)| for
data source m. We wish to relate the uncertainty of the overall consensus clustering to the
uncertainty of the source-specific clusterings.

The concrete example we use is the analysis of the optical and lidar images of Philadel-
phia’s Schuylkill River. Each image represents a data source, so we have M = 2. We will
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derive our mathematical expressions for this specific case. The derivations for the general
case of any number of M data sources is an area of future work.

Recall that in BCC, the conditional distribution of the overall consensus clustering C is

M
P(C, =KL, 11, o) ox 7, H V(L ky ai).

m=1

Therefore, the uncertainty of the overall clustering is

M
Var[P(C,, = k|L, IT, &)] o Var[mi [ [ v(Linn, k, cm))-

m=1

In the case of M = 2, from the definition of the dependence function v in (3.13), Var[P(C,, =
kL, 11, )] can be written more specifically as

Var[P(C,, = k|L,II, «)] o< Var{mg[v(L1in, k, a1)][v(Lan, k, a2)] }
Var[mpaq ), if Ly, =k, Lo, =k
[ﬂ-kal 1](_&12]7 if Lln = ky L2n # k
Var[ﬂk 1}(_311 042], if Lln # ]{Z, Lgn =k
Va [ﬂ'k 1oy 17&2], if Lln ?é IC, Lgn 7& k.

For the sake of simplicity, we will omit the conditioned variables for each posterior, but
in all future expressions, they are for the conditional distributions. Since 7, oy, and s are
all dependent,

Var(mpaian) = Cov(nz, adas) + (Var(my) + [E(m)]?) (Var(aiag) + [E(aras)]?)
— [Cov(mg, aran) + E(mg) E(aroan))?
Var(ajay) = Cov(ai, a3) + (Var(ay) + [E(ay)]?)(Var(az) + [E(a2)]?)
— [Cov(ay, az) + E(a1)E(az))?

Var(mpaian) = Cov(nz, adal) + (Var(my) + [E(m4)]?) (Cov(a?, a3)
+ (Var(ay) + [E(a1)]?) (Var(az) + [E(as)]?) — [Cov(ay, az) + E(o1)E(ay))?

-~

[BE(a1a2)]?

+ [E(o102)]?) — [Cov(my, aran) + E(m) E(aras))?
= Cov(m;, aia3) + (Var(m) + [E(m)]*) (Cov(ad, a3)
+ (Var(aa) + [E(an)]?) (Var(ag) + [E(a2)]?)) — [Cov(my, anaz) + E(m) E(caz)]®

Relating Var(my), Var(ay), and Var(as), we can conclude that the uncertainty for the
overall clustering is directly proportional to the uncertainties for the adherence
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of the source-specific clusterings to the overall clustering, which affect the results of
the source-specific clusterings.

Using the conjugate priors for fitting the BCC to the imagery data described in section
3.3.3, we can specify some of the expressions. Recall that the conditional distribution for II,
the vector of overall clustering probabilities, is

II|C ~ Dirichlet(8y + p), Bo = (1,1, ..., 1),

and since the marginal distribution of each element of a Dirichlet-distributed vector is the
beta distribution, the conditional distribution of m;|C is

K
k| C ~ Beta(l + pr, Y (1 +pi) — (14 pr)) = Beta(l + p, K — 1+ Y pi).
i=1 i#k

The conditional expectation of 7 |C is

L+ pr
K—1+3upi

E(Trk|(C) =

and its conditional variance is

(L4 pr) (K — 1432 pi)

VO = e T F Pt K+ 5, )

For the adherence of each data source to the overall clustering, «,, recall the conditional
distribution of ay,|C, Ly, is

1 1
a,|C, Ly, ~ TBeta(am + Tm, bm + N — T, E) = TBeta(l + 7y, 1 + N — 7, R)

Let B(z;a,b) = [, t*'(1 —t)*"'dt be the incomplete Beta function. Then the conditional
first and Second moments are variance are

(0| C. L] B(% 2+ T, 1+ N —7,) — B(L;2+ 7, 1 + N — 1)
e B(1i1+7m, 1+ N —7p) = B(Li1 470, 1+ N — 7)

02 [C, L ]:B(%;3+Tm,1+N—Tm)—B(1;3+Tm,1+N—Tm)
g B(%;14+ Tmy 14+ N — 1) = B(1;14 7, 1 + N — 7)
Var(a[C. L) B(%3+Tm,1+N—Tm)—B(1;3+Tm,1+N—Tm)
B(#: 14+ T, 1+ N — 7)) = B(L; 1+ 7, 1 + N — )

(%24 T, L+ N = Tin) = B(1;2 4 T, 1 + N — 730
(214 T, L+ N — 7)) = B(Li1 + 7, 1+ N — 7)

¥
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Therefore, the uncertainty of the overall clustering is

Var(mra o)
(L+pe) (K =1+ 0i) [ L+ pg
(K+Zfi1 01)2(1+K+Zfi1 pi) K- 1+Zi¢k'ai

B(%;?»—H’l,l—f—]\f—ﬁ)—B(1;3—l—7'1,1+N—7'1)
B(%;1+71,1—|—N—7'1)—B(1;1—|—7'1,1—|—N—7'1)
B(%;Q—Fﬁ,l—i—]\/’—ﬁ)—B(1;2+7'1,1+N—7'1)}2+
B(%;l—f-Tl,l—i—N—Tl)—B(l;l—f—Tl,l—l-N—Tl)
1;2+7171+N—7'1)—3(1;2+7'1,1+N—7'1)]2)X
147,14 N—m)—B(1;1+7,1+ N —m7)
34+ 7,1+ N—7)—B(1;34+ 7,1+ N —1n)
14+7,1+ N—7)—B(1;1+7m,1+ N —n)
(%;2+7‘2,1—|—N—7’2)—B(l;2+7’2,1—|—N—7’2)
- (%;1+TQ,1+N—TQ)—B<1;1+T27]_+N—’7'2)
B(%;Q—FTg,l—l—N—TQ)—B(1;2+7'2,1+N—7'2) 5
B(%;l‘i‘TQ,l—}-N—TQ)—B(1;1+T2,1+N—T2>] }
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We do not have expressions for the covariance term because that would require the
derivation of the joint distributions between the variables in the covariance terms, which we

need to figure out how to derive. That is an area of future work (Chen et al., 2018).

3.3.5 Simulations

We demonstrate our derivations through two simulation studies that both generate two
datasets and data points that belong in two clusters. In the first simulation, we generate
data where the two clusters have high separability, and one dataset has perfect adherence to
the overall clustering, while the other dataset has no relationship to the overall clustering.
In the second simulation, the clusters are much less separated and the boundary between the
two clusters is much more muddled. Also, both datasets have the same level of adherence

to the overall clustering.

Simulation One

Following the simulation setup in section 3 of Lock et al. (2013), we generate two simu-
lated datasets, denoted as X; and X, each with 200 observations (N = 200) and each is a
two-dimensional vector. We generate the simulated datasets X; : 2 x 200 and X, : 2 x 200

as follows:
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1. Let C define two clusters, where C,, = 1 for n € {1,...,100} and C,, = 2 for n €
{101, ..., 200}

2. Set a; =1 (perfect relationship) and as = 0.5 (no relationship).

3. For m = 1,2 and n = 1,...,200, generate L,,, € {1,2} with probabilities P(L,, =
C,)=aand P(Ly, #C,) =1-a.

4. For m = 1,2, draw values X,,,, from a Ny([5,5], I5) distribution if L,,, = 1 and from
a Ny([—5, —=5], I3) distribution if L,,, = 2.

Note that I5 is an identity matrix of size 2 x2. We run the BCC method to obtain overall and
source-specific clusterings of two clusters each (K = 2), and we run 10,000 MCMC iterations
using the bayesCC package in R, which is associated with Lock and Dunson (2013a). The
point estimates of the parameters are the maximum a posteriori (MAP) estimates, which is
taken by averaging the estimated values of the parameters after the burn-in sample to the
last iteration. Since the burn-in is half of the number of iterations, the MAP estimate is the
average of the estimated values over the last 5,000 MCMC iterations.

Below in Figure 3.12 are visualizations of the simulated data with the actual overall
clustering and the source-specific clusterings for X; and X,. We will compare the estimated
clusterings from the BCC method and the quantified uncertainty to these results.

nulated Data with Actual Overall Cluster Assignments (Both Data Sources) («y=1 a,=05) Simulated Source 1 Data with Actual Source 1 and Overall Clustering Assignments Simulated Source 2 Data with Actual Source 2 and Overall Clustering Assignments
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Figure 3.12: Simulated Data and Clusterings

Below are the estimated adherences of sources one and two to the overall clustering,
denoted by «; and s, respectively, as well as their variances to measure the uncertainty of
the adherence values for the two data sources.

&y = 0.994927  Var(é1)=2.5397 x 1075
Gy = 0.9949106  Var(2)=2.52402 x 10~

Below in Figure 3.13 are visualizations of the overall and source-specific clusterings esti-
mated by BCC and the point-wise clustering uncertainties. The estimated adherences and
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the uncertainties of the adherences for the two data sources are both very similar. The
primary difference between the two data sources is in the variance of the clusterings. We
see that for source one, most of the variances in the clusterings are between 2 x 107! and
4 x 10713, On the other hand, for source two, most of the variances in the clusterings are
between 2 x 107 and 4 x 107!, Thus, the variance in the clusterings of source two have
the most influence on the uncertainties in the overall clustering.

Since the estimated adherences for both data sources are near one, we see that the
overall clustering is pretty similar to the source-specific clusterings of data sources one and
two. While we have not yet done an extensive analysis as to why the estimated adherence
for source two (true ay = 0.5) is so different than the true value, it appears this may
be contradictory to the established accuracy of the estimates discussed in section 3.1 of
Lock et al. (2013). However, in our simulation, the source-clustering errors (proportion
of differences between the actual source-specific clusterings and the BCC estimated source-
specific clusterings) and the overall error (proportion of differences between the actual overall
clusterings and the BCC estimated overall clusterings) are pretty low (almost zero), which
is consistent with the findings in section 3.2 of Lock et al. (2013).

llated Data with Estimated Overal Cluster Assignments (Both Data Sources) and Uncertainty ted Source 1 Data with Estimated Source 1 Cluster Assignments with Uncertainty (Variance) ted Source 2 Data with Estimated Source 2 Cluster Assignments with Uncertainty (Variance)
1y=0.904927040120026 Var(3, =2 5307227653663 05 1,=0.904010576276110 Var(d;)=2 52401094036936e.05
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Figure 3.13: BCC Estimated Clusterings and Uncertainty

Simulation Two

We generate the simulated datasets X; : 2 x 200 and X, : 2 x 200 as follows:

1. Let C define two clusters, where C,, = 1 for n € {1,...,100} and C,, = 2 for n €
{101, ..., 200}.

2. Draw « from a Uniform(0.5,1) distribution. Let a; = as = a. The true a = 0.8595756.

3. For m = 1,2 and n = 1,...,200, generate L,,, € {1,2} with probabilities P(L,,, =
Cy) = @ diid Pl # Cy) = 1 — ¢
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4. For m = 1,2, draw values X,,,, from a Ny([1.5,1.5)', I1) distribution if L,,, = 1 and
from a Ny([—1.5, —1.5]', I,) distribution if L,,, = 2.

Note that I is an identity matrix of size 2 x 2. We run the BCC method to obtain overall
and source-specific clusterings of two clusters each (K = 2), and we run 10,000 MCMC
iterations using the bayesCC package. The point estimates of the parameters are the MAP
estimates.

Below in Figure 3.14 are visualizations of the simulated data with the actual overall
clustering and the source-specific clusterings for X; and X,. As compared to Simulation
One, the boundaries between the clusters are much less distinct because the centroids of the
clusters are much closer to one another. We will compare the estimated clusterings from the
BCC method and the quantified uncertainty to these results.

Simulated Data with Actual Overall Cluster Assignments (Both Data Sources) (=, = 0.8595756) Simulated Source 1 Data with Actual Source 1 and Overall Clustering Assignments Simulated Source 2 Data with Actual Source 2 and Overall Clustering Assignments
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Figure 3.14: Simulated Data and Clusterings

Below are the estimated adherences of sources one and two to the overall clustering,
denoted by «y and as, respectively, as well as their variances to measure the uncertainty of
the adherence values for the two data sources.

a; = 0.97638 Var(é&;)=0.0003759
Gy = 0.9778899  Var(dy)=0.0003706

Below in Figure 3.15 are visualizations of the overall and source-specific clusterings esti-
mated by BCC and the point-wise clustering uncertainties. The estimated adherences and
the uncertainties of the adherences for the two data sources are fairly similar. The estimated
adherence for source one (&3 = 0.97638) is slightly lower than that of source two (&g =
0.9778899), with the estimated adherence uncertainty for source one (Var(a;)=0.0003759)
beings slightly higher than that for source two (Var(é2)=0.0003706). From these estimated
statistics, it is very difficult to tell if one source has more influence than the other on the
overall clustering. When we look at the visualizations in Figure 3.15, both data sources have
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seemingly equal correspondence to the overall clustering. We note that compared to Simu-
lation One, the magnitudes of uncertainties for the clustering probabilities and the source
adherences are both higher. This is an expected result, as the two clusters have much more
overlap than in Simulation One, where the clusters are much more distinct.

While we have not yet done an extensive analysis as to why the estimated adherences
for both sources (true ap = 0.8595756) are noticeably different than the true value, it ap-
pears this may be contradictory to the established accuracy of the estimates discussed in
section 3.1 of Lock et al. (2013). However, in our simulation, the source-clustering errors
(proportion of differences between the actual source-specific clusterings and the BCC esti-
mated source-specific clusterings) and the overall error (proportion of differences between
the actual overall clusterings and the BCC estimated overall clusterings) are both around
15%, which is consistent with the findings in section 3.2 of Lock et al. (2013).

Simulated Data with Estimated Overall Cluster Assignments (Both Data Sources) sted Source 1 Data with Estimated Source 1 Cluster Assignments with Uncertainty (Variance) sted Source 2 Data with Estimated Source 2 Cluster Assignments with Uncertainty (Variance)
{iy=0.97638373141146 Var(d) =0.000375936345165099 5: =00778399177086%4 \/ar(ﬂz) 1=0,000370614390354757
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Figure 3.15: BCC Estimated Clusterings and Uncertainty

3.3.6 Experiments with Philadelphia Multimodal Imagery

We obtain source-specific and consensus clusterings of the Philadelphia imagery data
using BCC. We have two data sources (images), so M = 2. Each image is of size 100 x 100
pixels for a total of 10,000 pixels, so N = 10,000. We use BCC with six clusters for each
image and the overall clustering, so K = 6. This is implemented using the bayesCC package.
We run 1,000 MCMC iterations to approximate the posteriors. The point estimates of the
parameters are the maximum a posteriori (MAP) estimates, taken at the modes of the
conditional posterior distributions.

Below in Figure 3.16 are visualizations of the overall clustering when we factor in both
the optical and lidar images. The three visualizations are the cluster assignments of each
pixel (a), the variance of the sampling distribution of the probability that the pixel belongs
in the assigned cluster (white represents higher variance and thus, higher uncertainty, while
black represents lower variance and thus, lower uncertainty) (b), and the variance overlayed
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with the cluster assignments (c¢). We see that there is greater variance around the boundary
of the lawn and the building, as well as around where the boats are docked in the river. The
overall clustering appears to do a good job of segmenting the trees in the upper left and
lower right hand corners of the image, but it does not segment the different parts of the roof
very well.

In Figure 3.16, as well as in the visualizations for the individual clusterings of the optical
(Figure 3.17) and lidar (Figure 3.18) images, we also include the visualizations using the
standard deviation and Shannon’s entropy as measures of uncertainty. We have not yet
derived mathematically the relationship between the standard deviations and the entropies
of the overall clustering and the individual clusterings of the optical and lidar images, but we
note this as an area of future work. However, we will still perform an empirical analysis of the
visualizations as confirmation of what we have derived with the variance as the uncertainty
measure.

Below in Figure 3.17 are the visualization for the clustering of the optical image. We
compute the adherence value of the optical clustering to the overall clustering, which is
represented by «, to be 0.646. The variance of « is 0.0001248. The model does a good job of
capturing the shadows around the building, the roof, and the trees. It also does a better job
of separating the boats from the water, but it seems to cluster the boats with the pavement,
even though the boats are whiter than the pavement.

Below in Figure 3.18 are the visualization for the clustering of the optical image. We
compute the adherence value of the lidar clustering to the overall clustering, which is repre-
sented by «, to be 0.721. The variance of « is 0.0001689. We see that the model’s clustering
of the lidar image looks very similar to the original lidar image. It segments the trees and
the portions of the building’s roof the same as the original image. It also differentiates the
pavement from the water.

The adherence values of the optical and lidar clusterings and their variances indicate the
overall clustering adheres more to the lidar clustering, and the level of adherence has greater
uncertainty than we see for the adherence between the optical and overall clusterings. This
is confirmed by the similarity in the visualizations for the overall clustering (Figure 3.16) and
the lidar clustering (Figure 3.18). The overall clustering can differentiate between the trees
and the lawn and pavement that surrounds the trees, which is what we see in the optical
image. However, since the overall clustering adheres more to the lidar clustering, it does
not capture the shadows around the building and the different sections of the roof as well as
the optical image clustering. For this particular dataset, it appears that the lidar image has
more influence and value towards our overall knowledge of this scene in Philadelphia. This
is confirmed with the standard deviation and entropy plots, as well.
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3.3.7 Discussion and Future Work

We present preliminary work on mathematically relating the uncertainty in the results of
source-specific clusterings to the uncertainty of the results of an overall consensus clustering.
For the Philadelphia imagery example, the source-specific clusterings are the individual and
separate clusterings of the optical and lidar images, and the overall consensus clustering is
one clustering that takes into account the two individual clusterings of the images. Using
variance as our measure for uncertainty and the BCC framework, we find that the overall
clustering uncertainty is directly proportional to the uncertainties in the adher-
ences of each source-specific clustering to the overall clustering. We confirm this
through visualizing the results of the clusterings and seeing how the uncertainty results for
the source-specific clustering and the uncertainty of the estimated adherences factors into
the uncertainty in the overall consensus clustering.

There are many avenues of future work that needs to be done. We have previously iden-
tified deriving all of the mathematical expressions when relating the variance of the overall
clustering to the variance of the source-specific clusterings, as well as the derivations for any
number of M data sources. We have also previously identified deriving the relationship be-
tween the standard deviation and the entropy of the overall clustering and the source-specific
clusterings. Related to the BCC implementation, we can try other distributional assump-
tions other than the ones specified in section 3.3.3. For example, we can try nonparametric
distributions, where we let the data dictate the distributions of the clusters. We can also
investigate the case when we have different numbers of clusters for each data source and
the overall clustering, and when the semantics meanings of the clusters are different for all
the clusterings. There is also the issue of computational scalability when implementing the
BCC.

Another area of future work is a frequentist approach for consensus clustering and uncer-
tainty quantification. The closest frequentist method for doing consensus clustering is the
Probabilistic Feature Fusion (PFF) (Simonson, 1998; Simonson et al., 2017). It is a method
that combines evidence arising from multiple features and classifiers expressed in the form of
(generally dependent) hypothesis tests. It is used in one-class classification problems, where
we want to find one target class. Here is a summary of how PFF works.

Suppose our data consists of N features each of length K. Let X, i = 1,..., K, denote
the ithe feature. The marginal probability distribution function of X; for the target class is
denoted F;. For X; drawn from the target distribution, the quantity the quantity F;(X;) will
be uniformly distributed between zero and one (also written as U[0, 1]). For each feature,
compute the p-value 1 — F;(X;), and then transformation the p-values using the transforma-
tion Y; = —log(1 — F;(X;)), which has a standard exponential distribution under the null
hypothesis. Next, Sum the transformed values

K
Sfused: § Y;,
=1

which follows the gamma distribution with shape parameter « = K and f = 1 when the
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individual tests are independent. However, since the tests are likely dependent, we have
an approximate gamma distribution. Let #;; be the sample correlation coefficient between
exponential random variables Y; and Y;. We estimate the mean and variance of the sum
Stused With the quantities E’k and Vk, respectively:

Ex =K
K
VKZK-FQZZTA’U

i=1 j>i
The estimates of the shape and rate parameters are
Ej

Vi

Ex

Vi

[oN
I

™
I

Finally, compute the fused p-value as Prgsed(Stused) = 1 — Frused(Sfusea) (Simonson, 1998;
Simonson et al., 2017).

Unfortunately, PFF does not address certain issues related to multimodal image segmen-
tation uncertainty quantification. First, PFF only works when you are testing for the same
class. In the context of inference, you must test for the same hypothesis. Unfortunately,
when we fit probabilistic clustering models, such as the GMM, NMM, or BCC, to each im-
age, even if we cluster each image with the same number of clusters, the semantic meanings
of the clusters in each image will likely be different. Therefore, in order to formulate a
frequentist method for multimodal uncertainty quantification, whether or not we extend the
PFF method, we have to address three questions:

1. How do we formulate a frequentist framework for fusing p-values together when they
are testing different hypotheses, but they are related because they are describing the
same scene of interest?

2. Can we do the same type of fusing for uncertainty measures, such as variance or
entropy?

3. Is there a frequentist method for doing consensus clustering where information is shared
between the overall clustering and the source-specific clusterings?
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(a) Cluster Assignments

(b) Variance (c) Variance Overlayed with Cluster Assignments

(e) Standard Deviation Overlayed with Cluster

(d) Standard Deviation Assignments

(f) Entropy (g) Entropy Overlayed with Cluster Assignments

Figure 3.16: BCC Overall Clustering and Uni(értainty Results Combining Optical and Lidar
Images for Philadelphia Data
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(a) Cluster Assignments

(b) Variance (c) Variance Overlayed with Cluster Assignments

(e) Standard Deviation Overlayed with Cluster

(d) Standard Deviation Assignments

(f) Entropy (g) Entropy Overlayed with Cluster Assignments

Figure 3.17: BCC Clustering and Uﬁcertainty Results for Optical Image
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(a) Cluster Assignments

(b) Variance (c) Variance Overlayed with Cluster Assignments

(e) Standard Deviation Overlayed with Cluster

(d) Standard Deviation Assignments

(f) Entropy (g) Entropy Overlayed with Cluster Assignments

Figure 3.18: BCC Clustering and Egncertainty Results for Lidar Image
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Chapter 4

Discussion and Conclusion

From our preliminary work, we have learned several lessons, including that there is still
much work to be done to improve the effectiveness and efficiency of nonparametric methods,
as well as integrating semantic information into probabilistic clustering methods.

From our preliminary results when applying the nonparametric modal clustering method
to the Vee imagery data (section 3.1), as well as our implementations of the nonparametric
mixture model (NMM) method to the Philadelphia imagery data (section 3.2), to which we
have also applied the Gaussian mixture model (GMM) (Stracuzzi et al., 2017b), we need
to estimate the cluster probabilities as part of the clustering algorithm in order to obtain
robust estimates of the cluster probabilities. From the implementations of the NMM and
GMM methods, we learn that uncertainty arises not only from the model choice, but also
from the model implementation. This is evident from the much more ambiguous clusterings
offered by the NMM results.

In particular, for nonparametric methods, the need for being able to efficiently and pre-
cisely estimate the cluster densities is vital to obtaining sound clustering and uncertainty
results. An added difficulty seen with nonparametric methods is distributional statistics
that can adequately describe parametric distributions, such as the mean, covariance, and
moments, are not enough for describing the distribution of the data and the sampling dis-
tribution of a parameter of interest, such as the cluster probability.

Related to nonparametric probabilistic clustering, one area of future work is improving
the implementation of nonparametric methods, both in terms of computational speed with
fitting nonparametric probabilistic clustering models and with best capturing the cluster
distributions. Another area of future work is best describing the nonparametric density esti-
mates of the cluster distributions. Unlike the GMM, when each cluster follows a multivariate
normal distribution and the distribution be adequately described by the mean vector and
covariance matrix, global distribution statistics do not accurately capture all characteristics
of a nonparametric distribution.

For the BCC method, our uncertainty analysis represents a new contribution from existing
research done with multiple data set analysis. Uncertainty analysis is not done with any of
the existing consensus clustering methods that are cited in the first part of section 3.3.
There have been a number of techniques proposed for dimension reduction of multi-view
data. However, they assume that all data views consists of the same types of variables, such
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as continuous data, so they are not very suitable for mixed multi-view data (Cao et al., 2008;
Witten and Tibshirani, 2009; Acar et al., 2011; Lock et al., 2013; Di et al., 2009). There
have also been a number of papers published on data for genomic data, including the use of
graphical models (Morris and Baladandayuthapani, 2017; Yang et al., 2012, 2014a,b). See
Allen (2017) for a more comprehensive discussion. However, none of these methods then
examine the uncertainty of the performance of the models with jointly analyzing multiple
sources of data.

When we compare the results of both the nonparametric mixture model and BCC, we
see that there are more distinct clusterings with the BCC method. This leads to the belief
that when we iterate and borrow information between the source-specific and consensus
clusterings, we can get more accurate clusterings and uncertainty information. This also calls
in to question whether or not the nonparametric mixture model method is the best method,
while also raising the question of what results we get if we do a nonparametric implementation
of the BCC method. Finally, this calls into question whether or not concatenating data sets
is truly the appropriate way for combining data sets, and if clustering the concatenated data
set is the best way of obtaining a consensus clustering when we have multiple data sets.
Therefore, one area of future work is a nonparametric implementation of BCC. To formulate
this implementation, we will need to look into existing Bayesian nonparametric methods such
as Bayesian nonparametric models (Orbanz and Teh, 2011) and latent Dirichlet allocation
(Blei et al., 2003) to see if we can adapt the BCC method for use with nonparametric
distributions.

In addition to the three future research directions we have mentioned above addressing
current open problems with nonparametric probabilistic clustering and the BCC methods,
there are many more areas of future work. A fourth area of future work is a method to
compare the performance of the clustering algorithms and uncertainties in order to determine
if a particular clustering model is better than another, particularly in the unconstrained
supervised learning task when each data source’s clustering can have a different number of
clusters and the clusters have different semantic meanings. A fifth area of future work is a
probabilistic formulation for hard clustering algorithms, where the clustering probabilities
are not estimated as part of the clustering algorithm, such as in the nonparametric modal
clustering method. These methods have been shown to achieve good clustering results;
however, they don’t carry any probabilistic information with their algorithmic output, which
does not allow for uncertainty quantification of the clustering results. This would help to
address the current shortcomings with obtaining robust estimates of the cluster probabilities
in the nonparametric modal clustering method, and it would help ensure robust cluster
probability estimates for all hard clustering algorithms. A sixth area of future work is
expanding the current work on quantifying uncertainty of the clustering assignment of a
specific pixel to quantifying the uncertainty of an entire cluster’s boundary on an image
level. Finally, there are many sources of variability and dependency with multimodal imaging
data, such as the dependency between the components of the feature vector at each pixel,
the dependency between pixels, and dependency between data sources, and the variance in
all of these data sources. This presents many additional possible sources of uncertainty that
needs to be accounted for. Therefore, a final area of future work is being able to decompose
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the uncertainty we have computed and attributing various uncertainty measures to their
respective sources. This would provide even more valuable information to decision-makers
when evaluating analysis results.

Nonparametric distributional assumptions have the potential to allow more accurate
modeling of available multiple data sets and can be integrated in to methods for clustering
multiple data sets. Allowing the data to estimate the distributions of the data and the
clusters can provide more accurate segmentations relative to the actual semantic features
of the data. Furthermore, when clustering multiple data sets and seeking to determine the
value of information from each data set towards an overall consensus clustering, iterating
between all of the source-specific clusterings and the overall consensus clustering seems to
obtain the best results.
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