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Abstract

This document archives the results developed by the Lab Directed Research and Develop-
ment (LDRD) project sponsored by Sandia National Laboratories (SNL). In this work, it
is shown that SNL has developed the first known high-energy hyperspectral computed to-
mography system for industrial and security applications. The main results gained from this
work include dramatic beam-hardening artifact reduction by using the hyperspectral recon-
struction as a bandpass filter without the need for any other computation or pre-processing;
additionally, this work demonstrated the ability to use supervised and unsupervised learning
methods on the hyperspectral reconstruction data for the application of materials charac-
terization and identification which is not possible using traditional computed tomography
systems or approaches.
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Chapter 1

Original Proposal

Overview

Project Purpose

Identifying slight nuances of as-built components is important in simulating dynamic
systems such as explosive reactions. These systems are inherently chaotic; slight input de-
viations may create large changes in a given simulation. This problem is realized in the
performance of idealized component models versus that of as-built components. Strict toler-
ances are needed to ensure optimal performance; defects and imperfections cause degradation
or failure. SNLs computational tools, such as SIERRA and CTH, simulate these systems;
however, inaccurate 3D experimental characterization introduces input errors that poten-
tially generate significant computational errors. Currently, 3D physical data generation uses
computed-tomography (CT). CT is suboptimal in supporting segmentation of components
with contrasting materials such as foam juxtaposed with metal due to artifacts and noise
at the boundaries and interfaces. Instead, we propose a Multi-Energy Iterative Recon-
struction (MEIR) method that produces superior volume reconstructions from x-ray images
and improved materials identification through values proportional to elemental composition.
The challenge in MEIR is the immense computational complexity (5th-order scaling in vox-
els). Furthermore, engineering datasets are six orders-of-magnitude larger than medical CT
datasets, which is where current experience concentrates. MEIR will fundamentally change
experimentation and simulation validation at Sandia, enabling identification of defect in-
fluence in modeling. Improved ability to inspect, diagnose, and identify objects of interest
directly leads to increased confidence levels of design, reliability, and assessment. Our goal
is to produce substantially higher-quality images compared to traditional CT and segment
components of interest suitable for CTH and SIERRA so that computational simulations
can be executed.

Why is this proposed as an LDRD Project?

• Big-data MEIR has not been attempted due to risk related to the immense post-
processing.
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• The proposed novel acquisition technique explores nascent technology (with its own
nontrivial risks) that potentially revolutionizes SNLs advanced diagnostics and Non-
destructive Testing (NDT) capabilities.

• If both succeed, then they transform NDT, big-data science, advanced diagnostics,
information management for SNL engineering applications, and SNLs world-class ra-
diography capabilities.

Proposed R&D

Technical Approach and Leading Edge Nature of Work

Our proposed MEIR method implements a hybrid massively-multithreaded approach us-
ing GPUs and dynamically adapts itself to problem scope such as methods similar to [23].
Utilization of GPUs will reduce computational time for calculations thus creating a feasible
approach. Traditionally, to achieve improved reconstruction quality without significantly
increasing post-processing time, one would turn to dual-energy radiography (DER). DER is
frequently used to simplify/clarify the complex visual field created by radiographs [14] as
well as to detect broad classes of materials [31]. Although the computational burden in-
creases minimally, the imaged object is subjected to approximately twice the radiation dose
and scan time. Doubling dose and time is restricting as many sensitive components can be
damaged from the additional dose and thus are not candidates for DER. DER has severe
limitations due to the non-linear behavior of x-ray imaging systems and polychromatic na-
ture of most x-ray sources thus limiting its capabilities, especially in material classification;
Jimenez et. al. showed this [26, 24, 22, 27] while exploring alternatives to DER. In medicine,
iterative reconstruction is used to produce superior reconstructions that contain fewer ar-
tifacts compared to standard technologies while simultaneously reducing dose. Iterative
solutions will yield higher-quality volumetric approximations than direct methods by reduc-
ing artefacts due to acquisition deficiencies such as photon starvation, beam hardening, and
under-sampling[19, 5]. The main drawback is the non-negligible added computation and the
lack of scalability to industrial datasets where the data can be up to six orders-of-magnitude
larger [23, 21]; hence, the need for an innovative irregular (i.e. non-deterministic data access
patterns) approach for big-data. Iterative methods fundamentally differ from methods uti-
lized by SNL by simulating non-linearities of imaging systems accurately [8]. To successfully
implement MEIR, the core work will revolve around addressing the big data problem unique
to imaging system simulation and reconstruction. Forward- and Back-projection algorithms
operating on big data, significantly exceeding 10 GB, in a massively parallel environment will
suffer from performance degradation due to the non-deterministic memory/information ac-
cess pattern by the collection of computational threads [23, 35]. Adding more computational
resources will actually slow the computation due to the increased data traffic, exacerbating
data starvation. Irregular algorithms such as [23] reduce latencies in the computation by
optimizing information movement locally and globally; thus improving computational time
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and energy efficiency, therefore allowing the task to be completed with fewer resources. Addi-
tionally, this work will investigate data acquisition techniques. Many acquisition techniques
in the scientific literature focus on human body parts and shapes which differ with those
relevant to engineering applications (i.e. flat objects, torus shaped objects, tubular, etc.).
This effort is dual-use, not only does this investigation provide optimal scanning patterns
for quality projection data, but will ideally reduce dose to the scanned component, both of
which are of great importance to SNL and advanced diagnostics in general. Finally, once
MEIR prototypes are developed (forward-projection, back-projection, filtering, etc.), this
work will extend those prototypes to realistic and mission critical imaging datasets such
as shape charges, detonators, and batteries to determine the ultimate success of this work
Overall, a key goal is to combine the best features of multi-energy radiography with the
superior qualities of iterative reconstruction algorithms at industrial scales of up to 1 trillion
voxels to deliver a revolutionary advanced diagnostics tool. To achieve this, there are many
challenges that must be addressed:

• Designing the novel big-data centric Landweber-type iterative reconstruction algorithm
[2].

• Investigate non-traditional data acquisition techniques that optimize data quality for
shapes relevant to engineering applications (i.e. planar, tubular, torus, etc.).

• Experimentation with algorithm design and its impact on GPU performance (Parti-
tioning, synchronization, load balancing, and reuse of data [25]).

• Developing approaches to local noise suppression that induce bounded global noise.

• Investigate sampling techniques with respect to spectral energy and position to im-
prove data quality. MEIR would require modest COTS hardware, thereby reducing
cost/complexity while exhibiting scalability, and enabling diagnostic processing of rel-
evant data sets within hours.

Iterative methods in radiography typically require less radiation exposure, minimizing im-
pact on components by reducing the number of projections necessary and maximizing the
x-ray data utilization [5], an important advantage for SNL imaging applications. Both small
and large-scale datasets will be used to ensure that performance is scalable and flexible.
Experimental data will consist of CT datasets acquired using multiple energy spectrums in
various relevant configurations. The objects scanned will be representative of objects of mis-
sion interest to SNL having sufficient complexity to test and evaluate both the performance
of the reconstruction algorithm and derived ability to segment the subcomponents within
the object. Summary technical goals that address the research challenges identified above
are:

• Deliver improved advanced diagnostics that execute on diverse computing platforms.

• Reconstruct datasets from 1 gigavoxel to 1 teravoxel in size within 24 hours with
modest resources.
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• The algorithms will exhibit energy efficiency and not require extraordinary power
sources.

• Demonstrate superior subcomponent segmentation on an as-built component compared
to CT.

• Develop a novel acquisition technique that minimizes dose and acquisition time while
enabling MEIR.

MEIR would be the first iterative-type algorithm targeted at engineering big-data and in-
dustrial applications, and thus would position Sandia as a leader in this important and
high-impact technology. This is a crucial tool for many applications of interest to SNL, par-
ticularly as an additive manufacturing diagnostic that steps significantly beyond currently
applied CT technology. Patents and scientific papers are expected from this research and
will be produced appropriately.

Relationship to Prior and Other On-Going Work

• Prior work done by members of this LDRD team leverages polychromatic information
of incident x-ray energy to obtain superior material identification capabilities using x-
ray. This work was a highly exploratory approach funded by an LDRD [26, 24, 22, 27]
and can potentially be exploited in a volumetric reconstruction that surpasses DER
methods [14].

• Prior work by the PI (Early Career LDRD) addressed the challenges of big data re-
construction for traditional CT. This work was the first to pose big data industrial
CT as an irregular problem and addressed it by developing a new approach that was
not only scalable from a laptop to a heterogeneous cluster, but was also up to 2000
times faster and up to 35 times more energy efficient [23, 21, 25]. A preliminary study
was done to investigate the challenges of the forward projection problem (a necessary
subcomponent for Landweber algorithms) for big data. The results identified some of
the challenges that will help steer the investigation of this proposed R&D [35].

• This work is fundamentally different than past SNL efforts in CT for complicated
engineering data sets, and rests on maturation of iterative image processing methods.
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Chapter 2

Comparing Imaging Capabilities of

Multi-Channel Detectors to

Traditional X-Ray Detector

Technology for Industrial and

Security Applications

Summary

This work will investigate the imaging capabilities of the Multix multi-channel linear
array detector and its potential suitability for big-data industrial and security applications
versus that which is currently deployed. Multi-channel imaging data holds huge promise
in not only finer resolution in materials classification, but also in materials identification
and elevated data quality for various radiography and computed tomography applications.
The potential pitfall is the signal quality contained within individual channels as well as the
required exposure and acquisition time necessary to obtain images comparable to those of
traditional configurations. This work will present results of these detector technologies as
they pertain to a subset of materials of interest to the industrial and security communities;
namely, water, copper, lead, polyethylene, and tin.

Introduction

The objective of this work is to create a color X-ray Radiography and Computed To-
mography (CT) capability at Sandia National Laboratories for R&D in industrial, security,
and general non-destructive testing applications at almost arbitrary scale and configuration.
Also known as Energy-Discriminated or Energy-Resolved Imaging, the potential applications
that are relevant to Sandia National Laboratories Multi-Mission environment include verifi-
cation & validation, high-magnification/high-energy CT, quality assurance, anomaly/target
detection, checkpoint security, material identification, and real-time multi-energy CT. It is
well known that traditional CT approaches that utilize Bremsstrahlung radiation sources
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undoubtedly will contain some level of artifacts, noise, or both due to beam-hardening,
which is caused by the non-linear preferential absorption of lower energy X-rays compared
to the high energy X-rays which leads to an increase in the average energy incident on
the X-ray detector versus the average energy incident on the object. Many of these arti-
facts could potentially be mitigated by pre-hardening or post-hardening the radiation before
the radiation impinges the detector; however, this does not completely eliminate the noise
or adequately address the challenge. Furthermore, hardening of the radiation may cause
additional issues such as, reducing contrast of the lower attenuating materials, introduce ad-
ditional scatter due to the hardening filter, as well as potentially increase scan time due to the
reduction in photon flux at the detector. Other applications that could benefit from energy-
discriminated/Resolved imaging includes materials classification/identification such as that
done by Jimenez et. Al.[24], Collins et. Al.[7], and Wurtz et. Al.[39] in which dual-energy
or multi-energy approaches could potentially be improved by leveraging the energy-resolved
data. Energy-resolved imaging has already been demonstrated to show great promise in the
medical community such as in Dual-energy Radiography,4 and in the detection of neoplastics
in breast tissue by Johns and Yaffe[29].

Background

This work will demonstrate the performance of an energy-resolved linear array that was
recently acquired and utilize two potential applications as an indicator of potential per-
formance. The two applications will be that of attenuation profile with respect to energy
estimation investigated by Collins et. Al.[7] and Jimenez et. Al.[24, 22, 27] and the work
done at Lawrence Livermore National Laboratory (LLNL) by Wurtz et. Al.[39] with the
LLNL-Metric for materials classification.

Although other applications were mentioned above as other examples that could poten-
tially be improved by energy-resolved imaging, they were not considered in this work as they
require additional hardware such as staging systems and other hardware that has not been
integrated into the imaging system that is currently under assembly at the time of this work.
One the required hardware has been integrated, a follow-up effort will be reported.

Materials Identification

Work done by Collins et. Al.[7] to verify approaches proposed by Jimenez et. Al.[24, 22,
27] presented an experimental approach to acquire X-ray transmission data from a single pixel
Cadmium-Telluride (CdTe) detector creating over one thousand channels of binned X-ray
energy data for energies up to 450keV. Although this preliminary work showed that further
work much be conducted; much promise was shown by demonstrating that the characteristic
K-edges in the attenuation profile can be extracted for some of the materials of interest.

Collins et. Al. attempt two methods of extracting the attenuation profile with respect
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to energy, the first is a direct calculation based on Beers Law, the detector reading without
material present between the source and detector, and a detector reading with the material
of interest present. Although it was expected to encounter challenges due to noise for the
low-end channels and pulse pile-up for the high-end channels, Collins et. Al. were able to
resolve the K-edges for some materials as was demonstrated by the numerical simulations
performed by Jimenez et. Al.

LLNL-Metric

2.2 LLNL-Metric Wurtz et. Al. at Lawrence Livermore National Laboratory proposed a
dual-energy metric that does not depend on the imaging system geometry or material/sample
thickness to classify materials of interest for cargo screening applications.3 This evolution
on dual-energy Radiography methods measures:

(

I

I0
|l

I

I0
|h
, ln

(

I
I0
|l

)

)

,

where I
I0
|l is an image ratio of a light image and object present image at a low-energy setting

and similarly, I
I0
|h is the same ratio acquired at some higher energy setting. This example

is being used as a performance metric as energy-resolved imaging can directly integrate the
LLNL-Metric by using single channels or sums of subsets of channels to create high and
low-energy reading for I and I0; thus allowing a potentially faster, simpler, or more efficient
acquisition to take place as well as with potentially lower dose as only a single energy resolved
measurement is required.

Approach

This work proposes using energy-resolved imaging to improve various data quality issues
in traditional X-ray Radiography and CT methods. Given energy-resolved images, one can
leverage the individual binned channel data to effectively achieve almost mono-energetic
image data that is beyond the capabilities of any filtering configuration on a Bremsstrahlung
source, reject noisy bins/regions, and potentially reduce dose and scan-time. Although these
methods have already benefited various medical applications as mentioned above; they have
not been necessarily proven for industrial and security applications.

Experimental Design

This work will demonstrate performance of the recently acquired Multix Detection ME100
detector using a 450kVP Comet X-ray Source as well as 5 sheets of materials of interest:
Tin with a thickness of 0.813mm, Copper with a thickness of 0.2mm, Lead with a thickness
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of 0.76mm, Polyethylene with a thickness of 13.5mm, and Water in a plastic container with
a thickness of 59.2mm. These materials were chosen as the work by Jimenez et. al.[24]
focused on these materials while Collins et. al.[7] focused on the first three. The Multix
Detector consists of 5 modules, each with 128 pixels for a total of 640 pixels. The modules
are arranged side-by-side to form a linear array approximately 0.5 meters wide with module
pixels having a 0.8mm pixel pitch, adjacent pixels on different modules have a wider pitch
that is currently unknown to the authors of this work. According to the documentation, each
pixel in the ME100 module is capable of binning data into 128 channels which span a 300keV
energy window with each channel uniformly spaced across the energy window. Each pixel
can handle up to 1M counts per second. Many settings typical to energy resolved detectors
are fixed by the manufacturer such as gain; other information, such as dead-time/live-time
are not reported by the hardware. It is unknown to the authors whether the ME100 modules
perform any type of scatter rejection, correction, or calibration and wish to gain insights to
these questions with our measurements. As the imaging system is still under construction,
only line readings (as opposed to full 2D images) will be acquired; the geometry of the system
was made to replicate the geometry that Collins et. Al. utilized and will compare results
from this work to those of Collins et. Al. when possible. The data acquisition will vary the
x-ray source energy settings from 50 to 300keV in 50keV increments and will test multiple
currents for each measurement and will have a constant exposure time of 1 second. This
work will measure detector count rate scalability across current and energy, performance on
the Collins et. Al. direct calculation for each of the materials listed above, performance of
the LLNL-Metric for each of the materials of interest, measurement of the mean spectrum
output across pixels for each of the materials of interest as well as through air, measurement
of normalized spectra at each energy for various currents, and measurement of signal-to-noise
with respect to both energy channel and pixel position.

Count Rate

Count rates of the Energy Resolved Detector (ERD) at various energies and currents are
shown in figs. figs. 2.1 to 2.6. Each of these plots have a zero-intercept line and general line
fit to the data to show the scalability with respect to current. Each data point is a sum of
all pixel counts across the 640 pixel araray; all energies show good scalability as current is
varied as well as no sign of saturation.

Direct Calculation

5.2 Direct Calculation Direct estimates the the attenuation profile with respect to energy
from Multix detector data are shown in figs. figs. 2.7 to 2.9 respectively. Direct estimates of
the attenuation profile from Multix Detector data are shown next to the Amptek detector
estimates performed by Collins et. Al.[7] for Copper and Tin in figs. figs. 2.10 and 2.11
respectively. It is clear from fig. fig. 2.7 that it is indeed possible to estimate the characteristic
K-edges of materials as was shown in Jimenez et. Al.[24] and Collins et. Al.; however, from
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Figure 2.1: Count Rate of the ERD at 50kVP.
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Figure 2.2: Count Rate of the ERD at
100kVP.
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Figure 2.3: Count Rate of the Energy Re-
solved Detector at 150kVP.
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Figure 2.4: Count Rate of the Energy Re-
solved Detector at 50kVP.

23



0 5 10 15 20
µA

0

2

4

6

8

10
C

ou
nt

 r
at

e
×109 Count Rate Linearity at 250kvP

Data
Slope
Slope & Intercept

Figure 2.5: Count Rate of the Energy Re-
solved Detector at 250kVP.
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Figure 2.6: Count Rate of the Energy Re-
solved Detector at 300kVP.

figs. figs. 2.10 and 2.11, there is clearly some corrections that need to be made to the Multix
raw data as the estimates seem to be very inaccurate when compared to the estimates of
Collins et. Al.
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Figure 2.7: Direct estimate of the attenuation profile for Lead at 300kVP from the Energy
Resolved Detector.
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Figure 2.8: Direct estimate of the attenuation profile for Polyethylene at 300kVP from the
Energy Resolved Detector.
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Figure 2.9: Direct estimate of the attenuation profile for Water at 300kVP from the Energy
Resolved Detector.
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Figure 2.10: Direct estimate of the attenuation profile for Coppper at 300kVP from the
Energy Resolved Detector.
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Figure 2.11: Direct estimate of the attenuation profile for Tin at 300kVP from the Energy
Resolved Detector.

Lawrence Livermore National Laboratory Metric

The LLNL-Metric is shown in figs. figs. 2.12 and 2.13. The plot shown in fig. fig. 2.12,
is the traditional visualization of the metric with fig. fig. 2.13 being another visualization to
show how the metric various as the higher energy is varied; in this case, the lower energy was
selected to be the channel that corresponds to the 150keV energy bin and every other bin
with higher energy was used to calculate various metrics using various high energies. For the
given thicknesses, Multix data seems to show very good separation between materials when
plotted in the traditional manner. Further work is needed to study variations with respect
to thickness to completely determine its viability.
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Figure 2.13: A 3D view of the performance of the LLNL Metric for varying keV with 5
materials.

Mean Spectrum Output

The mean spectrum output for the materials of interest is shown in fig. 2.14. The
characteristic peak for Tungsten is visible for the less attenuative materials and dissipates
for the higher attenuative materials with signs of potential noise as Water and Lead seem to
show comparable attenuating properties for 200-250keV.
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Figure 2.14: Mean pixel output with respect to energy bin for 5 different materials at 300
kVP.

Normalized Spectra

Normalized Spectra at 50keV increments are shown in figs. figs. 2.15 to 2.20 for various
current settings. For the figures corresponding to settings below 300kVP, it is clear that
there is significant pulse pile-up in the data by the presence of counts above the settings
for each acquisition as well as an under-representation of the low energy counts; ideally, for
some reasonable current settings, when the spectra is normalized, each profile regardless of
current setting should overlap with all profiles corresponding to the same kVP setting.
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Figure 2.15: Normalized unfiltered spectra at 50 kVP for varying currents.
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Figure 2.16: Normalized unfiltered spectra at 100 kVP for varying currents.

Signal-to-Noise

Signal-to-Noise with respect to pixel position is shown in fig. 2.21. The pixel SNR
appears to be consistent across position; there appears to be a cyclical nature to the SNR,
but more investigation is needed to find the cause. SNR with respect to energy is shown in
fig. 2.22 and shows acceptable levels across a majority of the energy window with the best
SNR being achieved for energies between 50-250keV and is possibly mostly due to noise in
the system as well as pile-up.
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Figure 2.17: Normalized unfiltered spectra at 150 kVP for varying currents.
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Figure 2.18: Normalized unfiltered spectra at 200 kVP for varying currents.

Conclusions

This work has demonstrated early performance metrics with the Multix energy discrimi-
nating linear array and its potential viability as an R&D Non-Destructive Evaluation imaging
system. While there is much work to be done to investigate its full sensitivities as well as
develop calibration and correction methods; the system holds promise in pushing the bound-
aries of technology and capabilities not just for Sandia National Laboratories, but for the
entire Industrial and Security Non-Destructive Evaluation community. While many works
have shown methods to spectrum correction,810 it still needs to be investigated whether new
approaches need to be developed for applications in the higher energy ranges. The utiliza-
tion and integration of energy-resolved x-ray imaging will have and has already demonstrated
widespread impact; work leveraging this technology includes Johns and Yaffe,5 Tomita et.
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Figure 2.19: Normalized unfiltered spectra at 250 kVP for varying currents.
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Figure 2.20: Normalized unfiltered spectra at 300 kVP for varying currents.

Al.,11 Jimenez et. Al.[24] and Collins et. Al[7].Additionally, this technology could impact
other works that are based on Dual-energy approaches such as the works [39, 4, 36].
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Figure 2.21: Signal-to-Noise ratio with respect to pixel position from the Energy Resolved
Detector at 300 kVP.
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Figure 2.22: Signal-to-Noise ratio with respect to energy bin from the Energy Resolved
Detector at 300 kVP.
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Chapter 3

Leveraging Multi-Channel X-Ray

Detector Technology to Improve

Quality Metrics for Industrial and

Security Applications

Summary

Sandia National Laboratories has recently developed the capability to acquire multi-
channel radiographs for multiple research and development applications in industry and
security. This capability allows for the acquisition of x-ray radiographs or sinogram data
to be acquired at up to 300 keV with up to 128 channels per pixel. This work will investi-
gate whether multiple quality metrics for computed tomography can actually benefit from
binned projection data compared to traditionally acquired grayscale sinogram data. Features
and metrics to be evaluated include the ability to distinguish between two different mate-
rials with similar absorption properties, artifact reduction, and signal-to-noise for both raw
data and reconstructed volumetric data. The impact of this technology to non-destructive
evaluation, national security, and industry is wide-ranging and has to potential to improve
upon many inspection methods such as dual-energy methods, material identification, object
segmentation, and computer vision on radiographs.

Introduction

This work is an expansion of the work presented by Jimenez et. al. [20], which describes
how Sandia National Laboratories is developing a color X-ray Radiography and Computed
Tomography (CT) capability for research and development applications in industrial, se-
curity, and general non-destructive testing applications. This work is the culmination of
exploratory efforts in extracting more information from energy-resolved imaging applica-
tions such as that presented by Collins et. al. [7], and multiple works by Jimenez et. al.
[22, 27, 24].
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It is well known that traditional Computed Tomography acquisition methods using
Bremsstrahlung radiation sources have several limitations that create lower-fidelity informa-
tion; examples include reconstruction artifacts due to beam-hardening, streaking artifacts
due to lack of penetration power, and limited ability to execute precise materials classification
tasks. Some of these limitations can be somewhat mitigated using additional computational
methods [39] or dual-energy approaches [4, 15], but results in extra processing and/or data
acquisition.

Energy-resolved x-ray information could potentially lead to new solutions that could
create better quality reconstructions or lead to more information being extracted from a
given pixel in a radiograph or voxel in a computed tomography reconstruction. Previous
work by Jimenez et. al. [20] focused on radiography capabilities showing that potential
exists, but the data acquired is noisy, leading to some limitations. In this work, the authors
will focus on energy-resolved computed tomography and its application improving image
quality and artifact reduction.

Background

The Color CT system at Sandia National Laboratories consists of five customized Multix
ME100 modules calibrated for 300 keV across 128 channels configured into a linear array for
a total of 640 pixels across a 0.5m field-of-view, four axis motion control (one rotary, three
translation), and a Comet x-ray source capable of up to 450keV/20uA. The system has a
source-to-detector distance of approximately 2.06m and variable source-to-object distance.
In the near future, a second vertical axis will be added to the detector to allow for an effective
scan height of approximately 2.75m; up from its current vertical travel of approximately 1.4m.

The system has been acquiring data since May 2016 with sinogram acquisition capability
added May 2017. Figure 3.1 shows sinogram data for channels 0, 63, and 127 for a given CT
scan. Like many x-ray energy-resolved applications, the main limitation will be the noise
content of the system as photon-starvation in the individual channels as well as noise from
issues such as pulse pile-up, scatter, and spectral drift could become an issue.

There are many motivating factors to developing a high-energy color CT capability.
Until recently, this technology was largely infeasible for all industrial x-ray imaging and
CT applications. Infeasibility was due to various factors such as size, cost, acquisition
time, and dataset size. However, many of these limitations are being overcome through
the advancement of technology and computing resources. While this technology has not
quite evolved to be feasible for each and every application, there are emerging applications
that could currently benefit; some examples in which this technology could readily impact
industrial and security non-destructive testing include:

34



Channel 0 Channel 63 Channel 127

Figure 3.1: Sample sinogram data across various channels from the modified Multix ME100
linear array.

Materials Classification

As mentioned earlier, Jimenez et. al.[22, 27, 24] investigated radiography-based methods
to identify materials based off of the x-ray transmission signature in numerical studies while
Collins et. al.[7] investigated this experimentally. Although some k-edges could be resolved
both numerically and experimentally, the data was generally too noisy. Separately, Wurtz et.
al. [39] proposed a method to perform some limited materials classification which Jimenez
et. al.[20] showed potential in combining this method with energy-resolved information to
expand the capability of the Wurtz et. al. approach.

The expectation is that with multi-channel radiography data, the signal has a more direct
correlation with the energy dependent attenuation profile compared to traditional imaging
detectors; can one leverage this to distinguish between materials of similar composition? Ad-
ditionally, will multi-perspective data from CT sufficiently suppress noise to reliably perform
materials classification/identification tasks?

Data Quality

There are many motivating factors that lead the industrial non-destructive testing and
evaluation community to pursue better quality data than what is currently available. Energy-
resolved radiography could be one path to better data through rejection of information-
starved channels and weighing of channels that contain high amounts of relevant information.
However, as Roessl and Proksa[37] point out, using single or limited bins of information
could lead to photon starvation thus effectively degrading signal-to-noise; although this could
indeed be an issue in practice, for this work, industrial applications are only considered (as
opposed to medical) and thus for almost all possible relevant absorbers, radiation dose is not
a concern.
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CT Reconstruction Quality

Building on the possible benefits mentioned above, computed tomography reconstruction
would also benefit. Many popular reconstruction algorithms used in the non-destructive
testing and evaluation community, such as the FDK algorithm by Feldkamp, Davis, and
Kress[13], assume that a linear operator defines the imaging system; for traditional radio-
graphy this cannot be the case when using a Bremsstrahlung source, an absorber, and an
integrating detector. For energy-resolved CT, using a single bin of information to generate
sinogram data could potentially more closely approximate a linear system thus providing a
more accurate reconstruction both numerically and spatially if noise does not dominate the
data.

Two works that cause some concern in our investigation are those by Wang et. al.
[38] and Ding et. al.[10] which show severe artifacts in reconstruction when using photon-
counting data. Wang et. al. claim this is due to random variations in energy response while
Ding et. al. claim the corruption comes from spectral distortions caused by the variation
in the spectral absorption throughout the scan process. Both works provide reconstruction
examples of cylindrical phantoms that indeed show essentially unusable reconstructions due
to severe artifacts.

Approach

This work will evaluate data quality for CT performance with respect to three perfor-
mance goals by acquiring a single slice Color CT dataset and reconstructing each individual
channel separately. First, the reconstructed data will be used to evaluate the waveforms and
their corresponding signal-to-noise with respect to channel from the reconstructed voxels for
various materials, in particular materials of similar composition; second, artifact reduction
will be evaluated compared to a traditional CT dataset; finally, a comparison of different
reconstruction algorithms on the same input energy-resolved input sinogram to evaluate
numerical differences.

Experimental Design

All sinogram data was acquired using the system and geometry in our laboratory de-
scribed above in section 3 with a source-to-object distance of approximately 1.68m. All scans
consisted of 720 projections at 250keV and 0.5mA with an exposure time of one second per
projection. The majority of scans were performed were reconstructed using Recon, a recon-
struction algorithm developed by Los Alamos National Laboratories and Sandia National
Laboratories [23, 32]; for comparison, one dataset was also reconstructed with a third-party
reconstruction algorithm. It should be noted that only a single point gain correction was
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made to the data and no calibration was done to account for spectral drift/distortion as this
work is currently under way and will be reported in future work. Four objects were scanned:

1. Wide Spectrum Survey: This scan consists of 17 cylindrical samples in a circu-
lar orientation consisting of an empty polyethylene bottle, Nylatron, Delrin, SAE 30
motor oil , acrylic, nylon, two samples of water, teflon, polyethylene, the soft-drink
Pepsi, lexan, the diet soft-drink Diet Coke, aluminum, magnesium, salt, and pheno-
lic. All granular materials and liquids are contained in the same type of bottle as the
empty bottle listed. The solid materials are cylindrical in shape with a diameter of
approximately 12mm and the bottled materials have a 25mm diameter with a 1.1m
wall-thickness.

2. Simulant: Two 0.45 kilogram simulants that simulate two different but similar simu-
lants were scanned within the same field-of-view to evaluate whether the reconstructed
waveform signatures can be distinguished based on particular type of simulant.

3. Sugar-based Soft Drinks: Three different types of sugar-based soft drinks in alu-
minum cans were scanned within the same field-of-view to evaluate whether the wave-
form signatures from the reconstructed voxels will allow one to distinguish between
similar types of sugar-based soft drinks. This dataset was reconstructed using Re-
con as well as a popular third-party reconstruction algorithm to evaluate statistical
numerical behavior.

4. Wax and Wax-Aluminum Powder Cylinders: Two 7.5cm cylinders were scanned
in the same field-of-view. The first cylinder consists of wax in a polyethylene bottle and
the second consists of a mixutre of the same wax combined with aluminum powder.
This scan was done to evaluate beam-hardening artifacts between energy-resolved CT
and traditional CT. In order to preserve resolution, a surrogate for the traditional CT
dataset was used which consisted of the summation of all channels to produce single
sinogram which was then reconstructed using the same reconstruction algorithm.

Results

Wide Spectrum Survey

Figure 3.2 shows a single bin reconstruction of the wide spectrum scan. It should be
noted that the 4 circular regions at approximately the north-east-south-west positions are
aluminum rods that hold the fixutre together and are not included in the evaluation. Figures
3.3 and 3.4 show the average waveform of the two soft drinks and water samples along with
signal-to-noise ratios respectively; which seems to imply that the main absorber in this subset
is the sugar contained within the Pepsi as Diet Coke is visually indistinguishable to the two
samples of water, the signal-to-noise ratios of these regions do not indicate a degraded signal
for any of the materials. It should be noted that all figures reconstructed using Recon
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Figure 3.2: Single bin reconstruction of various plastics, liquids, and metals (bin 50, 116keV).

contain error bars from the sample of voxels evaluated which indicate that there was very
little relative variation in the waveforms for a given material.

Figures 3.5 and 3.6 compare the average waveforms of the air contained within the empty
bottle and the air in the center of the reconstructed slice; while at first glance the waveforms
seem to differ significantly, it should be noted that the signal-to-noise ratio was very low which
would seem to indicate that insufficient absorption due to air and/or numerical processing
in the reconstruction do not allow for a sufficient measurement.

Figures 3.7, 3.8, and 3.9 display the remaining waveforms which seem to indicate that
each of the materials in the field-of-view can be distinguished visually based on the waveform.

Simulants

Figures 3.10 and 3.11 show a single-bin reconstruction of the simulants along with their
average profiles respectively. It should be noted that the differences in intensity in figure
3.10 are essentially indistinguishable visually; however, when observing the full waveform, it
is clear there is a significant difference between similar types of simulants.

Sugar-based Soft Drinks- Reconstruction Comparison

It is clear from figures 3.12 and 3.13 that there is a significant scaling and visual differ-
ence between the two reconstruction algorithms and both do not allow for visual differences
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Figure 3.3: Average profile for Diet Coke,
Pepsi, and Water from figure 3.2.

0 50 100 150 200 250
KeV

5

10

15

20

25

30

35

40

45

50

S
N

R

SNR Profile

Diet Coke
Pepsi
Water
Water

Figure 3.4: Signal-to-Noise profile for Diet
Coke, Pepsi, and Water from figure 3.2.
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Figure 3.5: Average profile for Empty Bottle
and Air from figure 3.2.
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Figure 3.6: Signal-to-Noise profile for Empty
Bottle and Air from figure 3.2.
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Figure 3.7: Average profile for Aluminium,
Magnesium, and Salt from figure 3.2.
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Figure 3.8: Average profile for Lexan,
Polyethylene, Acrylic, SAE 30 Motor Oil, and
Delrin from figure 3.2.
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Figure 3.9: Average profile for Nylon, Nylatron, Teflon, and Phenolic from figure 3.2.
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Figure 3.10: Single bin reconstruction of two
similar simulants (bin 50, 116keV).

Figure 3.11: Average profile for two simulants
from figure 3.10.

between different sugar-based soft drinks as shown in the waveforms of figures 3.14 and 3.15.
It should be noted however that figure 3.16 seems to show large relative variability compared
to Recon in voxel values within the same material; the source of this is not known as it is not
clear what type of filters, scaling, or other processing is done by the third-party algorithm.

Artifact Reduction

Figures 3.17 and 3.18 show the reconstructed image of a single bin and of all bins summed
respectively; it is clear that there are significant beam-hardening artifacts in the region
between the two cylinders in the integrated signal reconstruction. Moreover, figure 3.19
shows further significant beam-hardening artifacts are seen within each cylinder for the
integrated reconstruction compared to the single-bin reconstruction. As the circular regions
have some noise to them, it is difficult to assess whether subtle beam-hardening artifacts are
present in the single-bin reconstruction.

Conclusions

This work has demonstrated the emerging high-energy Color CT capability developed
at Sandia National Laboratories. Initial results seem to hold much potential in the ability
to non-destructively distinguish between similar materials and to achieve superior recon-
struction by reducing reconstruction artifacts due to beam-hardening. The quality is only
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Figure 3.12: Reconstruction using Recon of
three sugar-based soft drinks.
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Figure 3.13: Reconstruction using 3rd-party
reconstruction algorithm of 3 sugar-based soft
drinks.
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Figure 3.14: Average profile from Recon of
sugar-based soft drinks.
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reconstruction algorithm of 3 sugar-based soft
drinks.
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Figure 3.16: Average profile (with error bars) from 3rd-party reconstruction algorithm of 3
sugar-based soft drinks.
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Figure 3.19: Line profile for figures 3.17 and 3.18.

expected to improve once a spectral correction process to applied to the data prior to recon-
struction. Curiously, none of the degradations observed by Ding et. al. and Wang et. al.
were observed, but will continue forward cautiously. Future work consists of not only devel-
oping a spectral correction process but also evaluating more complex objects and evaluating
reconstruction data quality for suitability in segmentation and recognition applications. This
technology has the potential to disrupt the Non-destructive testing and evaluation capability
in numerous ways including counterfeit detection, quality assessment, materials identifica-
tion, as well as verification and validation applications all of which are of significance to
various areas within industry and security.
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Chapter 4

Machine Learning for Industrial

Material Classification Applications

with Color CT Datasets

Summary

Sandia National Laboratories (SNL) has recently acquired a Multix multi-channel linear
array detector calibrated for obtaining sinogram data up to 300 keV across 128 channels
per pixel. This works aims to examine the utility of this color CT system for materials
classification and identification purposes, with a focus on materials critical to industrial and
security applications; namely, oils, water, plastics, copper, lead, and aluminum. Machine
learning algorithms such as support vector machines and logistic regression will be inves-
tigated for distinguishing different materials of interest with similar absorption properties.
Methods to properly adapt the aforementioned schemes for multichannel datasets, as well
as possible reasons for an algorithm’s lessened ability to label materials, will be highlighted.
In addition, ensemble schemes like boosting will be explored to improve the robustness of
the classification tasks. Collectively, this work aims to determine the optimal strategy for
industrial material identification in the context of color CT datasets. The integration of
machine learning towards this goal could have tremendous impact on the non-destructive
evaluation community.

Introduction and Background

Computed tomography (CT) is a powerful modality for non-invasively detecting and
identifying the contents of an object1. In conventional CT acquisition methods using
Bremsstrahlung radiation sources, however, materials with different elemental compositions
may appear alike. These difficulties arise because attenuation coefficients are not only de-
termined by material composition, but also by the energies of the interacting photons. For
certain energies, it is possible for two objects with varying atomic numbers to exhibit com-
parable attenuation coefficients. Such challenges for material classification are exacerbated
in the presence of reconstruction and streaking artifacts due to beam hardening and insuf-
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ficient penetration power, respectively[7]. Dual-energy schemes are a potential method to
mitigate these undesirable effects, but often incur the cost of extended acquisition times and
computationally demanding post-processing for large datasets.

While two dissimilar objects may not be distinguished from one another within a par-
ticular band of energies, they can be precisely separated using their fully characterized
attenuation profiles as a function of energy. In this regard, spectral CT imaging serves as
the optimal option for material classification purposes. Here, detectors not only count the
number of incident photons, but also can resolve photon energy, leading to significantly more
information being extracted for a given pixel from a computed tomography reconstruction.
Stated differently, in a single acquisition protocol, complete attenuation curves for all imaged
objects can be determined[22, 27, 24].

Considering this advantage, Sandia National Laboratories has recently acquired a color
CT equipment consisting of five customized Multix ME100 modules calibrated for 300 keV
across 128 channels[28]. The modules are configured into a linear array for a total of 640 pix-
els across a 0.5m field-of-view with four axis motion control (one rotary, three translation).
The equipment includes a Comet x-ray source capable of up to 450keV/20uA, and has a
source-to-detector distance of approximately 2.06m and an adjustable source-to-object dis-
tance. In this work, our objective is to evaluate the effectiveness of this system in classifying
various objects (discussed in further detail below). As with many other energy-resolved ap-
plications, we are cognizant that noise from factors such as pulse pile-up, scatter, and spectral
drift could confound our ability to perform this discrimination task. Interestingly, however,
we have demonstrated in recent work that even materials with similar compositions can qual-
itatively be separated from one another using the energy-dependent attenuation waveforms
derived from this system.

Given our prior findings, in this study, we focus on integrating the color CT data into
advanced machine learning (ML) algorithms for automated material classification. More
specifically, we investigate multiple supervised learning techniques to quantitatively and au-
tonomously delineate different objects in the same field-of-view. ML has greatly benefited
the scientific community by providing insight into correlations that otherwise could go un-
noticed. Thus, the combination of multi-channel radiography data with ML could have
tremendous impact on non-destructive evaluation for object detection purposes.

Dataset and Features

Using the Multix system described above (with a source-to-object distance of approximately
1.68m), two scans are performed. Both consisted of 720 projections at 250keV and 0.5mA
with an exposure time of one second per projection. Reconstruction was performed with
Recon, an algorithm developed by Los Alamos National Laboratories and Sandia National

46



Figure 4.1: (a) Example image reconstructed from the 116 keV bin for dataset 1. (b)
Corresponding image from dataset 2 with the same materials in a shuffled manner.

Laboratories. Note that only a single point gain correction was applied to the data. Fur-
thermore, calibration to account for potential spectral drift/distortion was not employed.

The first dataset acquired includes 17 cylindrical samples in a circular orientation con-
sisting of an empty polyethylene bottle, Nylatron, Delrin, SAE 30 motor oil, acrylic, nylon,
two samples of water, teflon, polyethylene, soft-drink Pepsi, lexan, diet soft-drink Coke, alu-
minum, magnesium, salt, and phenolic. The second scan comprises of the same objects, but
in a shuffled, alternate circular orientation. Note that all granular materials and liquids are
contained in the same types of bottles. The solid materials are cylindrical in shape with a
diameter of approximately 12mm, while the bottled materials have a 25mm diameter with a
1.1m wall-thickness. We deliberately chose the objects to vary significantly in their similarity
to one another. This was done to thoroughly assess the capability of the Multix system as
well as the applied machine learning techniques for material classification. Figure 4.1(a) and
4.1(b) showcase reconstructed images drawn from one energy bin for the two datasets.

In this work, we are interested in leveraging the first dataset for training the different ML
algorithms. The second dataset, which comprises of the same materials as the first dataset
but in a shuffled fashion, is utilized for assessing the agreement of each ML technique in
determining the identity of an object. The input features into each ML technique varies,
as described in the methods section below. In general, however, the features are either the
attenuation profile (over the range of 0 keV to 250 keV) for each pixel spanning a particular
object or the mean attenuation profile across all pixels for that object. Prior to training
as well as validation, the attenuation profiles associated with each object in both datasets
is normalized by rescaling the distribution of attenuation measurements across energy bins
such that the mean of observed values is 0 and standard deviation is 1. This ensures scaling
differences between the two datasets (i.e. due to differing gain settings, varying electronic
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noise characteristics etc.) do not confound analyses.

Methods

With the exception of cosine similarity, all other algorithms are trained using error-
correcting output codes (ECOC)[9]. This is a technique to extend classifiers typically used for
binary applications to multiclass learning paradigms. In our case, because we are interested
in distinguishing 17 materials, we train 136 binary classifiers (17(17-1)/2), each specialized
in separating a unique pair of objects (i.e. aluminum vs. magnesium). The final output
is determined with a majority voting scheme among the 136 classifiers. We explore three
choices for the binary classifier, as discussed below.

Cosine Similarity

Cosine Similarity (CS) is a simple measure of similarity between a reference attenuation
curve x(ref) and target attenuation curve x(i):

CS(x(i), x(ref)) =
x(ref) ∗ x(i)

‖x(ref)‖2 ‖x
(i)‖2

.

The smaller the CS metric, the greater the correlation between two profiles. Note that
this metric is independent of scaling differences, and predominantly considers the shape of
the attenuation profile. For each material in dataset 1, we designate x(ref) as the mean
attenuation profile across all pixels spanning that material. The set of x(i) is the mean
attenuation profiles for each material in dataset 2. Each object in dataset 2 is thus classified
by find the x(ref) that minimizes CS. As mentioned, CS does not employ the ECOC method
described above, however, the three techniques described immediately below do leverage it.

Logistic Regression

In Logistic Regression (LR), we model the output variables y(i), given the input features
x(i) and model parameters (Θ), as a binomial distribution:

p(y(i)|x(i); Θ) = (hΘ(x
(i))y

(i)

)(1− hΘ(x
(i)))1−y(i) ,

where hΘ(x
(i)) is defined as the sigmoid function. We assume the training samples are

generated independently, and attempt to determine the Θ that maximize the joint likelihood:

m
∏

i=1

(hΘ(x
(i))y

(i)

)(1− hΘ(x
(i)))1−y(i) .
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To make this problem more tractable, we instead maximize the log likelihood, which does
not alter the end result:

m
∑

i=1

y(i)log(hΘ(x
(i))) + (1− y(i))log(1− hΘ(x

(i))).

There is no closed form solution to this maximization problem, so we apply stochastic gra-
dient ascent to iteratively determine the optimal Θ. Once the model parameters have
been identified, to make a new prediction, we simply identify the label that maximizes
p(y(i)|x(i); Θ). In the context of our application, the set of x(i) represents attenuation profiles
drawn from each pixel spanning the two objects under consideration.

Support Vector Machine

Support Vector Machines (SVMs) classify data by finding the optimal hyperplane that
separates the two classes of interest. If the hyperplane is parameterized by (w, b), then to
maximize the margin γ (i.e. the separation of the hyperplane and the training data), we
solve the following optimization problem:

min

γ̂, w, b

γ̂

‖w‖2
s.t. ‖w‖2 = 1; y(i)(wTx(i) + b) ≥ γ̂, i = 1, ..., m.

This problem is difficult to solve, as the second constraint is non-convex. By way of a few
simplifications, the optimization task can be reformulated as the following equivalent convex
problem:

min

γ̂, w, b

1

2
‖w‖22 s.t. y(i)(wTx(i) + b) ≥ 1, i = 1, ..., m.

This algorithm inherently assumes the dataset is linearly separable. For cases where this
might not be true, we introduce slack variables (ξ) and l2 regularization, yielding another
convex problem:

min

γ̂, w, b

1

2
‖w‖22 + c

m
∑

i=1

ξi s.t. y(i)(wTx(i) + b) ≥ 1− ξi, i = 1, ..., m; ξi ≥ 0.

The parameter c governs the extent to which training examples can have functional margins
less than 1. As with LR, the set of x(i) to train each binary SVM classifier is the attenuation
curves extracted from all pixels on the two materials.

Kernelized SVM

The dual of the above convex problem can be shown to operate on the input features
only via inner products. We leverage this to apply the radial basis function kernel operator
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with free parameter σ to our training samples:

k(x(i), x(j)) = exp

(

−

∥

∥x(i) − x(j)
∥

∥

2

2

2σ2

)

.

Kernels map the input training dataset to a higher dimensional space, where the classification
task may be more tractable. The training features used for kernelized SVM are identical to
those used for the standard SVM above.

Experiments

We evaluated the performance of different ML algorithms with two experiments. In the
first, we divided the attenuation profiles derived from dataset 1 such that 70% are applied
for training, and the remaining 30% are set aside for validation. Thus, in this case, both
the training and testing happens within a single dataset (henceforth referred to as intra-
dataset assessment). Note that this first experiment is not applicable to the CS algorithm,
since training for this technique is based on the mean, as opposed to the pixel-by-pixel,
attenuation profile for an object. In the second experiment, all the attenuation curves from
dataset 1 are leveraged for training each ML technique. These are then assessed using the
average attenuation profile for each material in dataset 2. Because we do not have access to
the ground-truth identity of the materials in dataset 2, the purpose of the second experiment
is to investigate the degree of agreement among the various algorithms.

Results and Discussion

A summary of the results for the first experiment using LR, SVM, and KSVM is pre-
sented in Figure 4.2. Among the different models trained, it is immediately evident that
LR underperforms the most since it provides an overall intra-dataset object identification
accuracy of only 30%. For certain materials, like air and aluminum, LR achieves a perfect
performance. But, in the case of Nylon and Acrylic, for example, it entirely fails to identify
them with a near 0% accuracy. This directly suggests that the attenuation profiles are not
linearly separable, and thus, LR struggles for the classification task at hand. The trends
observed with SVMs are more promising, however. As described above, the SVMs we apply
include slack constraints to obviate the linear separability assumption. The benefits of this
are apparent since materials like salt, magnesium, aluminum, oil, and Teflon are easily re-
solved by the algorithm. The primary case where SVM underperforms is in distinguishing
diet coke, water, and Pepsi. Besides varying concentrations of sugar, these materials are
predominantly water, which may potentially explain the low accuracies of SVM. Nonethe-
less, across all materials, the classification accuracy stands high at 82%. The introduction
of a radial basis function kernel in SVM appears to negligibly affect performance. More
specifically, the overall accuracy improves incrementally to 83%. This indicates that map-
ping of features to a higher-dimensional space using radial basis functions does not facilitate
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Figure 4.2: Intra-dataset classification accuracies for varying materials using different ML
techniques. Logistic regression exhibits the lowest performance, while SVM with as well
as without kernalization demonstrate accuracies that are superior and comparable to one
another.

material detection. It is important to note, however, that linear and higher order polynomial
kernels may be more useful.

Figure 4.3 highlights the outcomes of the second experiment, wherein the developed models
are evaluated on the shuffled dataset. As in the results of the first experiment, LR performs
poorly here as well. In particular, LR seems to favor designating the shuffled materials
as either salt or water, which is clearly incorrect. This further supports the notion that
models enforcing a linear decision boundary between different labels are not applicable for
this task. Regarding CS and SVM, there is modest agreement between the outputs of these
two techniques. Among the 17 different materials, CS and SVM agree on the identity in 8
cases. A closer look at the outcomes reveals that SVM might be a more robust approach. For
example, based on visual inspection, it is apparent material 16 in dataset 2 represents the
empty bottle. CS incorrectly labels material 16, however, as Delrin, whereas SVM properly
marks it as air. SVM with kernelization provides the same results as SVM alone for all
but two materials; namely, materials 9 and 13. The disagreement in the case of material
13 is whether the label is magnesium or aluminum. This uncertainly is reasonable given
the similar atomic numbers of these two materials. Likewise, for material 9, while SVM
predicts polyethylene, SVM with kernelization outputs acrylic. Interestingly, polyethylene
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Figure 4.3: Classification outputs of CS, LR, SVM, and K-SVM when applied to dataset 2.
Logistic regression entirely fails in this context to identify materials. CS and K-SVM, on the
other hand, appear to properly distinguish materials from one another. It is interesting to
note that CS and K-SVM also agree with one another in a majority of the cases.

and acrylic are plastics with similar composition, so the classifiers, at the very least, agree
on the type of material. If a majority voting scheme among different classifiers is utilized
(i.e. a boosting strategy), the final label will be acrylic, given that CS outputs this label
as well. Overall, this analysis demonstrates that in cases where materials are erroneously
labeled, the classifiers likely matched them to a substance with very similar composition.
This capability is enabled by the complete attenuation profiles used in the training phase
for different algorithms.

It is important to note that the trained classifiers do not designate any material as lexan
or oil. We speculate that because lexan is a plastic, it is often misinterpreted as polystyrene
or acrylic. The reason for oil being misclassified, however, is unclear. It might be that the
type of oil used in dataset 2 varies from that in dataset 1. This will be examined more
thoroughly in a later experiment.
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Conclusion and Future Work

Collectively, this exploratory work presents a comparison of the effectiveness of different
ML techniques to classify materials in multichannel, color CT datasets. We found several
interesting trends in the results: (1) LR is not useful for the classification tasks at hand.
This indicates that other linear classifiers (e.g. Nave Bayes) will also perform poorly, as
the data is best segmented by a nonlinear decision boundary; (2) The SVM model (with
slack variables) provides very high performance for intra-dataset classification. Qualitative
analysis suggests good performance for classifying materials in a new dataset as well; (3)
SVM with kernelization provides incremental benefits over SVM alone. This is a surprising
result, especially given that it is good practice to kernelize features; (4) The CS metric,
though simple, demonstrates the ability to match the outcomes of more complex models
like SVM. This suggests that that CS and SVM should be integrated with one another for
potentially more robust performance.

A major limitation of this study is the limited size of the training and testing sets.
We are confident that collecting more data would pave the way for higher performance in
discriminating different materials. In addition, we hope to acquire data with ground-truth
labels, as this will facilitate the validation phase. In a future work, it is also our goal to employ
more thorough metrics to evaluate difference ML techniques. The analysis of accuracy alone
hides information such as false positive and false negative characteristics. This motivates
the need for computing precision, recall, and f-score for each ML algorithm. Moving ahead,
we are prioritizing the implementation of neural networks for the same classification tasks as
in this study. Neural networks can capture more complex features in the datasets compared
to traditional algorithms like SVM or LR. Thus, we aim to examine multilayer perceptrons
as well as convolutional neural networks to distinguish materials with a higher accuracy.
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Chapter 5

Unsupervised Learning Methods to

Perform Material Identification Tasks

on Spectral Computed Tomography

Data

Summary

Sandia National Laboratories has developed a method which combines machine learning
methods with high-energy spectral x-ray computed tomography data to identify materials’
compositions within each reconstructed voxel in the field-of-view. While initial experiments
led by Koundinyan, et al. [?] showed that machine learning methods such as support vec-
tor machines, neural networks, and deep learning perform well in identifying a variety of
classes of materials such as oils, water-based liquids, plastics, and metals, this work seeks to
identify material signatures using unsupervised clustering methods. Specifically, this work
presents an unsupervised approach that can differentiate isolated materials with highly simi-
lar compositions. By applying this method to spectral computed tomography data, material
identification can be performed more accurately than material identification performed on
traditional single-channel computed tomography data. Additionally, if regions of the spec-
trum for several voxels become unusable due to artifacts, this method can still reliably
identify a material. This capability has the potential to have tremendous impact in a variety
of fields which leverage non-destructive evaluation for detection, verification, and validation
applications in security, industry, and medicine.

Introduction

Computed tomography (CT) is a critical tool in the non-destructive analysis of objects
and materials. While traditional CT methods using Bremsstrahlung radiation sources suffer
from noise and artifacts due to lack of penetration or nonlinearities in material absorption
(i.e. beam hardening), high-energy spectral CT can enhance performance by generating
higher-quality images . This work uses the multichannel color CT system developed at Sandia
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National Laboratories (SNL) by Jimenez et al. [20, 28], which produces energy-resolved data
that correlate with materials’ attenuation profiles. Spectral CT data also provide increased
information for analysis than traditional CT data, indicating that multichannel CT data
approaches possess higher potential to identify and analyze materials.

This work characterizes individual voxels in multichannel CT reconstructions. Previ-
ous work was done by Collins et al. [7] and Jimenez et al. [24] to investigate material
identification using spectral CT by analyzing attenuation with the Lambert-Beer law, given
by

I (ǫ) = I0 (ǫ) e
−µ(ǫ)x (5.1)

where I (ǫ) is the photon count at energy ǫ, x is the source-to-detector distance traversed
by the photon, and µ (ǫ) is the attenuation coefficient. However, accurately determining
µ (ǫ) is often intractable in practice. Success of an unsupervised machine learning approach
eliminates the need to analyze the Lambert-Beer law in material identification.

This work develops an iterative variation of hierarchical clustering, referred to as iterative
hierarchical clustering, that can distinguish between materials with highly similar composi-
tions. In this paper, first the high-energy spectral CT system is described in further detail.
Second, the features of each dataset are discussed. Next, an iterative hierarchical clustering
algorithm is presented, including the pre-processing of the data before applying the method.
Finally, the algorithm performance is evaluated against other common unsupervised cluster-
ing methods.

Background

High-Energy Spectral X-Ray Computed Tomography

The high-energy spectral x-ray CT system developed by SNL and described in Jimenez
et al. [28] consists of a Comet x-ray source and a detector composed of five customized
Multix ME100 modules. The source has a maximum capability of 450 keV, which allows for
improved penetration and reduced artifacts compared to traditional lower-energy sources.
Additionally, the source has a high flux capability, which results in a high signal-to-noise
ratio. The detector is an array of 640 pixels calibrated for 300 keV across 128 channels. The
detector produces energy-resolved data, such that when a photon hits a pixel of the detector,
the photon is binned into one of 128 channels based on its energy. The source-to-detector
distance is approximately 2.05 meters.

In traditional systems, the energies of each photon cannot be determined or resolved.
This means that each voxel in a reconstructed scan only has a single value associated with it,
rather than a spectrum of values. Additionally, artifacts are more prevalent in traditional CT
systems, particularly the beam hardening artifacts associated with high-density materials.
The spectral data obtainable only with the spectral CT system provide important additional
information needed for material identification.
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Unsupervised Clustering Algorithms

Image segmentation plays a key role in the analysis of CT scans. Partitioning a scan
into different components based on pixel characteristics provides valuable information for
the identification and evaluation of different materials in the image. While Koundinyan et
al. [30] investigated supervised approaches for the segmentation of high-energy multichannel
CT scans, the work presented here investigates unsupervised approaches.

Three commonly-used distance-based unsupervised clustering algorithms include centroid-
based, density-based, and connectivity-based algorithms. These algorithms find relationships
between data points by analyzing the similarity or dissimilarity between pairs or collections
of objects in a dataset; the similarity measure is defined as a distance metric, such as Eu-
clidean distance, cosine distance, or Manhattan distance[16]. Euclidean distance is used as
the distance metric in all algorithms in this work.

Each of these algorithms operates well only under certain conditions and constraints,
often making the algorithms unsuitable for datasets that fail to meet these assumptions.
For example, k-means clustering, a type of centroid-based clustering, requires that clusters
are hyper-spherical or hyper-ellipsoidal[17]. A density-based approach known as DBSCAN,
on the other hand, can find arbitrarily-shaped clusters[12], but requires that clusters have
similar and uniform densities[11]. These constraints affect the performance of a clustering
algorithm on a given dataset.

This work focuses on a variation of agglomerative hierarchical clustering, a type of
connectivity-based clustering that forms a nested hierarchy of clusters. Traditional agglomer-
ative hierarchical clustering begins by forming singleton clusters of each point in the dataset,
and then merges nearby clusters until all clusters have been merged into a single cluster that
contains all points in the dataset. The merging of clusters depends on the distance and
linkage metrics, where the linkage metric determines how the distance between clusters is
computed. Single-linkage, for example, finds the minimum distance between points in the
clusters to determine their similarity, while complete-linkage finds the maximum distance
between points in the clusters[3]. Single-linkage is used as the linkage metric in this work.

Approach

This work evaluates the performance of different unsupervised clustering algorithms on
six datasets, described below:

1. Shape Charge (figure 5.1a): Two materials are arranged concentrically to form an
annular cylinder. This object is chosen because it is composed of multiple distinct
materials arranged in a complex geometry; the annular shape, in particular, may in-
crease beam hardening artifacts. Additionally, the contact between materials may
cause obfuscation, making the material identification task more difficult.
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2. Ceramic Cylinders (figure 5.1b): Six ceramic cylinders of different materials are
arranged in a circular orientation. In clockwise order beginning with the lower right
cylinder, the cylinders are composed of room-temperature glass mica, high-temperature
glass mica, alumina-silicate, alumina-bisque, alumina, and water-resistant zirconia. In
contrast to the shape charge data, the ceramics are isolated, eliminating some of the
beam-hardening artifacts. However, their compositions are more similar to each other
than those in the shape charge data.

3. Ceramic Cylinders with Steel Penny and Wood Block (figure 5.1c): A steel
penny is added to the circular arrangement of ceramic cylinders, and a wood block is
added to the center of this arrangement. The penny and block create additional beam-
hardening artifacts because they absorb signal, thus making the ceramic cylinders more
difficult to identify.

4. Simulated Traditional CT Scan of Shape Charge: A single-channel CT scan of
the shape charge is simulated by summing the pixel values across all channels for each
pixel in the scan. The simulated scan is used to compare the performance of different
clustering algorithms on multichannel data with their performance on single-channel
data.

5. Simulated Traditional CT Scan of Ceramic Cylinders: The ceramic cylinders
CT dataset is reconstructed using the summation of the filtered sinogram data, which
mimics traditional single-channel reconstruction. The expected behavior is that beam-
hardening artifacts will be more prevalent, making the identification process more
difficult. This is also to compare different algorithms on multichannel data and single-
channel data.

6. Simulated Traditional CT Scan of Ceramic Cylinders with Steel Penny and

Wood Block: The same process used to produce the simulated traditional CT scan
of ceramic cylinders is applied to the ceramic cylinders with the addition of the penny
and block.

(a) Shape charge. (b) Ceramic cylinders. (c) Ceramic cylinders with
penny and wood.

Figure 5.1: Example scans from Channel 35.
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The first three datasets were acquired using the system described in section 5. The
shape charge dataset was collected at 400 keV and 2.3 mA with a source-to-object distance
of approximately 0.64 meters. The ceramic cylinders datasets were collected at 250 keV and
0.5 mA with a source-to-object distance of approximately 1.75 meters. For each dataset,
a single slice was selected and analyzed; therefore, rather than analyzing three-dimensional
voxels, this work only analyzes two-dimensional pixels.

Two types of data are associated with each scan: spectral data and spatial data. The
spectral data consist of the pixel values for a given pixel across all 128 channels, i.e. a 128-
dimensional vector of pixel values; pixel value plotted against channel is the profile for a given
pixel. The spatial data consist of two-dimensional vectors corresponding to the coordinate
location of each pixel in the scan.

Features of Datasets

The materials in the shape charge are in contact with each other, which creates additional
noise due to scatter and beam hardening. In particular, ring artifacts are prevalent in this
scan. The spectral data are distinct for each material, as shown by their mean profiles in
figure 5.2.

The materials in the ceramic cylinders datasets are isolated, which partially eliminates the
noise and reconstruction artifacts present in the scan of the shape charge. However, artifacts
are still prevalent at the edges of each material, with the most significant artifacts around
the zirconia cylinder. Consequently, the spectral data for the pixels corresponding to the
zirconia cylinder have the most variance. The spectral data are varied in distinguishability;
specifically, alumina-silicate, glass mica, and high-temperature glass mica are highly similar
in their spectral data, as shown in figure 5.3.

Figure 5.2: Mean profiles for shape
charge data.

Figure 5.3: Mean profiles for ceramic
cylinders data.
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Implementation

Because this work focuses on identifying materials of highly similar compositions, this
section focuses on the ceramic cylinders datasets. Iterative hierarchical clustering in relation
to the shape charge and the simulated single-channel CT scans is discussed in further detail
in section 5. The following processes are implemented in MATLAB.

Pre-Processing

Pre-processing the ceramic cylinders datasets consists of three steps: applying multilevel
thresholding, eroding the binary image of the scan, and applying a box filter. This methodol-
ogy identifies the pixels of interest for analysis and reduces the impact of noise and artifacts
during the clustering task.

First, a single slice is chosen from the dataset. This slice has 128 images associated with
it, i.e. one image for each channel. From this set, a single channel is chosen, identifying one
greyscale image. This image serves as the initial input image. Multilevel thresholding using
Otsu’s method is applied to this input image, which partitions the pixels into a predefined
number of classes based on pixel value [33, 1]. Because of differing pixel intensities, multilevel
thresholding separates pixels corresponding to materials from pixels corresponding to air;
only pixels corresponding to materials are saved.

As discussed in section 5, artifacts exist along the edges of the ceramic cylinders. Erosion
of the image addresses this issue. After multilevel thresholding is performed, the remaining
pixels are converted into a binary image. Using a flat disk-shaped structuring element, an
erosion operation is performed on the binary image, removing the pixels around the edges
of each isolated cylinder. This process is shown in figure 5.4.

(a) Before erosion. (b) After erosion. (c) Removed pixels.

Figure 5.4: Binary images for erosion process.

Finally, after the pixels of interest have been selected, a 3 × 3 box filter is applied to
smooth the scan. Because there are 128 images corresponding to a given slice, the box filter
is applied to all 128 images.

60



An example of the effect of pre-processing on the pixel profiles is shown in figure 5.5.
Pre-processing the scan reduces the variance of the spectral data for each material without
significantly changing the mean profile, as shown in figures 5.6 and 5.7. Note that the zirconia
cylinder has the most variability in its statistics because of the significant artifacts present
on its edges.

(a) Before pre-processing data. (b) After pre-processing data.

Figure 5.5: Effect of erosion and smoothing on profiles for glass mica.

Figure 5.6: Mean profile values before
and after pre-processing.

Figure 5.7: Standard deviation of mean
values before and after pre-processing.

61



Iterative Hierarchical Clustering

Iterative hierarchical clustering is a variation of traditional hierarchical clustering, with
one key modification: this algorithm uses hierarchical clustering iteratively as a binary clas-
sifier, rather than separating the data into multiple clusters in a single iteration. With each
iteration, the dataset is reduced by removing points that have already been clustered. This
means that clusters can have different densities; for example, once a cluster of low density
is labeled and removed from the dataset, the algorithm performs only on higher-density
clusters with reduced hindrance from highly variable cluster distributions.

The following algorithm describes the basic steps of iterative hierarchical clustering. The
user must define the parameter NUMCLUSTERS, which specifies how many clusters the al-
gorithm will identify. For the MATLAB implementation used in this work, single-linkage
agglomerative hierarchical clustering is used.

1. Define parameter NUMCLUSTERS.

2. Calculate the connectivity matrix by finding the pairwise Euclidean distances between
all elements of the spectral data, i.e. the pairwise distance between all profiles.

3. Perform hierarchical clustering to produce two clusters.

4. Form a cluster from the smaller of the two clusters. Record these pixels. The pixels
belonging to the larger of the two clusters are considered unlabeled.

5. Remove the pixels in the smaller cluster from the dataset.

6. Repeat Steps 2-5 on the reduced dataset. Repeat NUMCLUSTERS - 1 times.

7. Only NUMCLUSTERS - 1 clusters are formed with Steps 1-6, and a subset of pixels will
remain unlabeled. These remaining pixels are grouped together to form the final clus-
ter.

All points are assigned to a cluster according to this algorithm, including potential out-
liers. Further analysis may be done on the points that remain unlabeled after Step 6 to iden-
tify outliers. Note that some initial analysis must also be done to identify the NUMCLUSTERS
parameter.

Variations of Iterative Hierarchical Clustering

In the above algorithm, only spectral data are used to find similarity between data
points. The incorporation of spatial data may help to differentiate pixels that may be
spectrally similar but spatially distinct. Additionally, it incorporates the notion that pixels
located near each other in a scan are more likely to be composed of the same material than
pixels distant from each other. Furthermore, distance metrics for high-dimensional data
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may inadequately represent the similarity between data points[34, 16], or, in other cases,
high-dimensionality may add irrelevant information that hinders the clustering process[3];
adding the spatial similarity metric helps to address these issues. Other image segmentation
algorithms have been presented that combine spectral data and spatial data, but these are
applied to centroid-based clustering algorithms, which may be unsuitable for the ceramic
cylinders datasets[6, 18].

There are multiple options for incorporating spatial data into the iterative hierarchical
clustering process. One method is to calculate an additional connectivity matrix, where the
elements of this second matrix are the pairwise Euclidean distance between all elements of
the spatial data, which are treated as weights for the values in the spectral data connectivity
matrix. As such, the values in the spatial connectivity matrix are rescaled to values between
0 and 1. To combine these matrices, the Hadamard product of the spectral data connec-
tivity matrix with the spatial data connectivity matrix is taken. Hierarchical clustering is
performed using the combined connectivity matrix. Another method is to augment each 128-
dimensional spectral data vector with the two-dimensional spatial data vector corresponding
to a pixel’s coordinates. Note that the spatial vectors may need to be rescaled to the range
of the minimum and maximum values in the spectral data if there is a large difference in
scale.

In a different variation of iterative hierarchical clustering, another parameter MINPOINTS
can be added if the clusters are uniform in size and if the number of points in a cluster can
be accurately estimated. This parameter specifies the minimum number of points needed to
form a cluster. To incorporate the MINPOINTS parameter, hierarchical clustering is performed
to form N clusters, beginning with N = 2. Hierarchical clustering is repeated with increasing
values of N until the number of pixels in the N - 1 smallest clusters is greater than or equal
to MINPOINTS. The pixels in the N - 1 smallest clusters form a single cluster and are then
removed from the dataset. This process is repeated NUMCLUSTERS times. Not all points
will necessarily be labeled when using the MINPOINTS parameter. Additionally, note that
MINPOINTS must be less than or equal to the size of the smallest cluster for this algorithm
to perform accurately.

For the results presented in section 5, the unmodified version of iterative hierarchical
clustering is used on the shape charge data, as the number of pixels corresponding to Mate-
rial 1 (153 pixels) is significantly smaller than the number of pixels corresponding to Material
2 (1335 pixels). In contrast, the ceramic cylinders are all similarly sized, so the MINPOINTS

parameter is used to improve the performance of the iterative hierarchical clustering algo-
rithm. The results of spatial iterative hierarchical clustering are briefly mentioned for the
ceramic cylinders but are not discussed in depth.

Application of Iterative Hierarchical Clustering

Multichannel CT data can potentially be used in the validation and verification of un-
known objects, where a scan of unidentified materials can be compared to a scan of previously
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identified materials. If iterative hierarchical clustering is performed on a dataset of mate-
rials with unknown identities, the mean profiles of the pixels in each assigned cluster can
be calculated and compared to the mean profiles of known materials. Iterative hierarchical
clustering, used in combination with the algorithm described below, has the potential to
match unknown materials with known materials of the same composition. Two sets of data
are needed for the identification of unknown materials: testing data (unknown materials)
and training data (known materials). Two additional parameters are also needed for this
algorithm: X and N, where X is a subset of channels (chosen to ignore noise in lowest and
highest channels) and N is the degree of a polynomial.

1. Define parameter NUMCLUSTERS, and perform iterative hierarchical clustering on testing
data.

2. Find the mean profiles of the clusters in the testing data, and find the mean profiles
of each known material in the training data.

3. Define parameters X and N. Fit an N degree polynomial to the portion of each mean
profile in the testing and training data specified by X.

4. Calculate the Euclidean distance between the polynomial coefficients corresponding to
each mean profile in the testing data and the polynomial coefficients corresponding to
each mean profile in the training data.

5. Identify the minimum distance between a cluster in the testing set and a material in
the training set using the distances calculated in Step 4. Repeat until all clusters in
the testing data have been matched with materials in the training data.

It is important to note that this method has only been tested on the ceramic cylinders
datasets. It is also important to note that this method currently assumes that each material
in the training set corresponds to only one cluster in the testing set.

Results

Shape Charge

The pre-processing described in section 5 for the ceramic cylinders data was also applied
to the shape charge data. Because of the complex geometry of the shape charge, it is
important to note that traditional binary image erosion was not possible on this dataset.
Instead, to replicate the erosion process, the pixels on the outer border of the shape charge
and the pixels on the edges between materials were identified using multilevel thresholding
and removed from the scan.
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In addition to iterative hierarchical clustering, traditional agglomerative hierarchical, k-
means, and DBSCAN clustering were applied to the shape charge dataset. All of these
algorithms performed with 100% accuracy, with a one-to-one relationship between materials
and labels. This perfect accuracy likely occurred because the two materials in the shape
charge are spectrally very distinct.

To quantitatively compare these results, the purity of each clustering was calculated.
Purity is calculated as

purity (Ω,C) =
1

N

k
∑

i=1

maxj (ωi ∩ cj) (5.2)

where Ω = {ω1, ω2, ..., ωK} is the set of clusters, C = {c1, c2, ..., cJ} is the set of classes, and
N is the number of data points. Note that the purity value will always be between 0 and 1.
In this context, purity measures how many labels are assigned to a given material, such that
if a material consists of points all belonging to the same cluster, the purity value will equal
1. The purity values for the tested clustering algorithms on the shape charge data are shown
in the column labeled “Purity: Materials” in table 5.1. However, because effective clustering
for this data also means that each label is assigned to only one material, purity was also
calculated for each label, such that each label was treated as a class and each material was
treated as a cluster. In this context, a purity value of 1 means that the points corresponding
to a given label all belong to the same material. The results for the purity of each label are
shown in the column labeled “Purity: Labels” in table 5.1.

Table 5.1: Purity values for tested clustering algorithms on shape charge data.

Clustering Algorithm Purity: Materials Purity: Labels

Hierarchical 1 1

k-Means 1 1

DBSCAN 1 1

Iterative Hierarchical 1 1

While the results are not presented in depth here, it is important to note that a spatial
variation of iterative hierarchical clustering mentioned in Sec 5 was also tested on the shape
charge dataset. The spectral data were augmented with the rescaled spatial data for each
pixel, and iterative hierarchical clustering was performed on this augmented matrix. The
algorithm performed with 100% accuracy.

Ceramic Cylinders

The same algorithms tested on the shape charge data were tested on the ceramic cylinders
data for comparison. The results of agglomerative hierarchical clustering, k-means clustering,
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DBSCAN and iterative hierarchical clustering are presented in table 5.2 using the purity cal-
culations described in section 5. Note that additional variations of centroid-based clustering,
including fuzzy c-means clustering, were tested, with similar results to k-means clustering.
Algorithms other than iterative hierarchical clustering were unable to accurately distinguish
each material; in fact, alumina-silicate, glass mica, and high-temperature glass mica were
clustered together as a single material with all tested algorithms other than iterative hier-
archical clustering. The poor performance of these algorithms was likely due to the factors
discussed in section 5. Exploratory analysis of the dataset indicated that the conditions for
these algorithms were not fully met because of the presence of arbitrarily-shaped clusters
and clusters of different densities.

Iterative hierarchical clustering performed significantly better than any other algorithm
tested in this work. Specifically, using parameters of NUMCLUSTERS = 6 and MINPOINTS = 150,
each label corresponded to a single material and each material corresponded to a single label,
indicating accuracy of the clusters. Note that 21 points were unlabeled after the completion
of program.

Label assignments for each material are shown in figures 5.8, 5.9, 5.10, and 5.11. Note
that not all points are necessarily assigned a label with the DBSCAN algorithm, or with the
iterative hierarchical clustering algorithm with the incorporation of the MINPOINTS parame-
ter.

Table 5.2: Purity values for tested clustering algorithms on ceramic cylinders data.

Clustering Algorithm Purity: Materials Purity: Labels

Hierarchical 0.9920 0.3851

k-Means 0.8784 0.6912

DBSCAN 0.9869 0.6788

Iterative Hierarchical 1 1

The spatial variation of iterative hierarchical clustering mentioned in Sec 5 and presented
for the shape charge data in Sec 5 was also tested on the ceramic cylinders dataset. The
algorithm performed with 100% accuracy. Because the MINPOINTS parameter was not used,
every point in the dataset was assigned a label. It is important to note that iterative
hierarchical clustering did not perform with 100% accuracy on this dataset without the
MINPOINTS parameter or the incorporation of spatial data.

Single-Channel Computed Tomography

To make the multichannel CT data and the single-channel CT data as comparable as
possible, the same pre-processing that was performed on the multichannel CT data was
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performed on the single-channel CT data for both the shape charge dataset and the ceramic
cylinders dataset. The performance of k-means clustering and iterative hierarchical clustering
are discussed in this section.

For the shape charge data, both k-means clustering and iterative hierarchical clustering
had the same results with the single-channel data as the multichannel data, with 100% accu-
racy. For the ceramic cylinders data, k-means clustering performed similarly as it did on the
multichannel data, while iterative hierarchical clustering with parameters NUMCLUSTERS = 6
and MINPOINTS = 150 performed worse on the single-channel data than it did on the multi-
channel data. However, iterative hierarchical clustering still performed better than k-means
clustering on the single-channel data. Table 5.3 summarizes the purity values for the single-
channel shape charge and ceramic cylinders datasets. Figures 5.12 and 5.13 show the label
assignments of k-means clustering and iterative hierarchical clustering, respectively, for the
single-channel ceramic cylinders dataset.

Table 5.3: Purity values for simulated single-channel CT data.

Shape Charge Data Ceramic Cylinders Data

Clustering Algorithm Purity: Materials Purity: Labels Purity: Materials Purity: Lab

k-Means 1 1 0.8698 0.6879

Iterative Hierarchical 1 1 0.8734 0.8734

Identification of Unknown Materials

The method described in section 5 was testing using the six ceramic cylinders as the train-
ing data and the ceramic cylinders with the addition of the steel penny and wood block as the
testing data. Both datasets were pre-processed using the methodology described in section 5.
Iterative hierarchical clustering was performed using the parameter NUMCLUSTERS = 7. Note
that, because the number of pixels belonging to the steel penny (61 pixels) is smaller than
the number of pixels belonging to each ceramic cylinder (average 185 pixels), the MINPOINTS
parameter was not used. The mean profile matching algorithm was performed with parame-
ters X = [10, 80] and N = 4. Under these parameters, pixels in the testing set were matched
to their corresponding materials in the training set with 100% accuracy, as shown in figure
5.14. The process of identifying the mean profiles of the testing set is illustrated in figure
5.15.

This material inference process was also applied to the single-channel ceramic cylinders
datasets. Because iterative hierarchical clustering performed very poorly on the single-
channel ceramic cylinders data with the addition of the steel penny and wood block after
initial pre-processing, additional erosion was done on the dataset to improve the clustering
process. Additionally, because only a single value is associated with each pixel rather than
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an entire profile, the polynomial fitting process could not be applied to the single-channel
data. Instead, the mean values for the pixels in each cluster and in each material were
compared to determine which cluster corresponded to which material. Only alumina-bisque
and zirconia were correctly identified before the additional erosion, but after the additional
erosion, alumina, alumina-bisque, glass mica, high-temperature glass mica, and zirconia were
all correctly identified. However, alumina-silicate was incorrectly identified as glass mica and
the steel penny was incorrectly identified as alumina. These results are shown in figure 5.16.
This demonstrate that the iterative hierarchical method is promising for material inference
given a testing and training set, but indicates that the multichannel spectral data may be
necessary to perform this task with very high accuracy.

Identification of Materials in Raw Scan

In practice, the testing data for material inference may be a unprocessed scan, rather than
a pre-processed scan such as the one used in profile-matching process described in sections 5
and 5. In this scenario, the profiles for every pixel in a reconstructed scan, rather than only
the profiles of the pixels identified in the pre-processing methodology, are compared to the
mean profiles of known materials in the training data. To perform this comparison, every
profile in the testing data and every mean profile in the training data is fitted with an N

degree polynomial, and the distances between polynomial coefficients were computed. Every
pixel is labeled with the material in the training data corresponding to the shortest distance
between polynomial coefficients. For each set of profiles in the testing data corresponding
to a mean profile in the training data, only profiles within a certain standard deviation of
the mean profile are kept, and profiles outside of this threshold are categorized as unlabeled.
These unlabeled pixels are then analyzed to determine if they correspond to new materials in
the testing data that were not present in the training data. Assuming that a 128-dimensional
zero vector represents a pixel corresponding to air, the distances between unlabeled profiles
and this zero vector are calculated; profiles outside a certain standard deviation of the mean
distance are categorized as new materials.

This process was performed using a raw scan of the ceramic cylinders with the addition
of the steel penny and wood block as the testing data, and a pre-processed scan of the
ceramic cylinders as the training data. Using parameters X = [10, 80] and N = 4 and using
a threshold of two standard deviations from the mean, only alumina-bisque was correctly
identified with 100% accuracy. Initial analysis shows that artifacts on the edges of the
cylinders contributed to inaccuracies in the performance of the material inference process. A
visualization of the ceramic cylinders in the training data is shown in figure 5.17a, alongisde
the identified materials in the testing data in figure 5.17b and the ground truth for the testing
data in figure 5.17c. The accuracy of the material inference process is quantified in figure
5.18. Note that the unlabeled pixels corresponding to the zirconia cylinder were classified as
a new material.
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Conclusion

This work has demonstrated the potential of iterative hierarchical clustering to differ-
entiate materials of highly similar compositions using multichannel CT data. These initial
results seem to indicate that, with current unsupervised clustering methods, the spectral
data from the high-energy spectral CT system provide important additional information
that makes material identification more effective than single-channel data from traditional
CT systems, provided that proper pre-processing is applied to the data prior to analysis.
The use of iterative hierarchical clustering also seems to have the potential to identify the
compositions of unknown materials when used in combination with a dataset of known mate-
rials. These capabilities have the potential to improve assessment, identification, detection,
and evaluation of objects and materials.

Future Work

Iterative hierarchical clustering assumes initial knowledge about the data set. For exam-
ple, for accurate results, the number of materials in the object and, in some cases, the number
of pixels corresponding to each material must be generally known. More work must be done
to determine how to choose the NUMCLUSTERS and MINPOINTS parameters for datasets that
have unknown characteristics. The generalizability and scalability of this algorithm must
also be further investigated, particularly for larger datasets, datasets of materials of similar
compositions that are not isolated, and datasets with more significant noise and artifacts.
The distance metric and linkage metric should also be evaluated to determine how different
choices of these parameters impact the performance of iterative hierarchical clustering. The
algorithm that identifies unknown materials using a training dataset must also be tested for
its generalizability to other datasets with more variable characteristics.
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Figure 5.8: Label assignment for each
material for agglomerative hierarchical

clustering.

Figure 5.9: Label assignment for each
material for k-means clustering.

Figure 5.10: Label assignment for each
material for DBSCAN.

Figure 5.11: Label assignment for each
material for iterative hierarchical

clustering.
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Figure 5.12: Label assignment for each
material for k-means clustering on the
single-channel ceramic cylinders data.

Figure 5.13: Label assignment for each
material for iterative hierarchical

clustering on the single-channel ceramic
cylinders data.

Figure 5.14: Accuracy of material identification with multichannel data.
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Figure 5.15: Mean profile comparison process.

Figure 5.16: Accuracy of material identification with single-channel data.

(a) Training data (b) Identified materials in
testing data

(c) Ground truth for testing
data

Figure 5.17: Visualization of training and testing data sets for material inference on raw
scan.
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Figure 5.18: Accuracy of material identification with raw scan.
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Chapter 6
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1. Jimenez, Edward S., et al. ”Non-Destructive Materials Identification System using
Spectral Computed Tomography. IEEE Nuclear Science Symposium and Medical Imag-
ing Conference, Nov 2018 (Accepted).

2. Gallegos, Isabel O., et al. Unsupervised Learning Methods to Perform Material Identi-
fication Tasks on Hyperspectral Computed Tomography Data. Radiation Detectors in
Medicine, Industry, and National Security XIV. International Society for Optics and
Photonics, 2018.

3. Koundinyan, Srivathsan P, et al. Machine Learning for Industrial Material Classifi-
cation Applications with Color CT Datasets. ASNT Research Symposium 2018 (In
press).

4. Koundinyan, Srivathsan P., et al., ”Supervised Deep Learning Techniques for Material
Classification with Spectral Computed Tomography Datasets”, QNDE 2018 (In press).

5. Jimenez, Edward S., et al. ”Leveraging multi-channel x-ray detector technology to
improve quality metrics for industrial and security applications.” Radiation Detectors
in Medicine, Industry, and National Security XVIII. Vol. 10393. International Society
for Optics and Photonics, 2017.

6. Flicker, Celia J., and Edward S. Jimenez. ”Optimization of input parameters to im-
prove big-data computed tomography reconstruction performance (Conference Presen-
tation).” Radiation Detectors in Medicine, Industry, and National Security XVIII. Vol.
10393. International Society for Optics and Photonics, 2017.

7. Collins, Noelle, Edward S. Jimenez, and Kyle R. Thompson. ”Material identification
with multichannel radiographs.” AIP Conference Proceedings. Vol. 1806. No. 1. AIP
Publishing, 2017.

8. Jimenez, Edward S., et al. ”Developing imaging capabilities of multi-channel detectors
comparable to traditional x-ray detector technology for industrial and security applica-
tions.” Radiation Detectors: Systems and Applications XVII. Vol. 9969. International
Society for Optics and Photonics, 2016.
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Chapter 7

Technology Advances for Patent

1. SD #14601 Machine and Deep learning for Material Identification using Spectral CT

2. SD #13598 Large-Scale Multi-Energy Iterative Volumetric Reconstruction Methods

3. SD #14108 A Program to Acquire and Convert Binary Data from the MultiX Detector

4. SD #14438 cXrayViz: Color X-ray Visualization Tool

5. SD #14436 The Polychromatic X-ray Computed Tomography and Radiography Ac-
quisition system

6. SD #14793 Unsupervised Learning Methods to Perform Material Identification Tasks

7. SD #14797 A Simulation Tool for Parallel- Beam Spectral Radiography Using PHITS

8. SD #14796 MCNP and PHITS Automated Rotation Input Files Generator
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