

1 **Determination of mineral dissolution regimes using flow-through time-**
2 **resolved analysis (FT-TRA) and numerical simulation**

3

4 Bart De Baere^{a,1}, Sergi Molins^b, K. Ulrich Mayer^a, Roger François^a

5

6 ^a*Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207*

7 *Main Mall, Vancouver, BC Canada V6T 1Z4*

8 ^b*Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, One Cyclotron Rd, MS*

9 *74R316C, Berkeley CA 94720, USA*

10

11 **ABSTRACT**

12 Flow-through time resolved analysis (FT-TRA) involves subjecting small mineral samples (< 10 mg)
13 inserted in a miniature flow-through cell (50 μ L) to controlled flows of eluent analyzed on-line by ICP-
14 MS. In this study, FT-TRA is used to empirically determine the dissolution regimes for the two well-
15 studied minerals forsterite and calcite, representing minerals with relatively slow and fast dissolution
16 kinetics. A proportional increase in steady-state effluent [Mg, Si] concentrations with increasing flow-
17 through cell eluent residence times confirms a dominantly surface-controlled dissolution regime for a
18 powdered forsterite sample at pH 2.3, implying that transport limitations are negligible. In contrast, the
19 relationship between flow rates and dissolution rates for single grain calcite samples at pH 2.3 – 4
20 reveals that transport limitations affect the rate of calcite dissolution. To provide a quantitative and

¹Corresponding author.

Email addresses: b.debaere@alumni.ubc.ca (B. De Baere), smolins@lbl.gov (S. Molins),
rfrancoi@eos.ubc.ca (R. François), umayer@eos.ubc.ca (K.U. Mayer)

21 process-based assessment of the effect of diffusive transport limitations, simulations of the calcite
22 experiments were performed with a high resolution, pore-scale model that considers the geometry of
23 the calcite grain and the FT-TRA flow-through reactor. The pore-scale model reproduces the observed
24 effluent [Ca] concentrations for all experimental conditions using a single set of surface kinetic
25 parameters, by accounting for the formation of a diffusive boundary layer (DBL) that varies in
26 thickness as a function of flow rates. These results demonstrate that combining FT-TRA with pore-
27 scale modeling makes it possible to obtain unprecedented insights not achievable by either method
28 separately, including quantification of DBL thicknesses and the determination of transport controls as a
29 function of pH, flow velocity and residence times.

30 **1. Introduction**

31 1.1 Dissolution regimes

32 Accurately predicting mineral dissolution rates is essential for the investigation of many processes in
33 environmental geochemistry, material science, and a wide range of related fields. One approach to
34 reach this goal has been to measure mineral dissolution rates in laboratory experiments, from which
35 dissolution rate parameters can be deduced and then used to predict rates of mineral dissolution under a
36 wide range of conditions (e.g. White and Brantley, 1995). To obtain meaningful dissolution rate
37 parameters that can be applied to a range of environmental conditions, experiments are normally
38 designed to quantify surface-controlled dissolution rates, i.e. the intrinsic rate of detachment of
39 dissolving species from the surface of the mineral (e.g. Berner, 1978; Compton and Unwin, 1990;
40 Morse and Arvidson, 2002; Morse et al., 2007). However, rates measured in laboratory experiments
41 may be affected by the hydrodynamic conditions under which the dissolution measurements were
42 conducted (e.g. Sjöberg and Rickard, 1984), and thus may not be readily transposed to other conditions
43 or compared between minerals and even mineral crystallographic surfaces.

44 When a mineral comes into contact with a fluid, a diffusive boundary layer (DBL) forms at the
45 mineral-fluid interface, and dissolution occurs in two distinct steps: first the dissolving species must
46 detach from the surface of the mineral, and second, they must diffuse through the DBL to the bulk
47 solution (e.g. Morse and Arvidson, 2002). The slower of these steps controls the rate of mineral
48 dissolution (e.g. Berner, 1978). When the dissolution rate is limited by the rate of detachment of
49 dissolving species from the surface of the mineral, dissolution is “surface-controlled”. When the
50 dissolution rate of a mineral is limited by the rate of diffusion of dissolution products or reactants
51 across the DBL, dissolution is “transport-controlled”, often significantly limiting the progress of
52 mineral dissolution at the mineral surface.

53 Under a surface-controlled dissolution regime and far-from-equilibrium conditions, rates of
54 mineral dissolution can be described with rate laws of the form (e.g. Lasaga, 1998):

$$55 \quad R_{surface} = \left(\frac{m}{m_0}\right)^{2/3} \sum_{i=1}^{N_p} k_i a_i^{n_i} \quad (1)$$

56 where $R_{surface}$ (moles $\text{m}^{-2} \text{s}^{-1}$) is the surface area normalized, surface-controlled dissolution rate, the
57 $\left(\frac{m}{m_0}\right)^{2/3}$ term accounts for surface area loss over the course of a dissolution experiment, where the
58 exponent 2/3 is applicable for uniformly dissolving spheres or cubes (e.g. Appelo and Postma,
59 2005), N_p is the number of parallel reaction pathways, k_i (moles $\text{m}^{-2} \text{s}^{-1}$) is the dissolution rate constant
60 for the i^{th} reaction pathway, a_i is the activity of the i^{th} species, and n_i is the reaction order of the i^{th}
61 pathway.

62 Under a transport-controlled dissolution regime, the dissolving species build up in a diffusive
63 boundary layer (DBL), and Fick’s law dictates the rate of diffusion of products or reactants across the
64 DBL (e.g. Lasaga, 1998):

$$65 \quad R_{transport} = k_t (C_{surface} - C_{bulk}) \quad (2)$$

66 where $R_{transport}$ (moles $\text{m}^{-2} \text{s}^{-1}$) is the surface area normalized diffusion rate across the DBL, k_t (m s^{-1})
67 is the transport rate constant (with $k_t = D/\delta$, where D ($\text{m}^2 \text{s}^{-1}$) is the diffusion coefficient of the
68 dissolved species, and δ (m) is the DBL thickness), $C_{surface}$ and C_{bulk} (moles m^{-3}) are the
69 concentration of the dissolved species in contact with the surface of the mineral and in the bulk fluid,
70 respectively.

71 1.2 Dissolution regimes as a continuum

72 In natural and engineered systems, evolving flow conditions may alter the balance between surface-
73 controlled and transport-controlled dissolution kinetics. For a given mineral, the dissolution regime
74 may shift from surface- to transport-controlled as the DBL increases in thickness, and vice versa, if the
75 DBL thickness decreases. Similarly, under given hydrodynamic conditions, the dissolution regime may
76 shift from surface- to transport-controlled as the rate of mineral dissolution increases.

77 When minerals dissolve, dissolution products detach from the surface and diffuse towards the
78 bulk solution. It is important to note that at steady state, the rate of detachment must be equal to the rate
79 of transport away from the mineral surface by diffusion. If the rate of detachment is slow, the transport
80 rate is equally slow, and can be sustained with a small concentration gradient across the DBL. These
81 conditions imply that the concentrations of dissolution products at the mineral surface are nearly equal
82 to concentrations in the bulk solution. Under these conditions, the rate of dissolution is dominated by
83 the detachment reaction at the mineral surface and is commonly referred to as surface-controlled. The
84 relatively slow rate of detachment from the surface is not significantly affected by concentration build-
85 up near the surface as a result of transport limitations. On the other hand, for minerals dissolving
86 rapidly, the rate of transport must be equally rapid, which can require large concentration gradients
87 across the DBL. Under these conditions, concentrations of dissolution products at the mineral surface
88 tend to differ significantly from the corresponding concentrations in the bulk solution, in particular if

89 the DBL is relatively thick. DBL thickness is affected by hydrodynamic flow conditions at the pore
90 scale, with slower flow velocities resulting in a greater DBL thickness. In the extreme case, the
91 concentrations of dissolution products approach saturation at the mineral surface, driven by the need to
92 increase the diffusive flux away from the mineral surface. Under these conditions, transport limitations
93 result in a decrease in the detachment rate due to near-equilibrium conditions at the mineral surface,
94 and the dissolution rate of minerals is referred to as transport-controlled.

95 Notably, the two end-members described above (transport-controlled when $C_{surface} = C_{saturation}$;
96 surface-controlled when $C_{surface} = C_{bulk}$) can only be approached but never reached, otherwise
97 dissolution would stop. Instead, the dissolution rate is always controlled by a continuum between these
98 two extremes. In all steady-state mineral dissolution situations, the rate of detachment must be lower
99 than, but can be infinitesimally close to, its full potential, which is described by equation (1) with
100 activities of the bulk solution. This situation results in an essentially surface-controlled dissolution
101 regime. Likewise, the rate of transport cannot reach its full potential described by equation (2) for
102 $C_{surface} = C_{saturation}$ but can be infinitesimally close, resulting in an essentially transport-controlled
103 dissolution regime. Between these two extremes, both the detachment rate and the transport rate are
104 lower than their full potentials as the dissolution regime transits between surface- and transport-
105 controlled.

106 Describing a system as surface- or transport-controlled thus requires an arbitrary subdivision of
107 this continuum. Recently, Rimstidt (2015) proposed to make this distinction by using the diffusive
108 Damköhler number:

109 $Da_{II} = R_{surface}/R_{transport}$ (3)

110 where $R_{surface}$ is the rate of detachment at its full potential (as $C_{surface} \rightarrow C_{bulk}$) and $R_{transport}$ is the rate of
111 transport at its full potential (as $C_{surface} \rightarrow C_{saturation}$). When $R_{surface} > 10 \times R_{transport}$ (i.e. when rate

112 calculated with equation (1) $> 10 \times$ rate calculated from equation (2) with $C_{surface} = C_{saturation}$), the
113 dissolution regime is deemed surface-controlled, while $R_{surface} < 0.1 R_{transport}$ indicates transport control.
114 Because the transition between the two regimes is gradual and the end-members are never truly
115 reached, an alternative to predicing arbitrary cut-offs would be to simply report the value of the
116 diffusive Damköhler number of the system to provide a sense of how far it is in one or the other regime
117 (i.e. large Da_{II} towards surface controlled vs small Da_{II} towards transport controlled), similar to the
118 approach proposed by Raines and Dewers (1997). However, in practice, the DBL thickness is often not
119 constant across the mineral surface, the gradient across the DBL is not linear due to the fact that flow
120 velocities gradually increase towards the bulk solution, and equilibrium concentrations for a given ion
121 ($C_{saturation}$) can also vary over the mineral surface. As a result, Damköhler numbers must vary over a
122 dissolving mineral surface and their calculation may be complex. Empirical determinations of
123 dissolution regime may thus provide a more practical approach.

124 1.3 The need to establish a dissolution regime

125 Because intrinsic mineral dissolution rate parameters must be measured under surface-controlled
126 conditions (e.g. Compton and Unwin, 1990), it is important to establish the dissolution regime under
127 which dissolution rates of minerals are measured before interpreting or using the results. Many of the
128 studies addressing mineral dissolution kinetics rely on measuring bulk solution concentrations to
129 estimate mineral dissolution rates (e.g. Plummer, 1978, 1979; Sjöberg, 1978; Sjöberg and Rickard,
130 1983, 1984). With the development of high-resolution imaging techniques such as Atomic Force
131 Microscopy (AFM) and Vertical Scanning Interferometry (VSI), some of the focus has now shifted
132 from bulk solution measurements to variations in nano-scale surface topography to estimate mineral
133 dissolution rates of the more soluble minerals (e.g. Liang and Baer, 1997; Arvidson et al, 2003; Ruiz-
134 Agudo and Putnis, 2012). Using this approach, dissolution rates are estimated from volume of mineral
135 loss to dissolution per unit time, converted into moles s^{-1} using the molar volume of the mineral.

136 Although this approach is fundamentally different from the methods using bulk solution composition, it
137 also requires knowledge of the dissolution regime to interpret the data. Thus, a need exists to develop
138 methodologies to determine the rate-limiting dissolution regime when measuring mineral dissolution
139 rates, regardless of which technique is employed to quantify the surface-controlled mineral dissolution
140 rates.

141 1.4 Previous approaches to determining dissolution regime

142 The need to determine the rate-limiting mineral dissolution step was quickly identified when studying
143 the rate of dissolution of more soluble minerals such as calcite (e.g. Plummer et al., 1978, 1979;
144 Sjöberg and Rickard, 1984; Murphy et al., 1989) or gypsum (e.g. Raines and Dewers, 1997a, 1997b;
145 Jeschke et al., 2001). In principle, transport-controlled dissolution regimes can be identified when
146 dissolution rates vary in response to changes in the thickness of the DBL. A commonly used approach
147 involves measuring dissolution rates by dissolving fine-grained minerals and/or individual mineral
148 crystals suspended in a stirred vessel. In this set up, controlling the thickness of the DBL is achieved by
149 varying the stirring rate of the suspensions. Constant dissolution rates with varying stirring rates have
150 been interpreted to indicate a surface-controlled dissolution regime (e.g. Sjöberg, 1978; Plummer et al.,
151 1978; 1979; Busenberg and Plummer, 1986; Raines and Dewers, 1997b). However, Sjöberg and
152 Rickard (1983) pointed out that such a system has poorly controlled hydrodynamics, and a lack of
153 stirring dependence does not necessarily guarantee surface-controlled dissolution, but instead could
154 indicate that, at some point, the effective thickness of the DBL does not change with stirring rate. This
155 shortcoming led to the development of alternative approaches including the fluidized bed reactor,
156 which produces a more even spatial distribution of suspended particles (e.g. Chou et al., 1989). The
157 higher turbulence generated using this experimental design accelerates diffusional transport through the
158 DBL, facilitating the establishment of surface-controlled dissolution conditions. However, it remains
159 difficult to determine the actual dissolution regime with this experimental set up. Another widely used

160 approach relies on a rotating disc made of the mineral of interest, which is immersed in the reactive
161 medium (e.g. Sjöberg and Rickard, 1983; 1984; Pokrovsky et al., 2005). Using this approach, assuming
162 a laminar flow regime, the transport rate constant can be calculated with the solution of Levich (1962)
163 based on a semi-infinite domain (Alkattan et al., 1998, Pokrovsky et al 2005):

164
$$k_t = 0.62 D^{2/3} \nu^{-1/6} \omega^{1/2} \quad (4)$$

165 where ν is the kinematic viscosity of the solution and ω the disc rotation speed.

166 For mineral grains of arbitrary shape and size in finite reactor cells, however, solution of the
167 flow, transport and reaction processes can only be achieved through numerical techniques. Recent
168 advances in pore-scale modeling, involving the numerical solution of Navier – Stokes flow, advective-
169 diffusive transport and dissolution equations, make it possible to capture transport limitations
170 associated with reactive surfaces in more complex domain geometries without having to make any
171 assumption about the thickness of the DBL (Molins et al., 2014; Molins, 2015). Although pore-scale
172 numerical simulations provide a powerful means to elucidate transport limitations on mineral
173 dissolution, these have not been performed in conjunction with experimental studies of dissolution
174 regimes in single-crystal small-volume reactors.

175 1.5 Study Objectives

176 In this study, we build on the convergence of high-resolution experimental and numerical simulation
177 techniques to study the mechanistic coupling between flow, transport and reactive processes at the
178 micrometer scale. We do so by using FT-TRA experiments to empirically distinguish between surface-
179 and transport-controlled dissolution regimes in combination with pore-scale modeling, which allows
180 the quantitative interpretation of experimental data under various flow conditions. The combination of
181 methods yields a novel and integrated experimental-modeling approach to study mineral dissolution
182 kinetics.

183 **2. Materials and methods**

184 **2.1 Sample origin, preparation and surface area measurement**

185 Forsterite and calcite samples were obtained from Ward's Natural Science (items #49-1557 and #49-
186 5860, respectively). Transparent forsterite grains ($Mg_{1.81}Fe_{0.18}Ni_{0.01}SiO_4$; Fo91) were handpicked, and
187 ground down to a 63 – 150 μm size fraction. Pre-treatment was limited to ultrasonic cleaning with
188 acetone until a clear supernatant was obtained. A subsample ($8.17 \times 10^{-3} g$) was dried-overnight in
189 an oven at 60 °C. The mineral grains were examined by scanning electron microscopy (SEM), which
190 revealed that they were generally free of adhering fine particles (Fig. 1A). Specific surface area
191 ($257.3 \text{ cm}^2 \text{ g}^{-1}$) was measured using multi-point BET (Brunauer et al., 1938) with N_2 adsorption
192 using a Quantachrome Autosorb-1 surface area analyzer. Calcite mineral rhombs were individually
193 picked, ultrasonically cleaned with acetone to remove fine particles adhering to the mineral surface,
194 and oven-dried at 60 °C (Fig. 1B). Geometric surface areas were estimated from images obtained with a
195 Hitachi S-4700 field emission scanning electron microscope housed at the UBC BioImaging Facility.
196 Individual calcite rhombs were positioned on a platform, and were manually repositioned to expose
197 each rhomb face for a top-down field-of-view to allow for geometric surface area estimation.

198 **2.2 FT-TRA module**

199 Dissolution experiments were conducted using a flow-through module connected to an Agilent 7700x
200 quadrupole ICP-MS housed at the Pacific Center for Isotopic and Geochemical Research (Fig. 2; De
201 Baere, 2015; De Baere et al., 2015) to measure the release rate of Mg and Si to monitor forsterite
202 dissolution and Ca to monitor calcite dissolution. The flow-through cell consisted of a 13mm diameter
203 syringe filter (Millipore Inc. item #SLLGC13NL) mounted between two computer-controlled parallel
204 solenoid valves (NResearch Inc. item#225T092C). This design provides 6 filter positions, allowing for
205 efficient switching between blanks and samples, analyzed successively. Eluents were pumped from
206 individual bottles (E1 – E4) with a Dionex ICS-3000 dual gradient pump that generates precise flow

207 rates covering 4 orders of magnitude ($0.16 \times 10^{-4} - 0.16 \text{ mL s}^{-1}$). With this experimental design,
208 mineral dissolution rates can be measured over a wide range of eluent residence times within the flow-
209 through cell ($V (0.05 \text{ mL})/Q$). The pump was programmed with the Chromeleon® Chromatography
210 Data System to control eluent composition for the experiment or standards for calibration. Another
211 gradient pump was used isocratically in parallel, to continuously supply an internal standard (^{115}In)
212 allowing for instrumental drift correction during time-resolved ICP-MS measurement. The eluent
213 produced by the first pump either directly joined the internal standard stream (when running standards)
214 or passed through the flow-through cell (when running samples) before merging with the internal
215 standard stream. The flow rate of the internal standard was held constant ($1.66 \times 10^{-6} \text{ L s}^{-1}$), while
216 the flow generated by the other gradient pump was adjusted according to the experiment. ^{24}Mg , ^{28}Si ,
217 ^{44}Ca and ^{115}In were measured in time-resolved mode with helium to minimize isobaric interferences
218 (McCurdy and Woods, 2004), and the ICP-MS output (cps) was corrected for dilution by the internal
219 standard. Effluent [Mg, Si and Ca] concentrations were monitored in real time and experiments were
220 terminated when steady-state release rates were observed. Forsterite and calcite dissolution rates were
221 calculated by multiplying [Mg, Si; Ca] concentrations (moles L^{-1}) by the flow rate of the effluent
222 (L s^{-1}). For forsterite, the Mg value (moles s^{-1}) was corrected for stoichiometry by dividing by 1.81,
223 before dividing by the BET surface area associated with the weighed subsample to obtain a surface area
224 normalized dissolution rate ($\text{moles m}^{-2} \text{ s}^{-1}$). For calcite, the Ca value was divided by the geometric
225 surface area exposed to the incoming eluent (5 faces of the calcite rhomb), obtained from SEM
226 imagery, to obtain surface area normalized dissolution rates ($\text{moles m}^{-2} \text{ s}^{-1}$).

227 2.3 Experimental design to establish dissolution regime

228 The purpose-built leaching module described above was used to empirically determine the dissolution
229 regime from observing the evolution of mineral dissolution rates with eluent flow rate (Q). When
230 mineral dissolution is close to the surface-controlled regime end member and experimental conditions

231 are maintained far-from-equilibrium ($IAP \ll K_{sp}$) in the FT-TRA module, the rate of mineral
232 dissolution can essentially be described by equation (1) and dissolution rates should be quasi
233 independent of DBL thickness, i.e., dissolution rates ($Q \times C_{effluent}$) should remain nearly constant
234 under varying flow rates (Fig. 3A under relatively fast flow rates). Under such mineral dissolution
235 conditions, the steady-state concentration of dissolved species ($[effluent]_{steady\ state}$) must increase
236 nearly proportionally with eluent residence time ($cell\ volume\ (V)/Q$, Fig. 3B at relatively short eluent
237 residence times). In contrast, if $[effluent]_{steady\ state}$ deviates strongly from linearity with residence
238 time (Fig. 3B at relatively long eluent residence times), dissolution rates are affected by diffusive
239 transport limitations through the DBL (Fig. 3A under relatively slow flow rates). The ability to observe
240 transport limitations stems from the increase in thickness of the DBL as flow rate decreases and
241 residence time increases (equation 2). As a result, $C_{surface}$ gradually increases from C_{bulk} , when the
242 DBL is sufficiently thin, towards saturation as the DBL widens.

243 To test this hypothesis, weighed forsterite powders or individual calcite rhombs were placed in
244 the flow-through cell and exposed to incoming effluents of constant pH (2.3, 3.3 and 4.0) over a range
245 of flow rates spanning three orders of magnitude ($1.67 \times 10^{-7} - 1.25 \times 10^{-4} L\ s^{-1}$). Dissolution
246 was carried out until a steady-state eluent concentration was reached (monitored by online ICP-MS
247 time-resolved analysis). An overview of experiments conducted is provided in Table 1. A range in
248 analytical grade (SeastarTM) HNO_3 concentrations was used to generate acidic eluents at pH 2.3, 3.3
249 and 4.0. Experiments were carried out at room temperature.

250

251

252

253

254 2.4 Rate equations

255 The forsterite dissolution rate equation (equation 5) was derived from equation (1). Because the
 256 experiments were carried out under acidic and far-from-equilibrium conditions, it was sufficient to
 257 solely consider the H^+ reaction pathway (e.g. Rimstidt et al., 2012):

258
$$R_{surface} = k_{H^+} (a_{H^+})^{0.5} \quad (5)$$

259 A constant surface area was assumed in the forsterite dissolution experiments, given the limited amount
 260 of sample loss (< 1%, calculated using integrated $[\text{Mg, Si}]_{effluent}$ concentrations), allowing the term
 261 $(\frac{m}{m_0})^{2/3}$ to be omitted.

262 The calcite dissolution rate equation (equation 6) used for data interpretation in the pore-scale
 263 model was also derived from equation (1).

264
$$R_{surface} = (k_1 a_{H^+} + k_2 a_{CO_2} + k_3 a_{H_2O}) (1 - IAP/K_{sp}) \quad (6)$$

265 The faster reaction kinetics of calcite required this rate expression to be expanded by combining kinetic
 266 and thermodynamic concepts considering both the forward and backward reactions (i.e. ion detachment
 267 and reattachment). The inclusion of the thermodynamic affinity term $(1 - IAP/K_{sp})$, where IAP/K_{sp} is
 268 the ratio of the ion activity product at the mineral surface (IAP) to the solubility product of the mineral
 269 (K_{sp}), ensures that modeled dissolution rates decrease if equilibrium conditions are approached at the
 270 mineral surface. Similar to the forsterite dissolution experiments, a constant surface area was assumed,
 271 justified by sample losses limited to < 1% for all experiments (calculated using integrated $[\text{Ca}]_{effluent}$
 272 concentrations).

273

274 2.5 Pore-scale modeling

275 To delineate transport-controlled processes occurring during calcite dissolution under varying incoming
 276 eluent velocities, high-resolution pore-scale simulations were performed using the approach of Molins

277 et al. (2012, 2014). A 3-dimensional domain was constructed consisting of a cylinder (0.4 cm in
278 diameter and 0.4 cm in length) at the bottom of which a cubic calcite grain rested, representing the FT-
279 TRA calcite dissolution experimental design (3-dimensional model domain shown in Fig. 4).
280 Simulations were run at a 62.5 μm resolution. The dimensions of the grains were varied in each
281 simulation such that their surface areas were consistent with the measured geometric surface area
282 obtained from SEM imagery for each experiment. This approach resulted in slightly different grain
283 sizes in each simulation. Fluid flow was obtained by solving the incompressible Navier–Stokes
284 equations in the cell space (Molins et al., 2012), with the eluent solution entering the reactor in the
285 space between the grain and the walls of the cylinder. Transport of 4 aqueous components
286 (H^+ , $\text{CO}_{2(aq)}$, Ca^{2+} , NO_3^-) was simulated with the advection-diffusion equation. The reactive
287 components involved 8 aqueous equilibrium complexation reactions (Table 2). The rate of calcite
288 dissolution was calculated directly at the mineral surface. Solid–fluid interfaces were represented
289 explicitly as embedded boundaries within each of the grid cells of the structured mesh (Molins et al.
290 2012). In this approach, the solid-fluid interfaces intersect the grid cells rather than follow their
291 boundaries. The governing equations are then solved with a finite volume method which accurately
292 accounts for the volumes occupied by both fluid and solid and for the interfacial area between fluid and
293 solid. The rate constants k_1 ($0.89 \text{ moles m}^{-2} \text{ s}^{-1}$), k_2 ($5.01 \times 10^{-4} \text{ moles m}^{-2} \text{ s}^{-1}$) were sourced
294 from Chou et al. (1989) and k_3 ($2.34 \times 10^{-6} \text{ moles m}^{-2} \text{ s}^{-1}$) was sourced from Busenberg and
295 Plummer (1986). The use of these published rate constants in combination with measured surface areas
296 without any further calibration was intended to evaluate whether a process-based pore-scale model that
297 accounts for transport limitations can reproduce the experimental data. Because the dissolution rate is
298 calculated at the mineral surface by the pore-scale model, rate constants used in the model are free of
299 transport limitations, and must be taken constant for all flow velocities and pH conditions. Diffusive

300 boundary layer thickness and resulting transport-controlled dissolution rates are not specified, but are
301 quantified from the simulation results.

302 **3. Results and Discussion**

303 3.1 Forsterite

304 Steady-state effluent [Mg, Si] concentrations were achieved within an hour (Fig. 5C) at eluent pH 2.3
305 and concentrations were found to increase proportionally with eluent residence time (Fig. 5A, 5B),
306 following expectations for a dissolution reaction that is overwhelmingly surface-controlled for all
307 eluent flow rates used. Experimentally derived forsterite dissolution rates vary within ± 0.21 log units
308 across all flow rates (error = 2σ , as shown in Fig. 5D), which is a typical range for dissolution rates
309 determined within a single laboratory (e.g. Brantley, 2008: p.175). This variability is greater than
310 expected from analytical uncertainties, confirming previous observations (e.g. Brantley, 2008; Rimstidt
311 et al., 2012) and likely reflects variability in the number and distribution of reactive sites, as dissolution
312 proceeds (e.g. Lüttege et al., 2013). The dissolution rates measured at all flow rates ($2.53 \pm 0.59 \times$
313 10^{-9} moles $m^{-2} s^{-1}$) at pH 2.3 yield a dissolution rate constant
314 ($2.53 \pm 0.59 \times 10^{-9} / (10^{-2.3})^{0.5} = 0.36 \pm 0.08 \times 10^{-7}$ moles $m^{-2} s^{-1}$) consistent with
315 published values (De Baere et al., 2015 and references therein). As the forsterite dissolution regime is
316 widely recognized to be surface-controlled under acidic conditions (e.g. Pokrovsky and Schott, 2000),
317 our findings illustrate how our experimental set up can empirically confirm the presence of a
318 dissolution regime dominated by surface-control. Under these conditions, a modeling analysis to
319 quantify transport limitation is not necessary, because experimental results are able to demonstrate
320 conclusively the predominantly surface-controlled nature of the dissolution of powdered forsterite
321 samples.

322 3.2 Calcite

323 3.2.1 Experimental results

324 Similar to the forsterite experiment, steady-state Ca concentrations ($[Ca]_{steady\ state}$) were achieved within
325 an hour at all flow rate conditions (Fig. 6D). However, for calcite dissolution it is evident that $[Ca]_{effluent}$
326 is not a linear function of residence time (Figs. 6A, 6B, 6C), indicating that dissolution is affected by
327 transport limitations. Calcite dissolution rates calculated by multiplying averaged $[Ca]_{steady\ state}$ by flow
328 rates at pH 2.3, 3.3 and 4.0 increase with decreasing pH and with increasing flow (shown in Figs. 7A,
329 7B and 7C respectively). The experimental data show a quasi linear dependence of the logarithm of the
330 dissolution rate on the logarithm of the flow rate (Fig. 7A, B and C). A linear fit to these data ($\log r =$
331 $n + m \log Q$) yields $m = 0.513$ ($R = 0.992$) for pH 2.3, $m = 0.502$ ($R = 0.986$) for pH 3.3, and $m =$
332 0.308 ($R = 0.986$) for pH 4.0. At pH 2.3 and 3.3, the approximately square-root dependence ($m \approx 0.5$)
333 on the flow rate found here is comparable to the square-root dependence on the rotation speed of the
334 rotating disc solution of Levich (1962, Eq. 4). Deviations from linearity at pH 4.0 for low flow rates
335 ($< 0.05 \times 10^{-3} \text{ L s}^{-1}$ or $\text{Log } Q < -1.3$, hypothetical linear fit using $m = 0.5$ illustrated in Fig. 7C) likely
336 indicate a transition away from the transport-controlled dissolution regime ($m = 0.5$) towards a
337 surface-controlled regime ($m = 0$), and heavily weigh the fit towards a value of m smaller than at pH
338 2.3 and pH 3.3 (0.308, dashed line in Fig. 7C).

339 3.2.2 Pore-scale modeling analysis

340 Using a single set of dissolution rate constants, the pore-scale model was able to reproduce these
341 experimental data reasonably well, particularly at pH 2.3 and 3.3, where the departure of linearity at
342 decreasing flow rates was not observed (Fig. 7A, B and C). Based on the agreement with effluent
343 experimental data, the modeling results support the interpretation of FT-TRA experimental data that
344 calcite dissolution rates are strongly affected by transport limitations under these conditions.

345 The pore-scale model also revealed the presence of a nearly stagnant fluid pocket on the lee side
346 of the calcite rhomb, where reaction products build up and pH increases (Fig. 8). In fact, at this surface,

347 the thermodynamic affinity term in equation (6) departs significantly from unity in some of the
348 simulations due to slow flow conditions. As a result, dissolution rates at this surface were much slower
349 and contributed little to the overall calcite dissolution rate. In contrast, dissolution rates from the four
350 calcite surfaces parallel to the mean flow direction are faster due to the smaller thickness of the DBL
351 and more rapid solute exchange with the bypassing fluid. Figure 8 also clearly shows that pH at the
352 mineral surfaces parallel to the direction of flow deviates to various degrees from eluent and bulk
353 solution pH, resulting in different levels of transport limitations for calcite dissolution as a function of
354 flow rate and eluent pH. A closer examination of the model results shows that the simulated thickness
355 of the DBL increases with decreasing flow rates, with a strong effect on pH at the mineral surface,
356 which in turn progressively limits mineral dissolution rates (Fig. 9). The deviations of pH within the
357 DBL from bulk solution pH can be taken as a direct proxy for the effect of transport limitations on
358 dissolution rates at the surface (equation 6) and demonstrate that transport limitations play a role for all
359 experimental conditions considered.

360 Despite the observed changes of surface pH the numerical simulations for pH 2.3 and 3.3 show
361 that the concentrations in the solution immediately adjacent to the mineral surface remain such that the
362 $k_1 a_{H^+}$ term of Eq. (6) continues to dominate the intrinsic surface rate. This is also the case at pH 4.0
363 and fast flow rates; however, at pH 4.0 and slow flow rates, the pH at the surface increases to circum-
364 neutral and even slightly alkaline values, further inhibiting mineral dissolution. The simulation shows
365 that in this transition, the shift of pH pushes the rate into a regime where the controlling mechanism is
366 the cation hydration-hydrolysis step rather than the stepwise proton-promoted mineral dissolution (Eq.
367 6). In this sense, the simulations also demonstrate how transport limitations can lead to a shift of the
368 dissolution mechanism.

369 In Fig. 10, the simulated thicknesses of the DBL extracted from the plots in Fig. 9 are plotted
370 against the flow rate, showing the decrease in thickness with increasing flow rate. By analogy between
371 Q and ω from the Levich (1962) rotating disc solution, we assumed a relationship of the form $\delta =$

372 kQ^{-m} to capture the dependence of the DBL thickness on flow rates observed in simulation results
373 (Fig. 9). For this purpose, we used the value of m obtained in the earlier linear fits to experimental data
374 (Fig. 7). The fit to the simulated DBL thicknesses is remarkably good except at the fastest flow rates.
375 At fast flow rates, the DBL shrinks significantly and the discretization used for the simulations is not
376 fully sufficient; i.e. the DBL is captured within only one or two grid cells (Fig. 10). This limitation
377 likely leads to an underestimation of transport limitations and as a result to an overestimation of the
378 effective rates.

379

380 3.3 Added value of FT-TRA and pore-scale modeling

381 Our approach combines laboratory experiments and numerical simulations to gain insight into the
382 dissolution regimes over a range of flow conditions, which is a unique contribution of this work. Other
383 approaches have tackled this issue with either exclusively experimental methods (e.g. Erga and
384 Terjesen, 1956; Sjöberg, 1976; Plummer et al., 1978; Sjöberg and Rickard, 1984; Colombani, 2008), or
385 with experimental methods combined with simple mathematical solutions (e.g. Alkattan et al., 1998,
386 Pokrovsky et al., 2005), as well as exclusively mathematical methods (e.g. based on the film theory:
387 Rimstidt, 2015).

388 In terms of the experimental contribution, FT-TRA is a new approach when applied to study the
389 dissolution kinetics of minerals. The present study demonstrates that FT-TRA is suitable for
390 empirically establishing the dissolution regime, and when combined with pore-scale modeling FT-TRA
391 provides detailed insights into transport limitations. Combining FT-TRA with numerical simulations is
392 facilitated by the low detection limits of ICP-MS, which allows dissolution of single crystals (and
393 potentially single mineral cleavage surfaces) in small reaction cells of simple geometry. The small
394 volume of the reaction cell also reduces the time needed to reach steady-state dissolution, which in
395 conventional larger mixed flow reactors is primarily dictated by the residence time of the eluent in the
396 reactor (De Baere et al., 2015). This characteristic of the experimental set up used in this study also

397 facilitates efficient duplication of dissolution experiments and statistical analysis of the results to assess
398 the underlying causes for the large variability observed in dissolution rates measured in laboratories
399 (e.g. Rimstidt et al., 2012). Although not directly relevant to the present study, the high temporal
400 resolution afforded by FT-TRA also provides detailed information on the evolution of dissolution rates
401 and stoichiometries when minerals are subjected to abrupt or transient dissolution episodes,
402 documenting in particular the gradual formation of surface leached layers in unprecedented detail and
403 identifying sporadic and abrupt exfoliation events (De Baere et al., 2015).

404 As for the modeling contribution, we could show that direct numerical simulation can be a very
405 powerful addition to the study of conditions in single-crystal small-volume reactors. In this paper, we
406 have limited ourselves to assuming simple cubic grain geometry and that all surfaces of the mineral
407 have homogeneous reactivity. However, this is not a requirement. The modeling approach also allows
408 resolution of complex geometries at very high resolution, which can be incorporated in the model from
409 microtomographic images (Molins et al., 2014) or from FIB-SEM characterization (Trebotich and
410 Graves, 2015). In addition, recent studies have explored differences of surface-dominated rates on
411 different surfaces of the same mineral (Fischer et al., 2012). One can envision the current model to
412 incorporate this heterogeneous reactivity by tagging specific regions of the mineral surfaces differently.
413 Further, the model could explore the effect of the orientation of the grain orientation to the flow
414 direction in the reactor, as in Godinho et al. (2014). The evolution of the surfaces due to dissolution,
415 where the shape of the crystals changes with time, is a subject of interest as well and currently
416 mathematical techniques such as those proposed by Miller and Trebotich (2012) are being implemented
417 in the model to capture this evolution. In porous materials, this would make it possible to capture e.g.
418 the differential evolution of pores and pore throats.

419 **4. Conclusions and future research direction**

420 This study demonstrates that FT-TRA can be used to empirically establish mineral dissolution regimes.
421 We demonstrated how FT-TRA can be used to identify predominantly surface-controlled dissolution
422 using forsterite. In contrast, applying FT-TRA to calcite dissolution demonstrated how predominantly
423 transport-controlled dissolution can be identified. The ability to combine FT-TRA measurements with
424 3-dimensional pore-scale modeling provides unprecedented insights into the transport and reactive
425 processes taking place in the flow-through reactor. This study demonstrates that the pore-scale model is
426 able to accurately capture hydrodynamic effects and transport limitations on mineral dissolution using a
427 single set of surface-controlled rate parameters for a range of pH and flow conditions. As a result, pore-
428 scale model parameter optimization will allow the estimation of mineral dissolution parameters, even
429 when experimental conditions are inadequate to produce predominantly surface-controlled dissolution
430 conditions. Future work should include developing different flow-through cell designs to allow higher
431 resolution pore-scale modeling, and measuring additional effluent parameters (e.g. pH) to better
432 constrain modeling results and provide additional means to estimate dissolution rate parameters.

433 The ability to experimentally validate reactive transport modeling is also of particular interest to
434 a wide variety of research areas, including the problems of scaling (e.g. Li et al., 2008) and optimizing
435 CO₂ injection methodology for carbon sequestration (e.g. Trebotich et al., 2014). For example, using
436 the pore-scale modeling tools used in this study, small scale fluid-solid interfaces can be resolved to
437 achieve a mechanistic understanding on how to control CO₂ injection in the subsurface (op. cit.).

438 Finally, beyond the establishment of ‘classical’ dissolution rate constants, future work should
439 also explore the possibility of incorporating AFM or VSI as part of a FT-TRA experiment to couple
440 surface micro-topography observations and high resolution bulk solution concentration measurements
441 to link the evolution of reactive surface sites to dissolution rates, and address (1) the long-standing
442 problem of surface normalization (e.g. Lütte et al., 2005 and references therein) and (2) the ongoing

443 debate concerning the validity of using single rate constants to describe mineral dissolution (e.g. Lüttge
444 et al., 2013; Fischer et al., 2012, 2014, 2015).

445 The multi-faceted applications and encouraging results obtained in this study and a companion
446 paper (De Baere et al., 2015) warrants further development of FT-TRA for mineral dissolution kinetics
447 studies (De Baere, 2015).

448 **Acknowledgements**

449 The authors would like to thank 3 anonymous reviewers for constructive criticisms and feedback. S.M.
450 was supported as part of the Center for Nanoscale Control of Geologic CO₂, an Energy Frontier
451 Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy
452 Sciences under Award Number DE-AC02-05CH11231. The authors would like to acknowledge Vivian
453 Lai and Marghalaray Amini at the Pacific Centre for Isotopic and Geochemical Research (PCIGR).
454 Method development has been made possible using a NSERC Research Tools and Instrumentation
455 grant. Finally, BDB thanks Derrick Horne for technical SEM assistance and training at the UBC
456 BioImaging Facility.

457 **References cited**

458 Alkattan, M., Oelkers, E.H., Dandurand, J.-L., Schott, J., 1998. An experimental study of calcite and
459 limestone dissolution rates as a function of pH from 1 to 3 and temperature from 25 to 80°C.
460 Chem. Geol. 151, 199– 214.

461 Arvidson, R.S., Ertan, I.E., Amonette, J.E., Lüttge, A., 2003. Variation in calcite dissolution rates: A
462 fundamental problem? Geochim. Cosmochim. Acta 67, 1623–1634.

463 Appelo, C.A.J., Postma, D., 2005. Geochemistry, groundwater and pollution, 2nd edition. A.A. Balkema
464 Publishers, Leiden, The Netherlands.

465 Berner, R.A., 1978. Rate control of mineral dissolution under earth surface conditions. Am. J. Sci. 278,

466 1235–1252.

467 Brantley S.L., 2008. Kinetics of Mineral Dissolution, in: Brantley S.L., Kubicki J.D., White A.F.
468 (Eds.), Kinetics of Water-Rock Interaction, Springer Science, New York, pp. 151–210.

469 Busenberg E., Plummer L.N., 1986. Studies in Diagenesis. U.S. Geol. Surv. Bull. 1578, 139–168.

470 Brunauer S., Emmett P.H., Teller E. (1938) Adsorption of Gases in Multimolecular Layers. J. Am.
471 Chem. Soc. 60, 309–319.

472 Casey, W.H., 1987. Heterogeneous kinetics and diffusion boundary layers: the example of reaction in a
473 fracture. J. Geophys. Res. 92, 8007-8013.

474 Chou L., Garrels R., Wollast R., 1989. Comparative-Study of the Kinetics and Mechanisms of
475 Dissolution of Carbonate Minerals. Chem. Geol. 78, 269–282.

476 Colombani, J., 2008. Measurement of the pure dissolution rate constant of a mineral in water.
477 Geochim. Cosmochim. Acta 72, 5634-5640.

478 Compton R.G., Unwin P.R., 1990. The Dissolution of Calcite in Aqueous Solution at pH < 4: Kinetics
479 and Mechanism. Philos. Tr. R. Soc. S-A 330, 1–45.

480 De Baere, B., François, R., Mayer, K.U., 2015. Measuring mineral dissolution kinetics using on-line
481 flow-through time resolved analysis (FT-TRA): an exploratory study using forsterite. Chem.
482 Geol. 413, 107-118.

483 De Baere, B., 2015. Investigating mineral dissolution kinetics by flow-through time-resolved analysis
484 (FT-TRA). Ph.D. thesis, University of British Columbia, <http://hdl.handle.net/2429/55737>

485 De Giudici, G., 2002. Surface control vs. diffusion control during calcite dissolution: dependence of
486 step-edge velocity upon solution pH. Am. Mineral. 87, 1279-1285.

487 Duckworth, O.W., Martin, S.T., 2003. Connections between surface complexation and geometric
488 models of mineral dissolution investigated for rhodochrosite. Geochim. Cosmochim. Acta 67,
489 1787–1801.

490 Erga, O., Terjesen, S.G., 1956. Kinetics of the heterogeneous reaction of calcium bicarbonate formation
491 with special reference to copper ion inhibition. *Acta Chem. Scand.* 10, 872-874.

492 Fischer, C., Arvidson, R.S., Lüttge, A., 2012. How predictable are dissolution rates of crystalline
493 material? *Geochim. Cosmochim. Acta* 98, 177-185.

494 Fischer C., Kurganskaya I., Schäfer T., Lüttge A., 2014. Variability of crystal surface reactivity: What
495 do we know? *Appl. Geochem.* 43, 132–157.

496 Fischer, C., Finkeldei, S., Brandt, F., Bosbach, D., Lüttge, A., 2015. Direct measurement of surface
497 dissolution rates in potential nuclear waste forms: the example of pyrochlore. *Appl. Mater.*
498 *Interfaces* 7, 17857-17865.

499 Godinho, J. R. A., Piazolo, S., Evans, L., 2014. Simulation of surface dynamics during dissolution as a
500 function of the surface orientation: Implications for non-constant dissolution rates, *Earth Planet.*
501 *Sc. Lett.*, 408, 163–170, doi:10.1016/j.epsl.2014.10.018.

502 Jeschke, A.A., Vosbeck, K., Dreybrodt, W., 2001. Surface controlled dissolution rates of gypsum in
503 aqueous solutions exhibit nonlinear dissolution kinetics. *Geochim. Cosmochim. Acta* 65, 27-34.

504 Lasaga, A.C., 1998. Kinetic Theory in the Earth Sciences. Princeton University Press, Princeton, New
505 Jersey.

506 Levich, V. G. , 1962. Physicochemical Hydrodynamics. Prentice-Hall. Englewood Cliffs, New Jersey.

507 Liang Y., Baer D.R., 1997. Anisotropic dissolution at the CaCO_3 – water interface. *Surf. Sci.* 373, 275–
508 287.

509 Li, L., Steefel, C.I., Yang, L., 2008. Scale dependence of mineral dissolution rates within single pores
510 and fractures. *Geochim. Cosmochim. Acta* 72, 360-377.

511 Lüttge, A., 2005. Etch pit coalescence, surface area, and overall mineral dissolution rates. *Am. Mineral.*
512 90, 1776-1783.

513 Lüttge, A., Arvidson, R.S., Fischer, C., 2013. A stochastic treatment of crystal dissolution kinetics.

514 Elements 9, 183-188.

515 McCurdy E., Woods G., 2004. The application of collision/reaction cell inductively coupled plasma
516 mass spectrometry to multi-element analysis in variable sample matrices, using He as a non-
517 reactive gas. *J. Anal. At. Spectrom.* 19, 607-615.

518 Miller, G., Trebotich, D., 2012. An embedded boundary method for the Navier–Stokes equations on a
519 time-dependent domain, *Commun. Appl. Math. Comput. Sc.*, 7(1), 1–31,
520 doi:10.2140/camcos.2012.7.1.

521 Molins S., Trebotich D., Steefel C.I., Shen C., 2012. An investigation of the effect of pore scale flow
522 on average geochemical reaction rates using direct numerical simulation. *Water Resour. Res.* 48,
523 1–11.

524 Molins S., Trebotich D., Yang L., Ajo-Franklin J.B., Ligocki T.J., Shen C., Steefel C.I., 2014. Pore-
525 Scale Controls on Calcite Dissolution Rates from Flow-through Laboratory and Numerical
526 Experiments. *Environ. Sci. Technol.* 48, 7453–7460.

527 Molins, S., 2015. Reactive interfaces in direct numerical simulation of pre-scale processes. In: (Eds:
528 Steefel, C.I., Emmanuel, S., Anovitz, L.M.) Pore-scale geochemical processes. *Rev. Mineral.*
529 *Geochem.* 80, 461-481.

530 Morse J.W. and Arvidson R.S., 2002. The dissolution kinetics of major sedimentary carbonate
531 minerals. *Earth Sci. Rev.* 58, 51–84.

532 Morse, J.W., Arvidson, R.S., Lüttge, A., 2007. Calcium Carbonate Formation and Dissolution. *Chem.*
533 *Rev.* 107, 342–381.

534 Murphy, W.M., Oelkers, E.H., Lichtner, P.C., 1989. Surface reaction versus diffusion control of
535 mineral dissolution and growth rates in geochemical processes. *Chem. Geol.* 78, 357–380.

536 Pleskov Y.V., Filinovskii V.Y., 1976. The rotating disc electrode. Consultants Bureau - New York.

537 Plummer L.N., Wigley T., Parkhurst D.L., 1978. The kinetics of calcite dissolution in CO₂-water
538 systems at 5 to 60 degrees C and 0.0 to 1.0 ATM CO₂. Am. J. Sci. 278, 179–216.

539 Plummer L.N., Pakhurst D., Wigley T.M.L., 1979. Critical review of the kinetics of calcite dissolution
540 and precipitation, in: Jenne, E.A. (Ed.) Chemical Modeling in Aqueous Systems, American
541 Chemical Society Volume 93, pp. 537–573.

542 Pokrovsky, O.S. and Schott, J., 2000. Kinetics and mechanism of forsterite dissolution at 25°C and pH
543 from 1 to 12. Geochim. Cosmochim. Acta 64, 3313–3325.

544 Pokrovsky O.S., Golubev S.V., Schott J., 2005. Dissolution kinetics of calcite, dolomite and magnesite
545 at 25 °C and 0 to 50 atm *p*CO₂. Chem. Geol. 217, 239–255.

546 Raines, M.A., Dewers, T.A., 1997a. “Mixed” kinetics control of fluid-rock interaction in reservoir
547 production scenarios. J. Petrol. Sci. Eng. 17, 139-155.

548 Raines, M.A., Dewers, T.A., 1997b. Mixed transport/reaction control of gypsum dissolution kinetics in
549 aqueous solutions and initiation of gypsum karst. Chem. Geol. 140, 29-48.

550 Rickard D., Sjöberg E.L., 1983. Mixed control of calcite dissolution rates. Am. J. Sci. 283: 815–830.

551 Rimstidt, J.D., Brantley, S.L., Olsen, A.A., 2012. Systematic review of forsterite dissolution rate data.
552 Geochim. Cosmochim. Acta 99, 159–178.

553 Rimstidt, J.D., 2015. Diffusion control of quartz and forsterite dissolution rates. Appl. Geochem. 61,
554 99-108.

555 Ruiz-Agudo, E., Putnis, C.V., 2012. Direct observations of mineral-fluid reactions using atomic force
556 microscopy: the specific example of calcite. Mineral. Mag. 76, 227–253.

557 Salehikhoo, F., Li, L., Brantley, S.L., 2013. Magnesite dissolution rates at different spatial scales: The
558 role of mineral spatial distribution and flow velocity. Geochim. Cosmochim. Acta 108, 91-106.

559 Sjöberg, E.L., 1976. A fundamental equation for calcite dissolution kinetics. *Geochim. Cosmochim. Acta* 40, 441-447.

560

561 Sjöberg E.L., Rickard D.T., 1983. The influence of experimental design on the rate of calcite

562 dissolution. *Geochim. Cosmochim. Acta* 47, 2281–2285.

563 Sjöberg E.L., Rickard D.T., 1984. Calcite dissolution kinetics: surface speciation and the origin of the

564 variable pH dependence. *Chem. Geol.* 42, 119–136.

565 Sjöberg E.L., 1978. Kinetics and mechanisms of calcite dissolution in aqueous solutions at low

566 temperatures. *Stockh. Contrib. Geol.* 32, 1–94.

567 Steefel, C.I., Appelo, C.A.J., Arora, B., Jacques, D., Kalbacher, T., Kolditz, O., Lagneau, V., Lichtner,

568 P.C., Mayer, K.U., Meeussen, J.C.L., Molins, S., Moulton, D., Parkhurst, D.L., Shao, H.,

569 Šimůnek, J., Spycher, N., Yabusaki, S.B., Yeh, G.T., 2015. Reactive Transport Codes for

570 Subsurface Environmental Simulation, *Comput. Geosci.* 19, 445–478, doi: 10.1007/s10596-014-

571 9443-x

572 Trebotich, D., Adams, M.F., Molins, S., Steefel, C.I., Shen, C., 2014. High-resolution simulation of

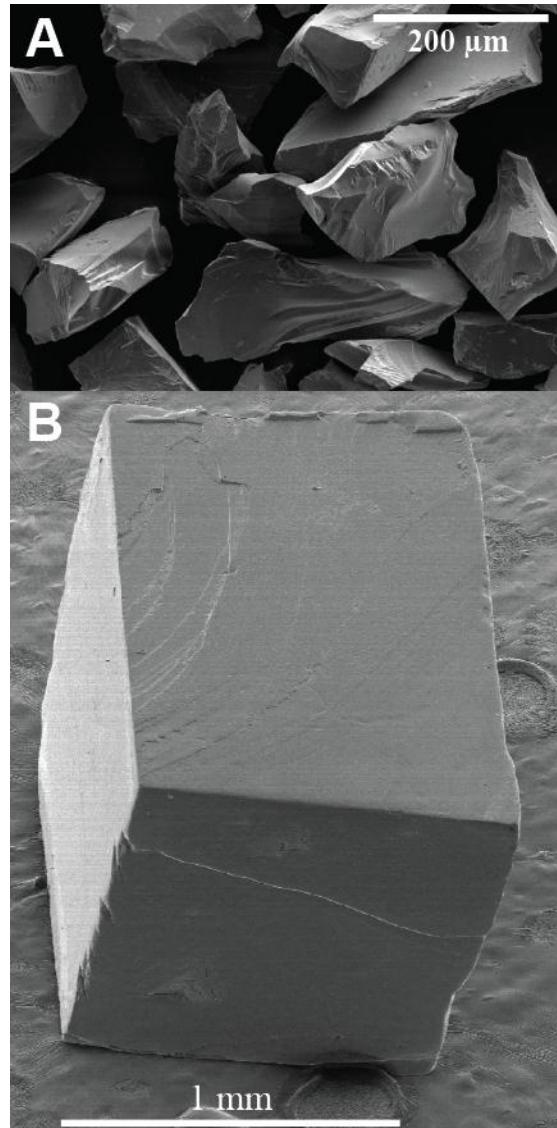
573 pore-scale reactive transport processes associated with carbon sequestration. *Comput. Sci. Eng.*

574 16, 22-31.

575 Trebotich, D., Graves, D., 2015. An adaptive finite volume method for the incompressible Navier–

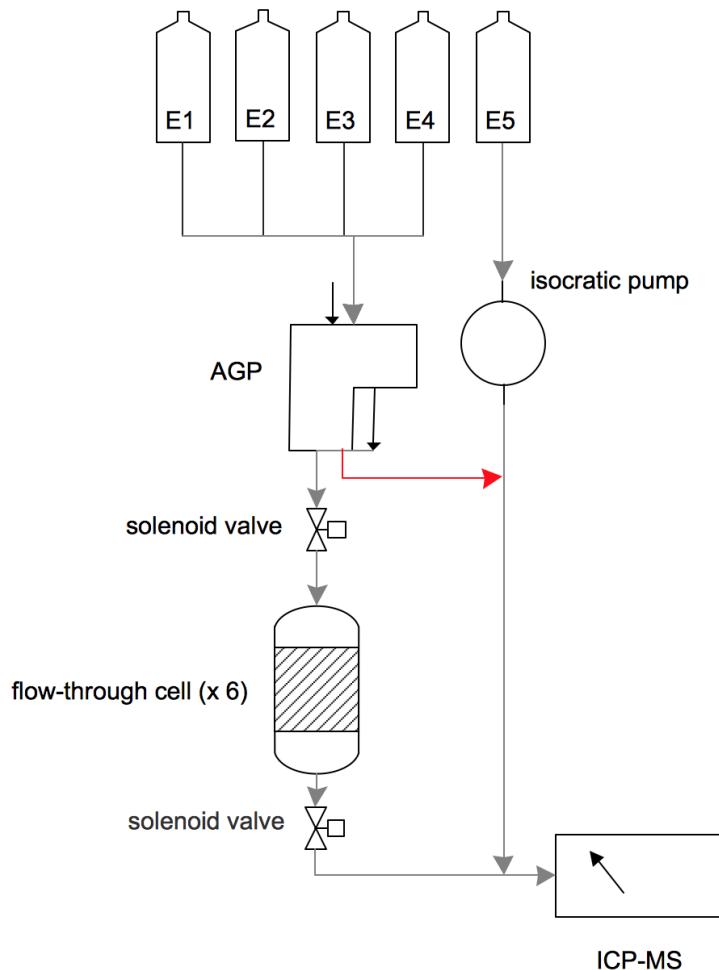
576 Stokes equations in complex geometries, *Commun. Appl. Math. Comput. Sc.*, 10(1), 43–82,

577 doi:10.2140/camcos.2015.10.43.

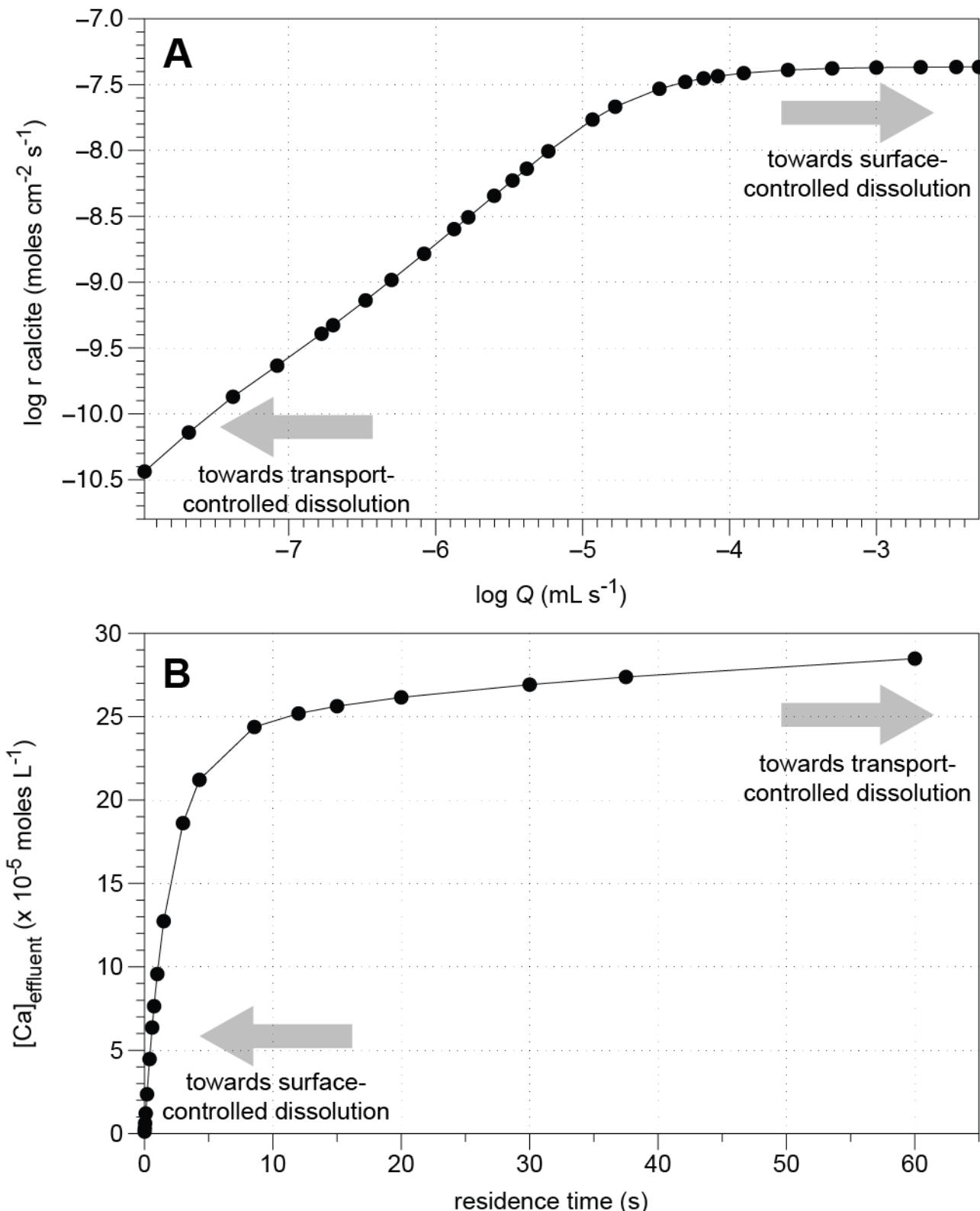

578 White, A.F., Brantley, S.L., 1995. Chemical Weathering Rates of Silicate Minerals: Reviews in

579 Mineralogy 31, Mineralogical Society of America, Washington, D.C.

580 Wolery, T.J., and Daveler, S.A., 1992. EQ3/6: A software package for geochemical modelling of


581 aqueous systems: Package overview and installation guide (version 7.0). Technical Report

582 UCRL-MA-110662 PT I ed. Lawrence Livermore National Laboratory, USA (1992)

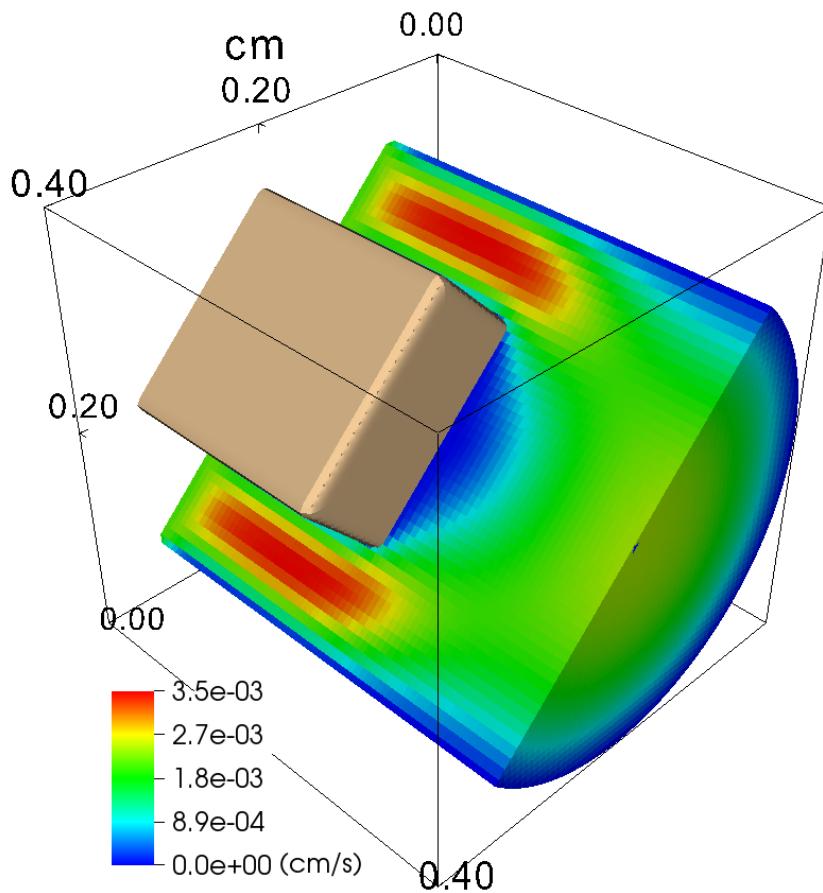

2 **Figure 1:** SEM imagery associated with mineral samples used in this study. **A:** forsterite powder used in this study (63 –
3 150 μm size fraction); **B:** individual calcite rhomb as typically used in this study.

4

5

6 **Figure 2:** Schematic of the flow-through dissolution module. E1 – E5 represent eluent bottles, where E1 – E4 are used to
 7 generate eluents or standards (using an advanced gradient pump, indicated as AGP), and E5 is used to continuously supply an
 8 internal standard (here ^{115}In , using an isocratic pump). This flow-through module allows for time-resolved control on
 9 incoming eluent composition (here, generating an eluent pH range) by mixing different proportion of DIW with
 10 concentrated acid or standard from bottle E1-E4, providing a constant, reproducible flow rate through the flow-through cell,
 11 and enabling time-resolved analysis of the effluent stream. A total of 6 flow-through cell positions are available by using 2
 12 parallel computer-controlled solenoid valves, allowing for efficiently measuring blanks and multiple samples. When
 13 running standards, the solenoid valve holding the flow-through cells is bypassed, as indicated in red.

14

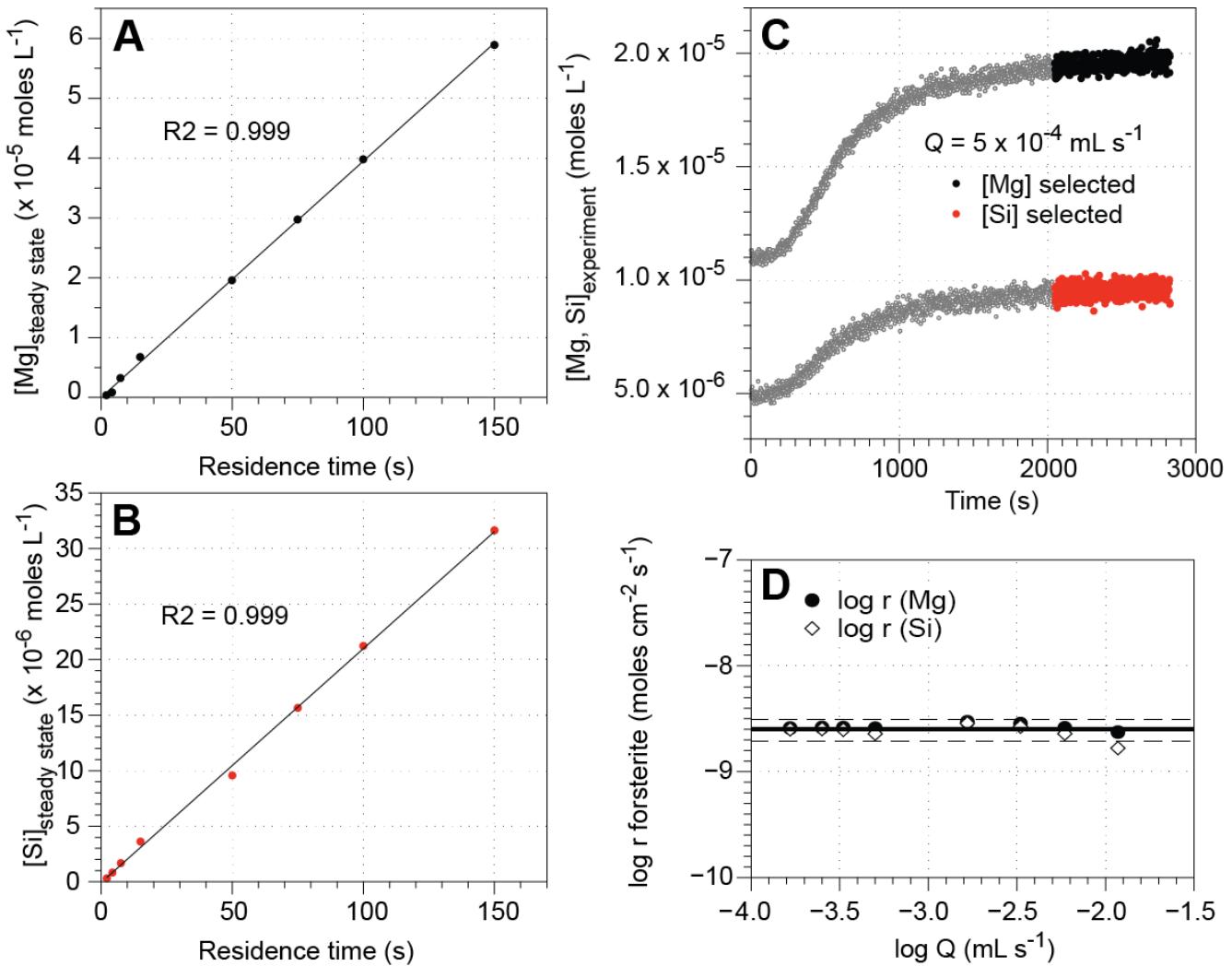

15 **Figure 3:** Conceptual representation of proposed FT-TRA approach to assess dissolution regime. If mineral dissolution is
 16 approaching surface-controlled conditions, dissolution rates remain constant under varying flow rates (Panel A, under
 17 relatively fast eluent flow rates) and the steady-state effluent reaction product species concentration (here: [Ca]) increases

18 proportionally with eluent residence time (Panel **B**, at relatively short eluent residence times). In contrast, if dissolution rates
19 vary with the flow rate (Panel **A**, under relatively slow eluent flow rates), transport processes are affecting the rate of
20 dissolution. Under these conditions, steady-state dissolved species concentration will deviate from linearity with eluent
21 residence time (Panel **B**, at relatively long eluent residence times), and eventually plateau to equilibrium conditions
22 ($C_{surface} = C_{saturation}$). Data shown here were obtained using equivalent 1-dimensional continuum-scale simulations of a
23 grain of calcite of approximately the same size as those in the FT-TRA cell exposed to a solution at pH = 3.3 under a range
24 of eluent flow rates. Because the continuum model – in contrast with the pore scale model – assumes well-mixed conditions
25 within each grid cell of the domain, it can simulate the two end-members of the dissolution regime continuum, i.e. surface-
26 controlled ($C_{surface} = C_{bulk}$) and transport-controlled ($C_{surface} = C_{saturation}$) conditions, providing a convenient way to
27 illustrate the proposed FT-TRA approach to determine the prevalent dissolution regime.

28

29

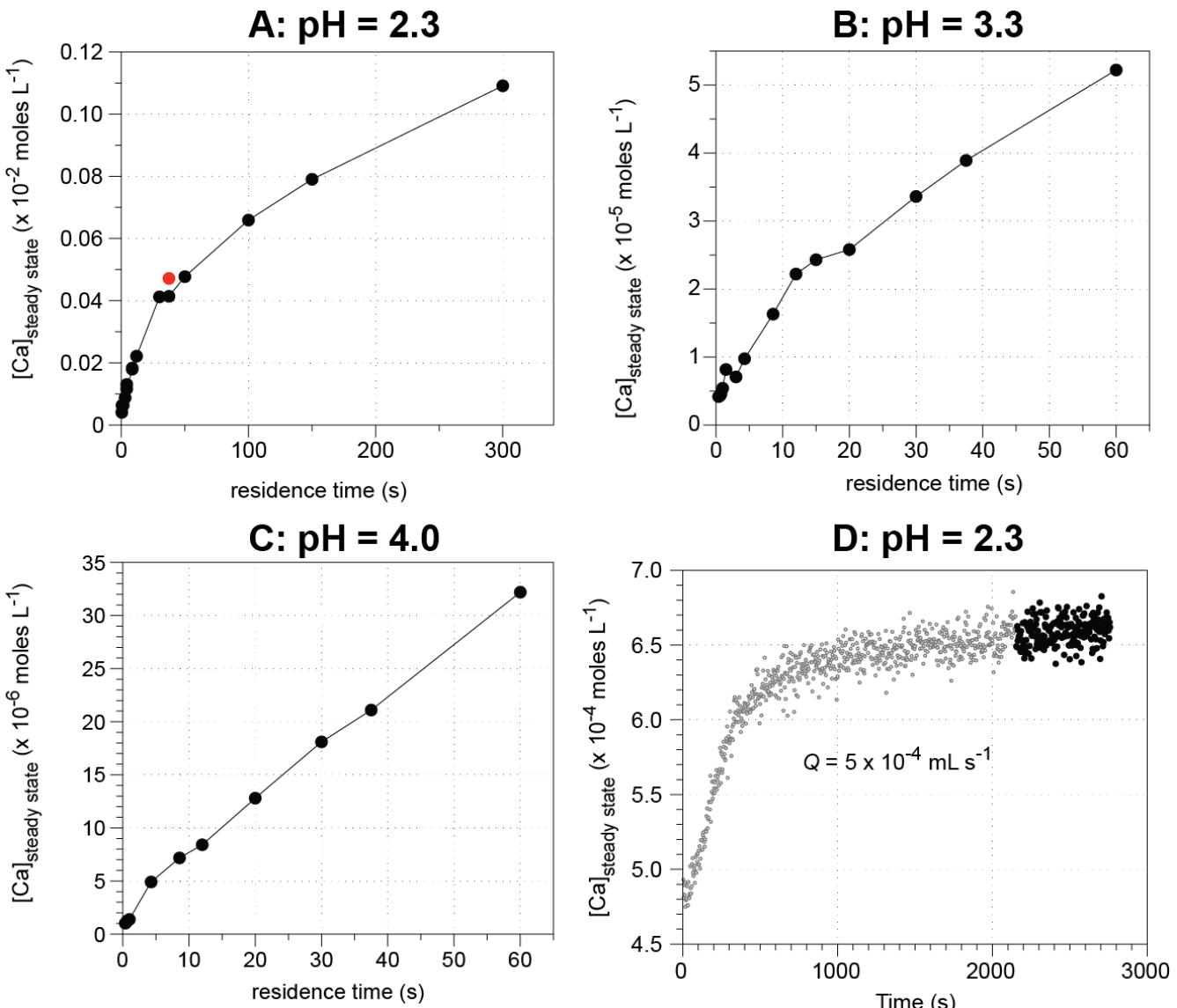
30



31

32 **Figure 4:** Pore-scale simulation domain showing the calcite grain placed at the inlet end of the reactor. Contours of the
 33 magnitude of the fluid velocity in the reactor are shown on a slice that divides the domain in half. Fluid flows from left to
 34 right at the slowest experimental rate used ($1.67 \times 10^{-4} \text{ mL s}^{-1}$), which is prescribed using a uniform fluid velocity
 35 distribution at the inlet face.

36


37

38

39 **Figure 5:** Panels A and B show $[Mg]_{\text{steady state}}$ and $[Si]_{\text{steady state}}$ concentrations respectively (calculated using average $[Mg]$,
40 $Si]_{\text{selected}}$ obtained from applicable data as illustrated using data collected as shown in Panel C); error falls within symbol
41 size; $R^2 = 0.999$ for both $[Mg]$ as well as $[Si]$ versus eluent residence time. Panel C: Time-resolved $[Mg, Si]$ concentration
42 results collected at an eluent flow rate of $5 \times 10^{-4} \text{ mL s}^{-1}$ at eluent pH 2.3 illustrates data that is typically collected
43 measured during forsterite powder dissolution experiments. Selected $[Mg, Si]$ concentrations representing steady-state
44 conditions are shown as black filled circles for Mg and red filled circles for Si. Data recorded prior to $[Mg, Si]_{\text{selected}}$ plateaus
45 are shown as grey circles. Panel D: BET surface area normalized Mg and Si based forsterite dissolution rates versus eluent
46 flow rate (note logarithmic x- and y-axis). $[Mg]_{\text{selected}}$ concentrations were divided by 1.81 to take into account forsterite
47 stoichiometry. Average dissolution rate shown as solid black line, 95 % CI based on 2σ shown as dotted black line.

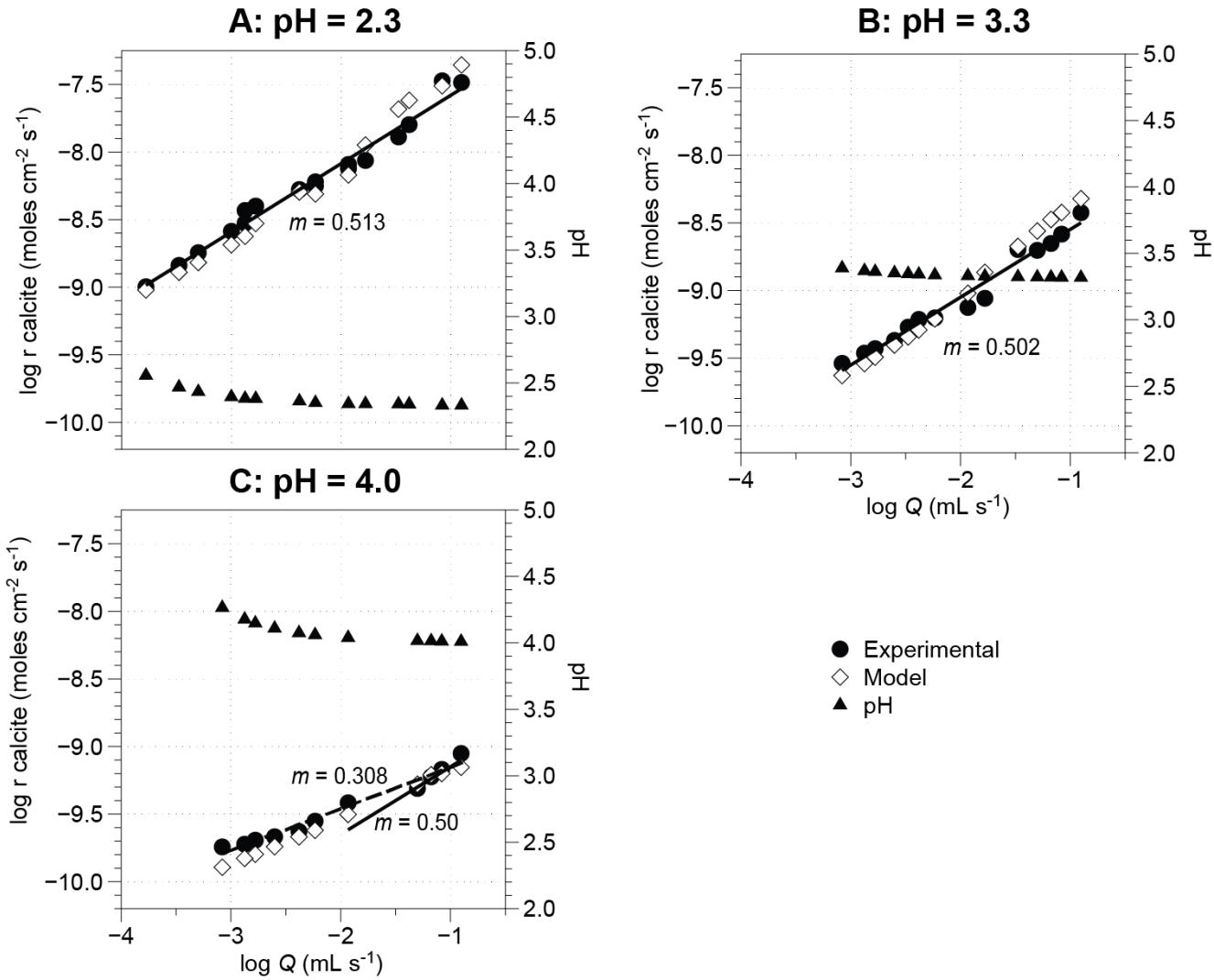
48

49

50

51

52


53

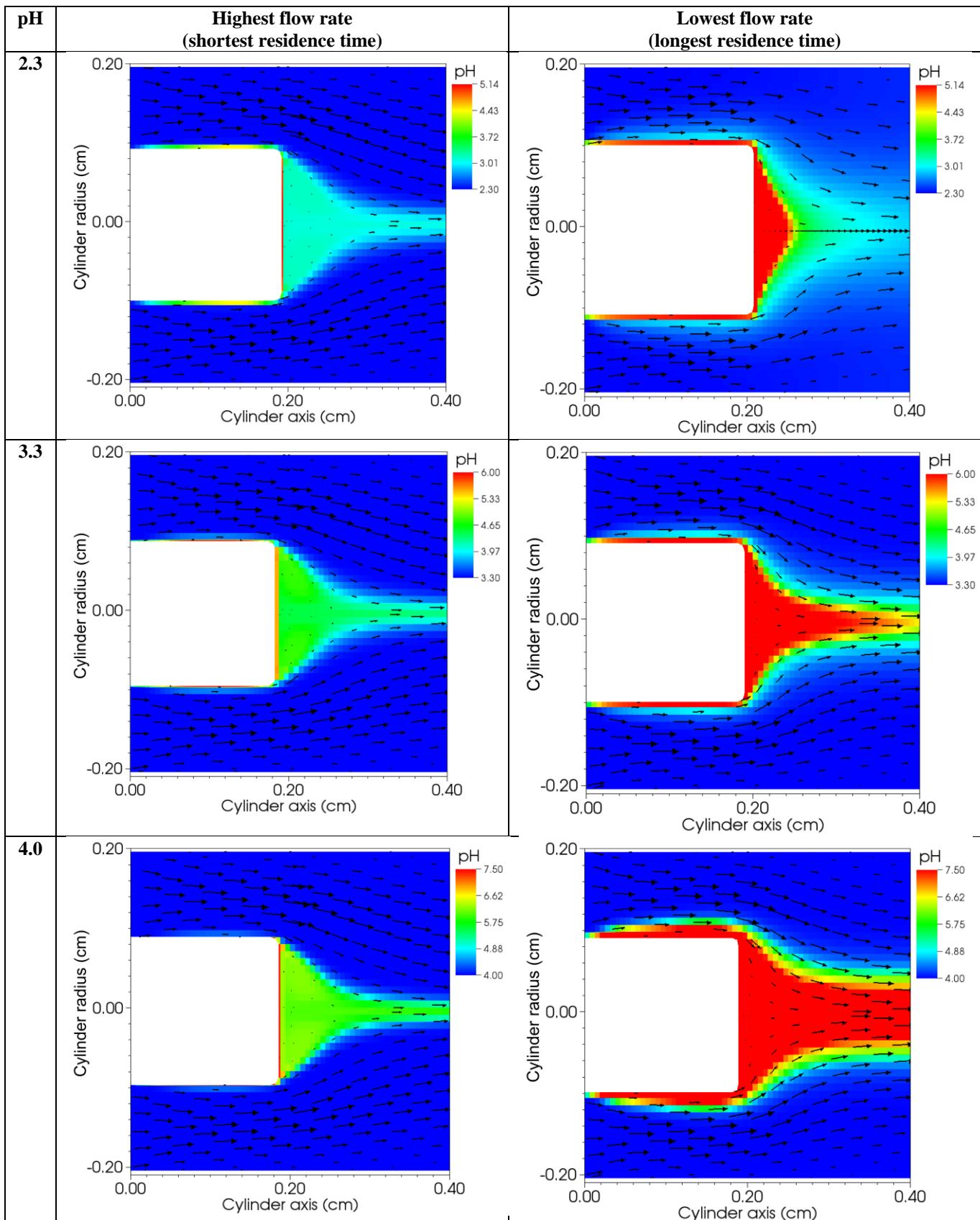
54

55

Figure 6: Panels A, B and C show $[Ca]_{\text{steady state}}$ concentrations collected under eluent pH of 2.3, 3.3 and 4.0 respectively

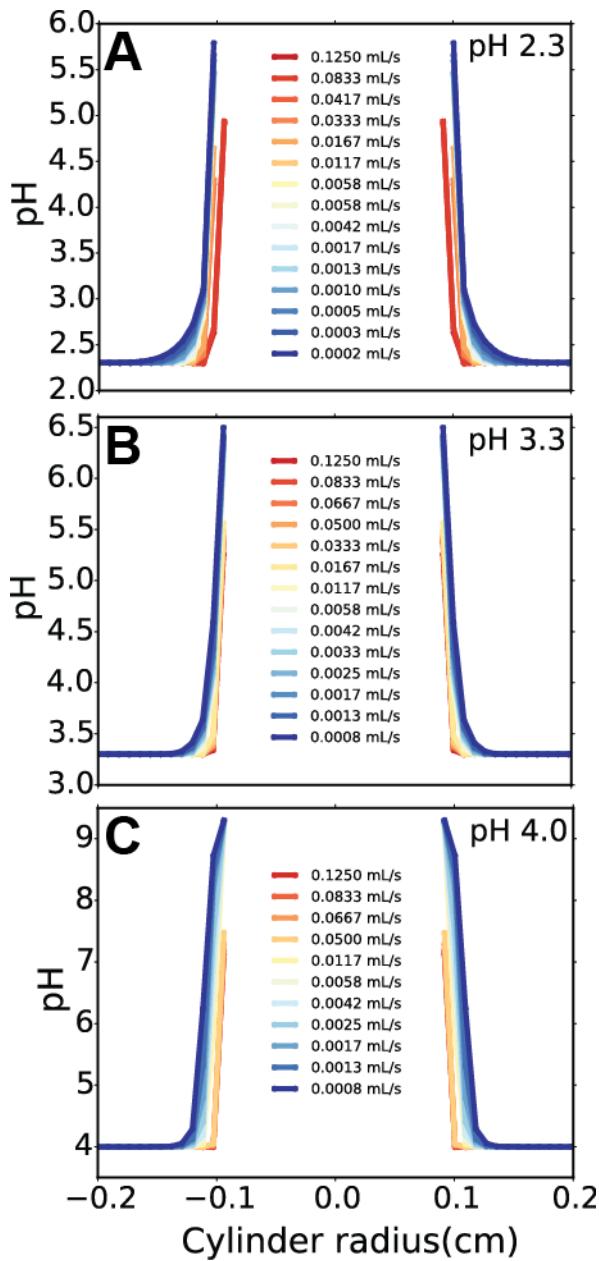
plotted versus eluent residence time. Error falls within symbol size. $[Ca]_{\text{steady state}}$ concentrations were calculated using average $[Ca]_{\text{selected}}$ obtained from applicable data as illustrated using time-resolved data collected at flow rate $Q = 5 \times 10^{-4} \text{ mL s}^{-1}$ at eluent pH 2.3 in Panel D. Selected $[Ca]$ concentrations representing steady-state conditions are shown as black filled circles.

56

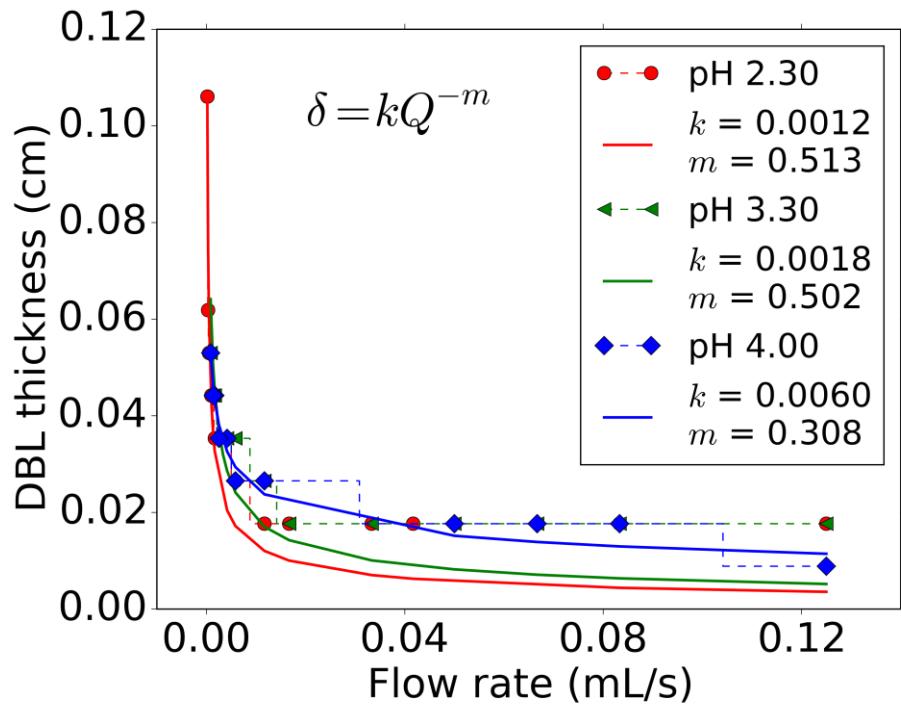

57 **Figure 7:** Panels A, B, C show calcite dissolution rates on logarithmic scale from experimental data (black filled circles, error falls within symbol size), and the pore scale modeling (black diamonds) under incoming eluent pH of 2.3, 3.3 and 4.0 respectively. Solid lines in A and B display linear fit through experimental data. Dashed line in C displays linear fit through experimental data. Solid black line in C solely shown to represent approximate hypothetical linear fit with a slope of 0.5. Pore scale modeling data were obtained using k_1 , k_2 from Chou et al. (1989), and k_3 from Busenberg and Plummer (1986). Modeled effluent pH data is also shown (black filled triangles, axis shown on right).

63

64


65

66


67 **Figure 8:** Model domain cross-section (simulations are 3-dimensional), showing transport-controlled calcite rhomb
 68 (represented as white square) dissolution during highest (left) and lowest (right) flow rate conditions at different incoming

69 eluent pH conditions (pH = 2.3 at top, pH = 3.3 in middle, pH = 4.0 at bottom). Color gradient within flow-cell indicates
70 pH. Eluent velocity direction and magnitude indicated by arrow direction and length (scaled in each plot), respectively.
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

92

93 **Figure 9:** Simulated pH values plotted along the diameter of the cylinder used in the simulation domain, intersecting
 94 perpendicularly the mineral grain surface at 0.1 cm from the inlet. Departure from bulk pH at either side of the grain (center
 95 blank zone) shows the variation of the DBL thicknesses at 0.1 cm from the inlet face as a function of flow rates (as
 96 indicated) at (A) eluent pH 2.3, (B) eluent pH 3.3 and (C) eluent pH 4.0.

99 **Figure 10:** Thickness of the DBL as a function of eluent flow rate. In symbols are DBL thicknesses extracted from Fig. 9
100 (distance from the point where pH departs from bulk solution value to the point at the mineral surface where pH is highest).
101 Dashed lines indicate the steps corresponding to the grid cells in discretized numerical domain. Solid lines are a fit to
102 simulated DBL thicknesses using the slope m obtained in the fit to experimental data (Fig. 7).

Flow rate (mL s ⁻¹)	Forsterite	Calcite		
		pH = 2.3	pH = 2.3	pH = 3.3
1.25×10^{-1}		x	x	x
8.33×10^{-2}		x	x	x
6.67×10^{-2}			x	x
5.00×10^{-2}			x	x
4.17×10^{-2}		x		
3.33×10^{-2}		x	x	
1.67×10^{-2}		x	x	
1.17×10^{-2}	x	x (n = 2)	x	x
5.83×10^{-3}	x	x (n = 2)	x	x
4.17×10^{-3}		x	x	x
3.33×10^{-3}	x		x	
2.50×10^{-3}			x	x
1.67×10^{-3}	x	x	x	x
1.33×10^{-3}		x (n = 2)	x	x
1.00×10^{-3}		x		
8.33×10^{-4}			x	x
5.00×10^{-4}	x	x		
3.33×10^{-4}	x	x		
2.50×10^{-4}	x			
1.67×10^{-4}	x	x		

Table 1: Overview of constant incoming eluent pH experiments (indicated in bold) conducted as part of this study. Effluent [Mg, Si] for forsterite and [Ca] concentrations were monitored using time-resolved analysis until steady state dissolution was achieved.

<i>Aqueous reaction (secondary species \rightleftharpoons reactants)</i>	$\log K_{eq}$
$OH^- \rightleftharpoons -H^+ + H_2O$	13.9
$HCO_3^- \rightleftharpoons -H^+ + H_2CO_3(aq)$	6.3
$CO_3^{2-} \rightleftharpoons -2H^+ + H_2CO_3(aq)$	15.9
$CaCO_3 \rightleftharpoons -2H^+ + H_2CO_3(aq) + Ca^{2+}$	13.3
$CaHCO_3^+ \rightleftharpoons -H^+ + H_2CO_3(aq) + Ca^{2+}$	5.3
$CaOH^+ \rightleftharpoons -H^+ + H_2O + Ca^{2+}$	12.8
$HN_0_3(aq) \rightleftharpoons H^+ + NO_3^-$	1.3
$CaNO_3^- \rightleftharpoons NO_3^- + Ca^{2+}$	-1.3

Table 2: List of aqueous complexation reactions and equilibrium constants sourced from the EQ3/6 database (Wolery and Daveler, 1992).