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In situ TEM
microscopy

has recently
undergone
significant growth
providing
capabilities to
investigate the
structural evolution
that occurs due to
various extreme
environments and
combinations
thereof
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Simulating neutron irradiation in a reactor is complicated, and

Sandia National Laboratories

TPBAR adds the additional complication of ®H production



“Investigating the nm Scale to Understand the km Scale
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Benefits & Limitations of in situ TEM

Benefits
1. Real-time nanoscale resolution observations of microstructural dynamics

Limitations

oz alfom P 147

1. Predominantly limited to microstructural characterization
- Some work in thermal, optical, and mechanical properties
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2. Limited to electron transparent films 2 i (]
- Can often prefer surface mechanisms to bulk mechanisms :Jﬁi‘iﬁmmﬂmm
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- Local stresses state in the sample is difficult to predict
3.  Electron beam effects
- Radiolysis and Knock-on Damage
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E, and Muller, HO.. Z. Wiss. Mikuo oskopie 52, 3337 (1935) stage electron-optical imaging by means of two magnetc electron lenses (electron myicroscope) [S]



IBIL from a quartz stage inside the TEM

Sandia’s Concurrent In situ lon
Irradiation TEM Facility

Collaborator: D.L. Buller

10 kV Colutron - 200 kV TEM - 6 MV Tandem

Direct real time observation
of ion irradiation,

ion implantation, or both
with nanometer resolution

lon species & energy introduced into the TEM
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Dose Rate Effects

Collaborators: C. Chisholm , P. Hosemann, & A. Minor

7.9 x 10%ions/cm?/s 6.7 x 107 ions/cm?/s

Improved vibrational and ion beam stability permits us to work at 120kx
or higher permitting imaging of single cascade events




Simultaneous In situ TEM Triple Beam:
2.8 MeV Au#* + 10 keV He* /D,

Collaborator: D.C. Bufford

Video playback speed x1.5.

. .

In-situ triple beam He,

D,, and Au beam
iIrradiation has been
demonstrated on
Sandia’s ISTEM!

- . ) _‘ Intensive work is still
Approximate fluence: | e " ‘ needed to understand
- Au 1.2 x 1013 jons/cm? 3 i ow . i 4 the defect structure
- He 1.3 X105 jons/cm? Fh. W "SRAE" . W cvolution that has been
- D 2.2 x10% jons/cm? ghservec.

Cavity nucleation and disappearance




What Insight into Structural Stability is
Gained from ISTEM Experiments?

Collaborators: O. El-Atwani, J. P. Allain, D. Buller, & J.A. Scott

From NW
components through
proposed NE
cladding to waste
storage:

Understanding
Radiation Damage is
Essential

Commercially
available lathe

= FTEM W
irradiation and He
implantation of
SPD-W developed
for ITER
applications

ISTEM is providing insight into:
1) Loop formation
' 2) Loop stability & migration

3) Rad & structural defect interactions




Scaling down to Nanocrystalline Tungsten Alloys

Collaborators: O.K. Donaldson, T. Kaub, G. Thompson, and J. Trelewicz

Nanocrystalline W Nanocrystalllne W 20at.%Ti
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Grain growth is
hampered by the
addition of Ti

Ti solute is
heterogeneously
distributed after

annealing

Alloying does not negatively effect radiation
tolerance, while improving thermal and mechanical
properties Pdefect =

28x1022m3




10 keV He* Implantation
followed by 3 MeV Ni3* Irradiation

Collaborator: B. Muntifering & J. Qu

He*then Ni3*

1017 Het/cm? 0.7 dpa Ni®* irradiation

Visible damage to the sample High concentration of cavities along
grain boundaries
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Cavity Growth during In-situ Annealing of 10 keV He*

'51’& Implanted and then 3 MeV Irradiated Ni3*

Average Diameter (nm)

Temperature ("C)

Bubble to
cavity
transition and
cavity
evolution can
be directly

studied
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Cavities in
helium
implanted,
self-ion
irradiated,
nc nickel film
annealed to
400 °C

Cavities
span
multiple
grains at
identified
grain
boundaries

Precession Electron Diffraction
Reveals Hidden Grain Structure




In situ Qualitative Mechanical Testing

Dislocation interactions as a function of GB

Gatan straining TEM Holder character (ZS twin GB below):

* Minimal control over displacement and no TEM | ACOM-TEM F f
“out-of-box” force information ,/ V
g= <1 e 1> ¥
* Successful in studies in observing 2

dislocation-GB interactions/mechanisms

+ Ideally both grains have kinematic BF 2-beam

conditions: challenging in ST holder J," Dev from ideal CSL:
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Traditional Gatan Heating and Straining Holder ' 1°
p— Il o05°
J ¢ b ' Observe deformation mechanisms in
B i nanocrystalline metals during tensile straining:

Traditional jet thinned disk
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12 x 2.5 mm jigs, MEMs device, or jet thinned disk




In situ Quantitative Mechanical Testing

Collaborators: Douglas Stauffer , Eric Hintsala, S.A. Syed Hysitron Bruker Inc.

Hysitron PI95 In Situ Nanoindentation TEM Holder
Sub nanometer displacement resolution
Quantitative force information with uN resolution « Concurrent real-time imaging

Nanoindentation Micro Tension Bars
* A variety of sample geometries

- Load functions examined at BTEM:

\
| 1) Indentation

2) Tension

3) Fatigue

| Nanopillars Notched Bar

4) Creep

5) Compression

(1) Sania National Laboratoris



Can We Gain Insight into the Corrosion
Process through In situ TEM?

Contributors: D. Gross, J. Kacher, I.M. Robertson & Protochips, Inc.

Microfluidic Stage
= Mixing of two or more channels

sContinuous observation of the reaction
channel

Electron Beam

SiN Membrane

Flowing Liquid

Scattered Electrons /
SiN Membrane

L. Large grains resulting from annealing appear more corrosion tolerant
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In situ TEM Hydrogen Exposure

Contributors: B.G. Clark, P.J. Cappillino, B.W. Jacobs, M.A. Hekmaty, D.B. Robinson, L.R. Parent, I. Arslan. & Protochips, Inc.
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Harmful effects may be mitigated in nanoporous Pd

Vapor-Phase Heating TEM Stage

= Compatible with a range of gases
= In situ resistive heating
= Continuous observation of the reaction channel

= Chamber dimensions are controllable
= Compatible with MS and other analytical tools
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= 1 atm H, after several pulses to specified temp.

300° C

New in situ atmospheric heating
experiments provide great insight into
nanoporous Pd stability




“ Feasibility of Studying Zircaloy 2 at Nominally 1 atm

Collaborators: S. Rajasekhara and B.G. Clark

Vapor-Phase Heating TEM Stage

. . = Compatible with a range of gases
— ey = In situ resistive heating
= Continuous observation of the reaction channel
= Chamber dimensions are controllable
= Compatible with MS and other analytical tools

Vacuum & Nominally 1 atm H,
Single Window | & Two Windows

el e

j Most features are observed in both despite the decreased resolution
resulting from the additional SiN window and 5 um of air



| In situ Observation of Hydride Formation in Zirlo

Collaborators: S. Rajasekhara and B.G. Clark

Absolute hydrogen pressure: 327 torr (~ 0.5 atm),
Ramp rate: 1 °C/s, Final temperature: ~ 400 C, Dwell time: ~ 90 mins
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Hydride formation shown, for the first time by use of a novel TEM
gas-cell stage, at elevated temperature and hydrogen pressure

(1) sandia National Laboratories



Schematic of the In situ SEM Beamline

Collaborators: D.L. Buller & S. Briggs
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Beam Line planned for the in situ SEM will be developed in phases. Ultimate plan is
for multiple accelerators being attached for dual or triple beam experiments.
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= Sandia’s I’TEM capabilities:
=  Insitu high energy ion irradiation from H to Au
= In situ gas implantation
=  Heating up to 1,000 °C
= Quantitative and bulk straining
=  Two-port microfluidic cell

=  Gas flow/heating stage
= Electron tomography

=  Precession Electron Diffraction

Sandia’s I’TEM although still
under development is
providing a wealth of

interesting initial observations
and harsh environments

=  Currently applying the current I3 TEM capabilities to various material
systems in combined and harsh environmental conditions

= Sandia’s I’TEM future capabilities being developed:

= Insituion irradiation TEM in liquid or gas (currently capable)

=  DTEM: Nanosecond resolution (laser optics being developed)
= Beamline: Add 1 MV NEC Tandem & convert 90° magnet to bend beams 45°
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