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Outline

Main thread: Quantifying that which can not be measured1

Two examples:

I Water partitioning between lower mantle minerals

I The shock Hugoniot of forsterite to 10 Mbar

Collaborators: Steve Jacobsen, Craig Bina (Northwestern) Jun
Tsuchiya (GRC, Matsuyama) Seth Root, Luke Shulenburger
(Sandia) Sarah Stewart (UC Davis)

1within reason!
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How is water distributed in the Earth?

MH2O

M⊕ ≈ 0.00025
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Main constituents “nominally” anhydrous
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Large-scale structures in the deep mantle

The challenge is to explain:

I Anti-correlation of VΦ and VS

I “Sharp sides” of some LLSVP’s

I Small regions of very low velocities
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The lower mantle contains unmixed regions

Emerging consensus on chemical heterogeneity in the lower mantle
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Water partitioning in LM is still unknown!
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Polymorphs of Mg2SiO4 (top), and MgSiO3 (bottom).

I Well explored at low P,T , poorly constrained in LM

I Measurements @ 1 Mbar challenging!
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Density Functional Theory in 2 minutes

VEXT

E =

Z
 ⇤Ĥ dr1 . . . drN

“Nature” 
Fully interacting system

Adapted from Mattsson et al. 2005
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 ⇤Ĥ dr1 . . . drN

“Nature” 
Fully interacting system

E =

NX

i

Z
�⇤
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Density Functional Theory in 2 minutes

VEXT

E =

Z
 ⇤Ĥ dr1 . . . drN

“Nature” 
Fully interacting system 

Hard

E =

NX

i

Z
�⇤

i Ĥi�i dr

DFT 
Non-interacting system 

Easy

VEFF

Formally 
Equivalent

Ĥi = T + VEXT + VHF + VxcĤ = T + VEXT + Vee + Ven

VEFF

Adapted from Mattsson et al. 2005
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Two hydrogen defect models

brg hbrg Al-hbrg

Al-hppvhppvppv
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How to find where the hydrogen go

A good starting guess: Look at geomtetry of low density regions.
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The influence of defects on the static EOS
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I 3rd order Birch-Murnaghan EOS

I H defects reduce K0, increase V0, resolved sensitivity of K ′0
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I 3rd order Birch-Murnaghan EOS

I H defects reduce K0, increase V0, resolved sensitivity of K ′0
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Free energies and partition coefficients

brg hbrg Al-hbrg

Al-hppvhppvppv
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Computational approach:

I Used Quantum ESPRESSO + PBE GGA

I DFPT phonon dispersions calculated on 2x2x2 k-point grid

I Quasi-harmonic phonons → thermodynamic properties
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The quasi-harmonic approximation
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The basic procedure:

F vib(T ;V ) =
∑

q,s

{~
2ωs(q;V ) + kT ln

(
1− e−~ωs(q;V )/kT

)}

G (P,T ) = min
{
Ustatic(V ) + F vib(T ;V ) + PV

}
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Anhydrous phase diagram
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I Excellent agreement w/
experiment & theory.

I Clapeyron slope @ 125 GPa,
2500 K ≈ 7.5 MPa/K

I Self-consistency is vital!
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How to calculate the partition coefficient

Crystal A Crystal B

The equilibrium ratio of defect Y in phases a and b:

YDa
b =

eG
f
b /kT + 1

eG f
a /kT + 1

≈ e∆G f
ba/kT

After Hernández et al. (2013)
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Static formation enthalpies
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I Al-free defects stabilize brg, Al-bearing defects stabilize ppv.

I AlH defect formation energy is insensitive to pressure.
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Water partitioning without Al
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Al-free hydrous defects → more water in bridgmanite
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Water partitioning with Al
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Geophysical importance of partitioning

Pearson et al. (2014)
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Schmandt et al. (2014)

Dehydration-induced melting?
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Dehydration melting in the lowermost mantle?

How would we detect it? (Could we detect it?)
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Influence of water on the elastic tensor
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Single xtl velocities & anisotropy
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Cristoffel equation:

det
∣∣cijklnjnl − ρV 2δik

∣∣ = 0

I Influence of water small at CMB!
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A glimmer of hope → VΦ!
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Focus on the brg-ppv transition:

I Impedance contrast reduced by 40% w.r.t. dry

I Higher velocity gradient for hydrous ppv
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Summary & Conclusions so far

1. H partitioning between brg & ppv controlled by Al

2. Al-free ppv stores very little water

3. Al-bearing ppv stores up to 10x more water than brg

4. Seismic detection very challenging - but hopeful!

5. Ppv may be a host for primordial water - no DHMS needed

6. Possible mechanism for dredging primordial material via
entrainment of primordial al-ppv back-transformation to brg
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Exciting new research at Sandia

Giant impacts explore exotic P,T states
Mg2SiO4
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Exciting new research at Sandia

Super-Earth interiors poorly constrained
MgSiObrg

3 + MgOB1
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Previous work on Mg2SiO4

Giant impacts explore much higher velocities!
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Previous work on Mg2SiO4

I Incongruent melting

I Single phase
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Previous work on Mg2SiO4

I Incongruent melting

I Single phase

Two experiments two answers!
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Planetary science on the Z Machine

E = 20 MJ

I = 20 MA

∆t = 20 ns

email: jptowns@sandia.gov 27



Planetary science on the Z Machine
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US − uP to much higher velocities
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No incongruent melting on the Hugoniot

I Z expts. show no evidence of incongruent melting

I DFT of single fluid phase in excellent agreement with data

I DFT computed Hugoniot of hypothetical mixture would be
most noticeable at low density
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Constraints on incongruent melting

I Z expts. maintain Hugoniot state longer than laser shocks

I Estimate grain growth rates from Gleason et al. (2015)

I We can rule out possibility of kinetic effects
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Science works!

Courtesy S. Stewart
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Implications for planetary impact models

Courtesy S. Stewart

Lock and Stewart 2017

I Accretion models with old EOS under-predict vaporization
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Thank you!
Questions?
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Extra slides
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Z target
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Why water is important

Trace amounts of water:

I Reduce melting temperature

I Reduce seismic velocity
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Why water is important

Does water have a role to play in the lowermost mantle?
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Intermediate result: Thermal expansion
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I Reasonable agreement with previous theory & experiment

I More experiments needed here

I Influence of defects negligible at high P,T
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I Reasonable agreement with previous theory & experiment

I More experiments needed here

I Influence of defects negligible at high P,T
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QHA results: Bulk modulus
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I Good agreement with previous theory & experiment.
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