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Video of Laser Ignition and Self- ) e,
Propagating Reaction in Al/Pt Multilayer
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lgnition Delay for milli- and

microsecond laser pulses predicted
from finite element simulation
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Nanosecond Laser Ignition
® Go O NoGo

Probability 65 nm AlPt Go/No Go w, = 32um Probability 65 nm AlPt Go/No Go w, = 42um

65 nm AlIPt Go/No Go

45 1 0000000000000 0000 1 0000000000000 000000
am e
35 0.5 ¢ 0.5
OIS o °
°
o5 0 oo 0Oe
Fluence [J/cm?] Fluence [J/cm?] Fluence [J/cm?]
164 nm AIPt Go/No Go wy = 32um 164 nm AIPt Go/No Go wy = 42um
45 164 nm AIPt Go/No Go 1 OPODOOT I, (M0N0 20 Wo — <ol
I @0 e . ®
35 0.5 ° 0.5 o
O@F - 0° °® °
25 0O ecocee 0 eoe
0 1 2 3 4 0 2 4 0 1 2 3 4
Fluence [J/cm?] Fluence [J/cm?] Fluence [J/cm?]
328 nm AIPt Go/No Go w. = 32um 328 nm AIPt Go/No Go Wg = 42pm
45 328 nm AlPt Go/No Go 1 .......O...“. 1 XXX XXX XXX YY)
O mes @ °
35 0.5 o 0.5 °.
0 O o8 °
°
25 0O eeceee ¢ 0 eoe
0 1 2 3 4 1 2 3 4 0 1 2 3 4

Fluence [J/cm?]

Fluence [J/cm?] Fluence [J/cm?]



Nanosecond Laser Ignition Time
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Femtosecond Laser Ignition .
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Femtosecond laser excitation places metal [ &=,
into an extreme non-equilibrium condition

Electron and phonon systems at drastically different temperatures
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Femtosecond laser excitation places metal (@)=,
into an extreme non-equilibrium condition

Two-Temperature Model Coupled to Molecular Dynamics
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Laser Ablation Crater in cross-section TEM
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Two Temperature Model Setup 1

Equation 1: aT, 0 ( aTe>
Coms=——|ke=2)=G(T, — T)) + S(x,
Electron System Heat Transport 3t = ox\Ke gy ) T CTe T +S00 )
Equation 2: oT, 8 [ or
Lattice System Heat Transport Car T oax (kz g) + 6T —T)
Equation 3: 2
_ |[4n2 [1-R]p —x t —2t,
Laser Source Term S(x,t) = / = Gron P {(5 5 41n2 [( 0 )H
. " al 2 .
Equation 4: [(ﬁ) + 0.16] [(ﬁ) + 0.44] (ﬁ)
Electron Thermal Conductivity ke =a . v :
i T, T, T
(Room Temp to Fermi Temp) [(ﬁ) + 0_092] [%) +ﬁﬁ]
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Two Temperature Model of Foil )
Temperature at 30 ps
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Mott s-d scattering model for heat @
transport in amorphous Al/Pt
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K, := Constant derived from energy levels of d-band states in Pt
I’ :=linewidth in d-band

T := electron scattering time




Two Temperature Model of Foil )
Temperature at 30 ps

Irradiation at 3.4 J/cm?
150 fs pulse
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Ablation depth vs Ignition Threshold g
for 164 nm bilayer Al/Pt
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Mott s-d model improves our ) B
understanding of thermal properties
for continuum simulations
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Summary
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