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Sputter Deposition of 
Reactive Multilayers
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Video of Laser Ignition and Self-
Propagating Reaction in Al/Pt Multilayer
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Direct Laser Ignition Method
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Pulse Duration Dependence on 
Ignition Threshold in Al/Pt

6

Fluence [J/cm2]

Pulse Duration [s]

65 nm Bilayer

164 nm Bilayer

328 nm Bilayer

ω0 = 42 ± 2 μm

Pulse Duration [s]

Intensity [W/cm2]



Ignition Delay for milli- and 
microsecond laser pulses predicted 
from finite element simulation
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Nanosecond Laser Ignition Time
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Electron and phonon systems at drastically different temperatures

J.K. Chen, D. Y. Tzou, & J.E. Beraum, Heat and Mass Transfer  (2006).

Femtosecond laser excitation places metal 
into an extreme non-equilibrium condition
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Two-Temperature Model Coupled to Molecular Dynamics

E. Levengule, D.S. Ivanov, & L.V. Zhiglei, Appl. Phys. A. (2004).

Femtosecond laser excitation places metal 
into an extreme non-equilibrium condition
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Laser Ablation Crater in cross-section TEM
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Two Temperature Model Setup
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Equation 1:
Electron System Heat Transport

Equation 2:
Lattice System Heat Transport

Equation 3:
Laser Source Term

Equation 4:
Electron Thermal Conductivity
(Room Temp to Fermi Temp)



Two Temperature Model of Foil 
Temperature at 30 ps
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Mott s-d scattering model for heat 
transport in amorphous Al/Pt
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�� := Constant derived from energy levels of d-band states in Pt

� := linewidth in d-band

� := electron scattering time
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Ablation depth vs Ignition Threshold
for 164 nm bilayer Al/Pt
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Mott s-d model improves our 
understanding of thermal properties 
for continuum simulations
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Summary
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