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Abstract

When making computational simulation predictions of multi-physics engineering systems, sources
of uncertainty in the prediction need to be acknowledged and included in the analysis within the
current paradigm of striving for simulation credibility. A thermal analysis of an aerospace geom-
etry was performed at Sandia National Laboratories. For this analysis a verification, validation
and uncertainty quantification workflow provided structure for the analysis, resulting in the quan-
tification of significant uncertainty sources including spatial numerical error and material property
parametric uncertainty. It was hypothesized that the parametric uncertainty and numerical errors
were independent and separable for this application. This hypothesis was supported by perform-
ing uncertainty quantification simulations at multiple mesh resolutions, while being limited by
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resources to minimize the number of medium and high resolution simulations. Based on this sup-
ported hypothesis, a prediction including parametric uncertainty and a systematic mesh bias are
used to make a margin assessment that avoids unnecessary uncertainty obscuring the results and
optimizes computing resources.
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Chapter 1

Introduction

This document is meant to compile a verification, validation and uncertainty quantification (VVUQ)
workflow applied to a thermal modeling analysis performed at Sandia National Laboratories (San-
dia). In order to facilitate circulation of the VVUQ methods, ideas, and approach used during the
thermal analysis, the specific application and model inputs will not be described and predictions
will be normalized. It is hoped that the complexities faced in this problem, even when presented
in a generic format, will resonate with other thermal analysts, and that lessons learned from this
work can be shared.

1.1 Background on Thermal Application

The system of interest can be described in general terms as a transient, large scale, three-dimensional,
aerospace system experiencing a specific thermal environment. Coupled physics being modeled
within the analysis include thermal conduction, thermal convection, radiation, phase change, and
chemistry. A significant limitation for this analysis is the scale of the computation. The simula-
tion is calculated using a finite element formulation with the SIERRA Thermal/Fluids code [30],
where the simulation’s nominal mesh contains over 1.5 million four-node tetrahedral (tet4) ele-
ments. Within the limitations of available parallel-computing computational resources, it takes on
the order of hours to run a simulation using the nominal mesh and days to run the simulation for
more refined meshes.

The prediction or quantity of interest (Qol) for this analysis was the timing of a thermal race.
A thermal race is the difference in time between two events occurring when a system is exposed to
a thermal environment. Thermal races are common thermal analysis Qols within Sandia’s thermal
analyst community [7]. Typically, thermal races are tracked due to requirements that one event
must occur prior to another event in order to make safety assertions. Figure 1.1 illustrates the
type of thermal race being studied for the current analysis. For this analysis we are interested in
discrete events occurring at different locations in the system and in the time between those two
event occurring. Our system has a requirement that event 1 must occur prior to event 2; and we
need to assess margin in the system’s ability to meet that requirement.
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Figure 1.1: Concept of thermal race used for this analysis
1.2 Computational Simulation Credibility

A major area of emphasis within Sandia’s computational analysis communities is establishing the
credibility of a simulation prediction. One approach towards establishing prediction credibility
being advocated is the use of the Predictive Capability Maturity Model (PCMM) [18]. PCMM
breaks a computational simulation analysis into six elements: representation and geometric fidelity,
physics and material model fidelity, code verification, solution verification, model validation, and
uncertainty quantification (UQ) and sensitivity analysis. Credibility of a computational simulation
is established through PCMM by ranking the maturity level achieved for each analysis element.
For each element many subelements are specified by PCMM and the maturity level of the element
is then determined by which and to what extent those subelements are completed. For instance, a
subelement of the UQ and sensitivity element is to perform a sensitivity analysis. Different extents
of accomplishing this element include not performing a sensitivity analysis, perform a precursory
qualitative sensitivity analysis, and performing a rigorous quantitative sensitivity analysis. Com-
putational simulation credibility is not considered as a binary score for this analysis, credible or
not credible, but as an evidence package transparently communicating uncertainties, assumptions,
and limitations.

Our thermal modeling analysis VVUQ workflow, base on PCMM elements, is shown in Figure 1.2.
One additional aspect of a this VVUQ workflow for thermal analyses not included in PCMM, is
margin assessment. PCMM is typically used to support simulation predictions, while margin as-
sessment supports decision making. Within thermal analyses, margin assessment acts as the link
and communication tool between thermal analysts and decision makers (customers), clearly mak-
ing it a necessary element of a VVUQ workflow.

A high level overview of the VVUQ workflow follows. When representing a real-world system
with a finite element representation, simplifications such as removing screws or wires, known as
defeaturing, is common. Similarly, when specifying the physics and material models that will be
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Figure 1.2: Typical VVUQ workflow applied to thermal analyses

used to represent a complex engineering system, simplifications to the set of physics being solved,
such as ignoring the movement of material as it softens, is common. When enacting simplifications
to the fidelity of the representation and geometry or the physics and material models, the impact
on the prediction of interest should be considered. When analyzing the physics and material model
fidelity, a tool known as the phenomena identification and ranking table (PIRT), can be used to
identify important gaps [37, 36]. To ensure that the physics models have been correctly translated
to the code, code verification activities such as test suites and software quality practices are neces-
sary. Numerical schemes are used to discretize our thermal systems of interest. Use of numerical
schemes results in numerical errors in the simulation predictions such as spatial and temporal er-
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rors, which can be quantified for the application of interest using solution verification methods.
Within thermal system models are many uncertain parameters (material properties, boundary con-
ditions, initial conditions) that need to be characterized and that uncertainty propagated through the
model to provide estimates of prediction uncertainty. When applying forward uncertainty propaga-
tion approaches, it must be ensured that the resulting prediction distribution is sufficiently resolved
for the application questions of interest. Computational models used for thermal analyses gener-
ally contain simplifications that result in model form errors. In order to characterize model form
errors, comparison with experimental data, also known as model validation, is necessary. When
performing validation comparisons, metrics need to be specified and adequacy of the model’s per-
formance for the predictions of interest assessed. So far, various errors and uncertainties from
different sources have been analyzed within the workflow, but ultimately they must be aggregated
and applied to the prediction of interest. This aggregation process is known as uncertainty rollup
[28]. Often, a method of extrapolating the aggregated uncertain and knowledge about model form
error must be applied in order to make predictions in the application space of interest. A common
goal for thermal analyses is to make margin assessments or compare predicted performance against
system requirements. This comparison must also consider the uncertainty present in the simulation
and potentially in the requirement definition.

Because of the project’s scope and institutional limitations, not all elements of PCMM are pre-
sented herein. Evaluation of the representation and geometric fidelity as well as the physics and
material model fidelity are not presented within this document so as to not elaborate on details
about the specific application. Within Sandia’s analysis structure, code verification is primarily
the responsibility of the code development teams; the code teams use software quality engineering
(SQE) processes and test suites to ensure reliable, reproducible results and numerical algorithm
verification tests to check algorithm implementation. Further details about code verification will
be neglected within the document. For the thermal analysis reported upon within this document, no
experimental data was available, so model validation was not able to be considered. An example
of a model simplification used that may result in model form error when conducting this thermal
analysis is neglecting structural mechanics phenomena that may occur as a result of thermal loads
applied to metal based engineering systems. To avoid the additional computational costs of in-
tegrating the thermal simulation with a structural mechanics simulation, modeling simplifications
of the structural impact are incorporated into the thermal simulation. Without model validation to
characterize model form uncertainty, it is difficult to estimate the impact of this uncertainty source
on the prediction of interest. Because many elements of PCMM are not reported within this docu-
ment, a full simulation credibility assessment will not be considered. Instead, the VVUQ analysis
workflow is used to provide a credible analysis structure, that may eventually use all aspects of
PCMM to provide predictions with confidence in our understanding of their credibility.

One aspect of element maturity shared by all elements within PCMM is peer review. At the end
of this project, a formal presentation based peer review was conducted, resulting in a slide deck,
comments from reviewers, and responses to those comments. To take the peer review process
further, a generic version of the analysis is being presented in this document to provide a more
in-depth peer review of the VVUQ process, methods, and interpretation of results. Additionally,
it is hoped that credibility of subsequent thermal analyses can be improved by providing lessons
learned that can be leveraged.
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1.3 VVUQ Workflow Applied to Application

Given the aforementioned caveats to our PCMM based approach, we can now provide a more
detailed account of the VVUQ workflow applied to the thermal analysis problem of interest. The
first step to any VVUQ based approach must be to define the analysis objectives and available
resources. Analysis objectives are required upfront because they are necessary to define the scope
and types of VVUQ activities necessary. Available resources often limit what VVUQ activities
are possible. The objective of this analysis is to characterize the margin and uncertainty present in
our prediction of a thermal race. Limitations to the analysis include financial and computational
budget as well as a timeframe. Given an objective and limitations, the necessary elements of the
VVUQ workflow are selected and enacted.

Solution verification is performed using different mesh refinements to characterize the simu-
lation’s spatial discretization bias trend. Parameter uncertainty descriptions are then assigned to
uncertain material properties and propagated through the simulation using a sampling based ap-
proach to provide an ensemble of predictions characterizing the impact of input uncertainties in
the prediction space. The statistical convergence of the forward uncertainty propagation is then
assessed with relevant metrics. Using information from the uncertainty propagation and input un-
certainty definitions, model sensitivity is assessed indicating which material property uncertainty
sources are most significant for the analysis. Next, the dependence of the mesh bias and parameter
uncertainties is assessed, those uncertainty sources are rolled-up, and a total prediction uncertainty
is determined. Comparing the total prediction uncertainty against the system’s performance re-
quirement results in a margin assessment, allowing further decisions about the continued work on
the project to be determined.

When performing computational simulations of physical engineering systems, aggregating het-
erogenous errors and uncertainties is necessary. Often, the impact of one uncertainty source is
studied, but in order to make credible predictions, the greater effort required to aggregate multi-
ple sources is necessary. Previously at Sandia, many pieces of the full rollup problem have been
considered independently: the rollup of information from multiple validation points to the predic-
tion conditions of interest [10], embedding model discrepancy into model parameter uncertainties
during calibration to make better extrapolative predictions [29], and calibration of model param-
eters from multiple levels of model complexity using Bayesian networks [33]. Other methods of
integrating uncertainty from different sources (i.e. calibration and validation) have been academ-
ically studied. Solution verification and sampling uncertainty for a fluids simulation application
was investigated [20]. [21] considered validation, uncertainty quantification, experimental input
and output data error sources. Combining parameter calibration and model validation is a particu-
larly tricky situation for which many different approaches have been presented [12, 15]. ASME’s
standards committees have published approaches toward uncertainty rollup [34, 35] that provide
conservative methods towards aggregating uncertainties from the many sources present in simula-
tions.

The present work takes a novel approach towards rolling up mesh bias and parametric uncer-
tainty to make margin estimations, where being informative and reducing uncertainty is valued
over conservatism. To increase the interpretability of prediction uncertainty, this approach aims to
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maintain separability of uncertainty sources in the prediction space and to test the interdependence
of the uncertainty sources. Establishing the dependence of the uncertainty sources upon other
uncertainty sources, allows the prediction uncertainty to be reduced (as compared to the typical
situation where dependence must be assumed due to not proving otherwise).

The remainder of this document will be structured as follows. First, the VVUQ methods for all
aspects of the VVUQ workflow considered for this analysis are described in chapter 2. Next, the
analysis results for those same VVUQ workflow elements are reported in chapter 3. Significant
issues and findings of this analysis are discussed in chapter 4. Finally, conclusions, ideas for
continued study, and possible paths forward are provided in chapter 5.
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Chapter 2

Methods

2.1 Application Physics

Our model is first spatially semi-discretized using a second-order Galerkin finite element method,
and then temporally discretized using finite differences [32, 31]. We then solve the transient en-
ergy conservation equation including thermal diffusion, enclosure radiation, bulk convection, and
chemical kinetics, as described in greater detail within Appendix A, for each subdomain of our dis-
cretized problem. To solve equations in time an implicit, second-order accurate, backward finite
difference 2 (BDF2) with adaptive time stepping is applied. The solution time step is often limited
by the chemical kinetics, which are solved using the CHEMEQ library [38]. CHEMEQ uses a stiff
ordinary differential equation integrator and the resulting time steps are often smaller than those
required by the thermal solve alone. The thermal time step is not set to the chemical time step, but
is not allowed to be greater than a specified multiple of the chemical time step.

2.2 Solution Verification

Because numerical spatial and temporal discretization schemes are used to solve the system of
equations applicable to our application, the numerical errors associated with the numerical methods
must be considered. To quantify the numerical error impacting the predictions of interest, an a
posteriori mesh refinement method [19] known as Richardson extrapolation will be used [22]. The
relation between the ‘exact’ solution and the predicted solution is [25]

fiar — foxact = AP +BAt + O(hPH1) + 0(Ar9H1). 2.1)

Here h represents the spatial discretization, Az represents the temporal discretization, fj, o, is the
predicted value for the current spatial and temporal discretization, fexact 1S the solution to the equa-
tions without any numerical error, A and B are multiplicative constants on the error terms, p and
q are the respective orders of convergence, and & are higher order errors. For this study we as-
sume that our discretization is sufficient to place our solution in the asymptotic range, implying
that higher order error terms have significantly smaller values than the main error terms and thus
can be removed from our equation describing numerical error. In previous thermal analyses we
have performed solution verification for a variety of numerical error sources including mesh res-
olution and numerical solver tolerances (e.g. chemistry step multiplier, residual norm tolerance,
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predictor-corrector tolerance, etc.). Those previous studies, which considered different but related
Qols, found mesh resolution to be the dominant numerical error source. To support our assumption
that other numerical error sources contribute minimally to the current study, the tightest numerical
solver tolerance settings previously considered are used in the current study. Neglecting temporal
error is an assumption commonly made within our thermal analysis community and stems from
using adaptive time-stepping with tight tolerances and many prior analyses that found minimal
impact of the time step size on the thermal analyses’ results.

Removing the higher order and temporal errors from the numerical error equations results in

Jn— Jexact = AhP. (2.2)

Now to estimate the spatial discretization error present in a simulation, three parameters need to
be solved for: A, p, and fexact- To solve for these three unknowns, Equation (2.2) can be evaluated
for three different mesh discretization.

fl = fexact +Ah117
J2 = Sexact +Ah127
J3 = Jexact +Ah§ (2.3)

Ratios describing the relative change in discretization between the three different meshes can be
specified as

ria=hy/ly
l”273 = h3/h2. (24)

To simplify solving for the unknown parameters, uniform mesh refinement (UMR) can be imple-
mented, where the spatial discretization is cut in half for each subsequent mesh, resulting in 8 and
64 times more elements than the nominal mesh.

rna=rj3z=r=2 (2.5)

Solving for the unknown parameters with (2.3)-(2.5) yields

i

p= in(2) (2.6)
fexact = fl + ];117__]12 (27)
A= (fl - fexact)/h?- (2.8)

Once p, A and fexaet have been calculated, estimates of the mesh bias for any grid within the
spatially asymptotically converging region can be made via

Mesh Bias = f; — fexact = Ahf. (2.9)
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Applying the aforementioned solution verification methodology to the application problem of
interest comes with assumptions, simplifications, and recognized issues. Assumptions required
by traditional Richardson extrapolation are: asymptotic range, uniform mesh spacing, systematic
mesh refinement, smooth solutions, and discretization error being the dominant numerical error
source [19]. When neglecting higher order error terms, we assumed that our simulation was in
the asymptotic range. To test this assumption additional mesh refinements would have been re-
quired, but this was not deemed cost appropriate for the analysis. Uniform element sizes are not
typically feasible for thermal analyses of interest within the Sandia thermal analysis community.
The meaning of 4 is unclear for meshes containing a wide distribution of element sizes. To avoid
the complexity of the mesh size distribution, the discretization length scale is applied as a relative
refinement ratio from the original mesh. Uniform mesh refinements are used and the predictions
of interest are considered smooth; satisfying two Richardson extrapolation assumptions. From
previous thermal analyses we have found that other numerical error sources such as temporal dis-
cretization and iterative solves provide errors of significantly smaller impact than the error due
to the mesh resolution. The thermal race Qol is a local quantity, while the applied solution ver-
ification method was formulated for global quantities. Considering the potential impact of these
assumptions, it is clear that there will be uncertainty in the resulting numerical error estimates.
This uncertainty is acknowledged, but quantifying the magnitude of this uncertainty source is not
currently possible or feasible. Multiplying the estimated mesh bias by engineering safety factors,
which were developed based on knowledge gained from applications in specific engineering do-
mains, has been advocated as a means of providing conservative estimates [24]. Instead, we will
treat the calculated mesh bias as a best estimate and acknowledge that epistemic uncertainty (lack
of knowledge) exists both above and below the calculated value exists [23]. All assumptions made
in solution verification are noted here for transparency and so that they may be absorbed into the
assessment of simulation credibility.

2.3 Uncertainty Quantification

After the initial solution verification, the analysis shifts focus to estimating the impact of parametric
uncertainty on the prediction. A benefit of performing solution verification prior to characterizing
parametric uncertainty effects is that solution verification can illuminate simulation construction
issues prior to consuming computational resources on running parametric studies. If no major
simulation formulation issues are found during solution verification, the analysis can continue
forward. Initial physical intuition for the system of interest can also be gained from the solution
verification studies such as identifying the dominant thermal pathways.

UQ is the effort to characterize the impact of uncertain parameters on the prediction of interest.
Many thermal engineering simulations are created using deterministic codes. In order to estimate
the uncertainty associated with a prediction, making the prediction stochastic, parameter uncer-
tainties are propagated forward through the deterministic simulations, resulting in an ensemble of
predictions. Typical uncertain parameters for thermal analyses include material property values,
initial conditions, and boundary conditions. Another common type of uncertainty specific to model
validation activities is the uncertainty in where measurements occurred (location or time epistemic
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measurement error). The current analysis was restricted to material thermal properties as uncertain
parameters.

All uncertain material properties present in the system of interest must be defined. Different
mathematical descriptions of parameter uncertainty are available including probabilistic, interval,
possibilistic, and belief and plausibility. Choosing which type of description to use to describe
parameter uncertainties depends on what type of uncertainty is being described and what tools are
available to handle propagation of the uncertainty descriptions through the model.

For this analysis a probability distribution is specified to described each uncertain parameter.
Following common practice within the Sandia thermal analysis community, truncated normal dis-
tributions are used for thermal conductivity, density, and specific heat parameters, and triangular
uncertainty distributions are used for emissivities. The width of each distribution is specified rel-
ative to the level of comfort in specifying property values for the specific material; well known
materials have less spread in their uncertainty distributions than less well known materials. The
system being studied contains hundreds of parts and many of the parts are constructed from the
same type of material, so the question of what to consider as an uncertain variable arises.

When dealing with systems comprised of many parts, some of which are composed of the same
material type (i.e. stainless steel or aluminum), different approaches towards assigning uncertain
parameters exist. One option, known as part-centric, is to treat each material property of each
part as an uncertain parameter. Another option, material-centric, is to treat each material property
as an uncertain parameter and then use that same uncertain parameter value for each part that is
composed of that material. The tradeoff between these two uncertainty assignment approaches is
the number of uncertain parameters included in the analysis versus forcing correlation between
parts composed of the same material. It can be argued that complete independence of material
properties for parts composed of the same materials may be incorrect due to the likelihood that the
same base material was used to create many parts. An argument against assuming full correlation
is that some parts composed of ‘material A’ may have a significant impact of the prediction, while
other parts made of that material may have no impact, yet only a single sensitivity for that uncertain
parameter will be quantified.

Instead of either of those extremes, a combined part- and material-centric approach is taken.
This combined part- and material-centric approach tries to optimize the number of uncertain pa-
rameters explored by exploiting knowledge of the dominant thermal path gained from the solution
verification study, while also allowing for sensitivity to specific parts to be identified. Based on
the knowledge of the dominant thermal path, material properties in each part along that thermal
path are treated as uncertain parameters (part-centric) and for the rest of the system all materi-
als composed of the same materials share uncertain material property values (material-centric).
For instance, if a part (part 5) along the dominant thermal path is composed of stainless steel,
then the thermal properties of stainless steel (specific heat Cps 5, thermal conductivity Ksg 5, and
emissivity £gg 5) for that part are each an uncertain parameter. Then all other parts in the system
made of stainless steel, but not along the dominant thermal path, share the same uncertain thermal
properties (specific heat Cp g ., thermal conductivity Kgg 4, and emissivity €gg 7).

The uncertainty descriptions used to characterize parameter uncertainties potentially describe
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both epistemic uncertainty (our lack of knowledge) and aleatory uncertainty (true variability). Ide-
ally epistemic and aleatory uncertainty sources would be separately specified and kept separated
throughout the analysis. If a prediction is presented with segregated uncertainty, it allows the
amount of prediction uncertainty that could be reduced with further effort to be identified. Seg-
regated prediction uncertainty also provides an indication of the true variability expected in the
performance characteristic of interest. Separation of epistemic and aleatory uncertainty is not fea-
sible for this and many similar analyses, where parameter uncertainty descriptions with separated
uncertainties are not available, and separate propagation of the uncertainty types through the model
is not computationally affordable. If computational cost was not a limiting factor, double looped
sampling methods like second order probability [4] could be used to maintain separation of uncer-
tainty types during forward uncertainty propagation. A consequence of the inability to separate the
uncertainty sources is that the prediction uncertainty must be interpreted as representing an aggre-
gation of true variability and our lack of knowledge about parameter values. Not all parameters
are believed to have natural variability. For parameters without natural variability, the uncertainty
descriptions are purely epistemic (reducing down to a true value with sufficient knowledge).

Many thermal properties are specified as functions of temperature. For functional material
parameters (x;), uncertainty is assigned as a scaling factor, e.g.,

x; = (m;T + b;) x Scaling Factor. (2.10)

Here m and b are material specific values and this functional form is represented in a tabulated for-
mat for many materials. For temperature dependent thermal properties this uncertainty assignment
method is believed to be realistic due to the increased difficulty in measuring such properties at
higher temperatures.

To propagate parameter uncertainty forward through the model, Latin hypercube sampling is
used. Latin hypercube sampling [8] is used for forward uncertainty propagation due to its relative
simplicity, flexibility to use any number of samples, and ability to provide statistical prediction
estimates at a lower computational cost than Monte Carlo random sampling. For an uncertainty
propagation study that can afford n samples with p uncertain parameters, a p dimensional hyper-
cube is formed where each dimension spans the uncertainty range of the respective parameter and
each dimension is stratified into n equally probable partitions or bins. In two dimensions this can
be easily visualized as a 2-D grid where the x axis represents one variable and the y axis represents
the other variable. The n samples are then randomly placed throughout the p dimensional grid,
but for each parameter only one sample can be placed in each of its partitions. Figure 2.1 shows
one possible instance for a four sample LHS study and the mapping of equal probably partitions of
each parameter space from the uncertain parameter CDFs into the LHS hypercube. LHS insures
coverage of the uncertainty space of all uncertain parameters, relatively independent of the number
of samples used.

Issues with sampling based uncertainty quantification include the high number of samples nec-
essary to converge prediction characteristics and determining when enough samples have been
taken to provide sufficiently converged prediction characteristics. The number of samples required
is dependent on how many of the uncertain parameters are driving the total uncertainty. A priori it
is difficult to know if 20 or 20,000 samples will be required, so a means of assessing convergence
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Figure 2.1: Illustration of equal probable stratification for a 2-D, four sample LHS study

is necessary. To help assess convergence, a variant of LHS known as incremental LHS (iLHS) can
be used [26]. iLHS provides increments where each subsequent increment builds off the previous
increment (uses the same points), but increases the total number of sample points. Each incre-
ment constitutes a full LHS study and can be used to provide statistical estimates of the prediction
distribution. Then by comparing the prediction results between increments, convergence can be
assessed. The Dakota software package [1] contains the iLHS implementation used for this anal-
ysis. The iLHS algorithm available in Dakota doubles the number of samples for each increment.
An illustration of two steps of an iLHS study where the sample size doubles from four to eight is
shown in Figure 2.2.

° )

Figure 2.2: Illustration of an increment of iLHS where a 2-D, four sample LHS study is updated
to an eight sample study
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2.4 Sensitivity Analysis

Beyond strictly making the prediction of interest, thermal analyses are often interested in deter-
mining which parameter uncertainties have the greatest impact on the prediction uncertainty, also
known as sensitivity. Sensitivity information provides physical insights into complex simulations
as well as guidance on which additional experiments/research could have the greatest impact on
this type of prediction (resource allocation). To gather this type of sensitivity information, global
sensitivity measures are needed. For this analysis Pearson correlation coefficients (p) will be used
as the global sensitivity metric.

n

_ i1 (i —X) (i —y)

VEL (i —3)2 X (vi =)
Here x are the input parameter values, y are the corresponding simulation output values, n is the
number of samples, and the bar notation indicates a mean value.

pi (2.11)

The use of Pearson correlation coefficients as a sensitivity measure requires a few assump-
tions: a linear relationship between model parameters and predictions, continuous variables, all
variables being normally distributed, and homoscedasticity (prediction uncertainty maintains the
same spread across the linear trend). Assuming a linear relationship between inputs and outputs
of thermal models is typically perceived to be a safe assumption. While not all of the parameter
uncertainties for this analysis are normally distributed, they are all symmetric and bounded, so it is
assumed that this should not have a significant impact on the correlation results. Application simu-
lation predictions are never truly normally distributed, but approximating them as such is believed
to be a reasonable assumption for sensitivity calculations.

Pearson correlation coefficient values are between -1 and 1, where the magnitude indicates the
strength of the linear relationship and the sign indicates positive or negative correlation. Squared
Pearson correlation coefficients indicate the percent of the prediction (y) uncertainty caused by
the uncertainty in parameter (x) if the underlying assumptions hold. An equivalent way of think-
ing about the squared Pearson correlation coefficients is as the 72 value from a simple linear least
squares fit. Comparing the difference between the sum of the squared coefficients and unity, esti-
mates the fraction of the prediction variance explained by assuming a linear relationship between
the inputs and output, or the strength of the linear assumption. If the sum of the squared coeffi-
cients is judged to be sufficiently close to unity, the interpretation of the squared coefficients as
the percent of prediction uncertainty caused by that parameter’s uncertainty can be used. This
interpretation of the correlation coefficients requires an assumption that interactions between in-
put parameters cause an insignificant amount of uncertainty in the prediction. Otherwise, if the
assumptions are not sufficiently met or the summed squared correlation coefficients are judged
not close enough to unity, the correlation coefficient should be treated as a qualitative measure of
sensitivity.

If the linear assumption for sensitivity was found to be incorrect (a significant amount of the
prediction variance is not captured), another global sensitivity metric that makes less restrictive
assumptions about the form of the relationship between model inputs and outputs could be used.
An example of such a sensitivity measure is Sobol indices [27]. Sobol indices for the interaction
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effect of multiple input parameters can also be calculated for systems where this impact is believed
to be significant, further reducing required assumptions.

2.5 Uncertainty Rollup and Prediction

When making predictions, all uncertainty sources need to be included. For this analysis the rel-
evant uncertainty sources are the spatial discretization error and parameter uncertainty. Other
uncertainty/error sources potentially included in the uncertainty rollup for other analyses might
include model form uncertainty resulting from validation activities, other numerical errors such as
the temporal discretization error, and uncertainties due to extrapolating the model beyond ranges
where data is available. So far section § 2.2 characterized a mesh bias estimate using nominal
parameter values and section § 2.3 characterized the forward propagation of material property un-
certainties through the model using the nominal mesh. In reality, the simulation’s total error needs
to account for both uncertainty/error sources and the interaction between those sources has not
been quantified.

f(X7h) _fexact(X) =Ah? (2.12)

Here X are the uncertain input parameters and 4 is the spatial discretization.

One possible assumption that would allow the prediction’s total uncertainty to be quantified is
that the impact of the parametric uncertainty and mesh bias are independent.

FXoh) = f(X)+f(h) = fi(X) (2.13)
This assumption can be tested by running the UQ simulations at different mesh resolutions.
f<X7hi) _fexact(X) = f(Xahj) - fexact(X) (214)

If the UQ prediction distribution is the same for different mesh resolutions, the independence of
mesh bias and parameter uncertainty would be established. Establishing independence of uncer-
tainty/error sources allows for the total prediction uncertainty to be estimated.

fi(X) = fexact(X) = Ahf (2.15)

Although independence could be quantified through sufficient sampling, we are limited by our
computational resources, so we must minimize the number of simulation runs conducted for the
higher mesh resolutions. Instead of running all UQ samples at multiple mesh resolutions, only a
subset of the samples are run at the higher mesh resolutions. For the current problem we hypoth-
esize that propagating the tails of the UQ prediction distribution to the higher mesh resolutions
can be used to establish that the two sources of uncertainty/error are sufficiently independent with
respect to the Qol (our thermal race margin estimate). To enact this approach, the parameter values
that resulted in the two extreme tail values of the prediction distribution for the nominal mesh are
then used to make predictions for both of the more resolved meshes. If the spread between the
tail samples is relatively constant as a function of mesh resolution, this will be used as evidence
of independence and allow the mesh bias and parameter uncertainty to be rolled-up into a total
uncertainty estimate.
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2.6 Margin Assessment

For thermal system analyses, a typical goal is to predict system performance in order to estimate a
performance margin. Margin questions typically originate from a customer of the thermal analysis,
meaning that the customer defines the prediction quantity of interest (Qol) and specifies a perfor-
mance requirement. At Sandia this type of margin question is frequently framed in a quantification
of margin and uncertainty (QMU) [6, 9] framework. The basic formulation of a QMU type pre-
sentation is to provide a visual of the performance distribution, requirement, margin between the
performance distribution and requirement, and uncertainty in the performance distribution. The
exact definitions of margin and uncertainty depend on the type of performance measure being
considered and type of uncertainty present in the prediction. For some applications the difference
between the mean performance and the requirement is considered the margin, and uncertainty is the
standard deviation of the performance distribution (K-factors) [16]. Other applications consider the
distance between an extreme tail percentile of the performance distribution (0.01 percentile would
be an example of a extreme tail percentile for Figure 2.3) and the requirement as the margin and
the uncertainty in the percentile estimate due to data sparsity as the uncertainty (tolerance interval)
[16].

For the current application, the margin question of interest is the proximity of the performance
distribution to the requirement. To quantitatively describe this margin question, we will use the
percent of predictions violating the requirement as the margin assessment, and the spread in the
prediction distribution as the uncertainty in this assessment. Figure 2.3 illustrates the definitions
of margin and uncertainty used for the current comparison of a performance prediction and a re-
quirement. This margin and uncertainty designation is deemed appropriate when the prediction

Requirement Performance

A

e —_——
A 4

'M:;rgin Uncertainty

Figure 2.3: Conceptual illustration of margin assessment comparing predicted performance and a
requirement. Margin is defined as distance from edge of the prediction distribution to the require-
ment and uncertainty is defined as total prediction distribution spread.

distribution largely represents epistemic uncertainty, or when the true value could be anywhere
within the distribution. In this approach the margin quantifies the worst case possibility within our
current understanding (smallest difference between requirement and predicted behavior in perfor-
mance space) and the uncertainty quantifies our lack of knowledge about the situation.
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Chapter 3

Results

3.1 Solution Verification

Following our VVUQ workflow (Figure 1.2), solution verification of the prediction Qol is first cal-
culated using nominal values for uncertain material parameters. Two uniform mesh refinements are
performed (o), allowing order of convergence and an extrapolated true value (x) to be calculated
with (2.6)-(2.7). Figure 3.1 shows the solution convergence and Richardson extrapolation results.
The Qol prediction appears to be convergent with refinement of the mesh resolution and the ob-
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Figure 3.1: Application of Richardson extrapolation to UMR mesh convergence study. Predicted
Qol values for different mesh refinements are shown as blue dots and black x markers indicate
Richardson extrapolations for possible additional uniform mesh refinements. Mesh refinements
are shown as values normalized by the nominal mesh.

served order of convergence is 1.04. This convergence rate is below the second order convergence
expected for the second order spatial discretization scheme being solved for the thermal system,
but is anticipated due to the many assumptions absorbed in the solution verification approach de-
scribed in section § 2.2.

Using the extrapolated ‘true’ value (0.79) as the reference point for determining the best esti-
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mate of mesh bias for other mesh resolutions is shown as blue bars in Figure 3.2. Using the mesh

o
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Figure 3.2: Defining mesh bias as difference between Qol prediction at each mesh resolution
and Richardson extrapolated Qol prediction. Blue bars are added to Figure 3.1 to indicate the
magnitude of mesh bias present for different mesh refinements.

bias definition specified by (2.9), results in a significant bias (-0.27) being present in simulations
calculated at the nominal (2/hg = 1) mesh.

3.2 Uncertainty Quantification: Forward Propagation

Next, uncertain material parameters in the simulation are specified. For this thermal system anal-
ysis around 150 uncertain material property parameters are defined for our combined part- and
material-centric approach. Propagating parameter uncertainties through the simulation using iLHS,
results in Qol prediction distributions, as shown in Figure 3.3. Increments of samples sizes 20, 40,
80, 160, 320, and 640 are used. Normal distributions are fit to the simulation results to test the
common normality assumption, but the distributions appear to show negative skew. Comparing
the Qol prediction distributions based on 320 and 640 samples shows that the distributions appear
roughly converged, but metrics are needed to quantify the sampling convergence in terms of the
prediction questions of interest.
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Figure 3.3: Histograms of Qol predictions based on 320 and 640 samples. Normal distributions fit
to the sample mean and standard deviation are shown as red lines.

3.3 Sensitivity Analysis

One of the analysis prediction questions of interest is which parameter uncertainty definitions have
the greatest impact on the prediction, or sensitivity. For this analysis Pearson correlation coef-
ficients (2.11) are used as the sensitivity metric. The top three Pearson correlation coefficients,
where correlation is between the simulation Qol predictions and the values of specific material
parameters, are shown for iLHS sample sizes of 320 and 640 in Figure 3.4. Comparing the cor-
relation coefficients based on the two incremental sample sizes indicates that the ordering and
relative magnitude of the sensitivity measure has converged. The ordering and magnitudes of all
parameter sensitivities have not converged using 640 samples, but the magnitude of the first two
parameters indicates that understanding the sensitivity to the remaining parameters is inconsequen-
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Figure 3.4: Top three squared Pearson correlation coefficients based on 320 and 640 iLHS samples,
where correlation is between uncertain material parameters and Qol predictions

tial. It appears that uncertain parameter 55 is the dominant source of uncertainty for making the
desired Qol prediction. The sum of the squared correlation coefficients determines the linearity
of the relationship between model inputs and outputs. The sum of all squared correlation coeffi-
cients is approximately 1.0, indicating that a linear assumption when quantifying sensitivity is able
to account for 100% of the prediction variance, assuming that the impact of interactions between
parameters contributes an insignificant amount of uncertainty. This interpretation of the sensitiv-
ity results allows the analyst to make the quantified conclusion that parameter 55 accounts for
89% of the Qol prediction uncertainty. This sensitivity study shows that refinement of the nomi-
nal definition of parameter 55 could have a significant impact on the simulation prediction results
and reduction of the uncertainty characterization of parameter 55 would significantly reduce the
prediction uncertainty.

30



3.4 Uncertainty Quantification: Sampling Convergence

To assess if enough samples of the uncertain input parameters have been propagated through the
model, or if the prediction distribution has converged with respect to the questions of interest,
convergence criteria are defined. For the prediction of interest we chose the prediction distribution
mean, the prediction distribution standard deviation, the total spread of the prediction distribution,
and the magnitude of the leading Pearson correlation coefficient, shown in Figure 3.5, as metrics
of convergence. The four criteria (¢) for sampling convergence are plotted as relative error versus
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Figure 3.5: Four metrics of sampling convergence: relative error value of the mean of the predicted
Qol distribution (u), the standard deviation of the predicted Qol distribution (o) , the distance
between the minimum and maximum samples of the predicted Qol distribution (Spread), and the
magnitude of the leading correlation coefficient (CorrMag).

sample size, where relative error is the difference between the criteria’s value at the last sample
size (n/2) and the current sample size (n), normalized by the current sample size’s value.

O — ¢n/2
Pn

It appears that using 320 samples sufficiently converged the specified criteria, but the results from
640 samples provide greater confidence in this conclusion. Even after 160 samples less than 6%
changes in ¢ values is observed.

Relative Error = (3.1

We choose these four convergence criteria for this problem because they are representative
of the analysis questions of interest. Because the sensitivity to input parameters was sought, the
magnitude of the leading correlation coefficient was selected as a convergence criteria to pro-
vide credibility to the sensitivity conclusion. The margin between the prediction distribution and
the requirement was another major analysis concern, so we sought to ensure convergence of the
prediction distribution’s total spread. Then when making margin assessments, uncertainty in the
prediction must also be considered, so the prediction distribution’s mean and standard deviation
are included as criteria for convergence. Ensuring these four convergence criteria are met supports
the credibility of analysis statements build upon those same values (prediction leading sensitivity
sources, mean, standard deviation, and spread).

31



3.5 Uncertainty Rollup and Prediction

Now that the impact of mesh bias and forward propagation of parametric uncertainty have been
characterized independently, the hypothesis that they can be treated as independent uncertainty
sources, when aggregated to make a prediction for this analysis, can be tested. To test this hy-
pothesis, the parameter sets that resulted in the minimum and maximum predictions (or left and
right ends of the prediction distribution) are used with meshes once and twice uniformly refined. If
the hypothesis of independence of mesh bias and parametric uncertainty is true, the spread of the
prediction distribution should be insensitive to mesh discretization. Figure 3.6 shows simulation
results for the left extreme, nominal, and right extreme of the prediction distribution (specified
by the nominal mesh results) as a function of grid resolution. From the figure it appears that the
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Figure 3.6: Impact of mesh size on Qol prediction for simulations that produced the nominal, left
extreme, and right extreme values of the Qol prediction distribution for the nominal mesh. Yellow
circles indicate simulation results and blue triangles are Richardson extrapolated values.

prediction distribution’s spread is relatively insensitive to the mesh resolution.

To further investigate the relationship between the prediction distribution’s spread and the
mesh resolution, the trend and Richardson extrapolation of the distribution’s spread is plotted in
Figure 3.7. The figure shows a converging trend in the distributional spread, but the magnitude of
the mesh bias impact on the distribution’s spread is only 0.3% of the extrapolated value (or 0.003
in Qol units). This dependence is considered insignificant for the predictions of interest due to the
disparity in the magnitudes of impacts. The analysis results have shown a mesh bias of roughly
-0.27 Qol units and parametric uncertainty causing a 0.44 Qol unit spread. These bias and un-
certainty values are notable for this analysis because it is commonly assumed within our thermal
analysis community that parametric uncertainties dominate the total uncertainty in predictions, yet
for this analysis these terms are of similar magnitude. Based on these results, we go forward in
the analysis with the assumption of independence and separability of mesh bias and parametric
uncertainty.

Separable mesh bias and parametric uncertainties impacts allows for the two terms to be treated
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Figure 3.7: Richardson extrapolation applied to solution convergence of Qol prediction spread
based on UMR samples. Blue dots indicate meshes used and black x markers are based on
Richardson extrapolation for possible additional UMR meshes. Mesh refinements are shown as
values normalized by the nominal mesh.

additively. To make predictions with respect to the margin question of interest, the prediction
distribution calculated for the nominal mesh can be shifted by the mesh bias calculated for the
nominal mesh, resulting in a prediction distribution that accounts for both sources of uncertainty.
This shift of the prediction distribution is shown in Figure 3.8. When shifting the distribution,
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Figure 3.8: Shifting Qol histogram predicted using nominal mesh by the quantified mesh bias
(gray arrow). Performance requirement (0.5) is shown as the red dashed line.

the mesh bias calculated for the left tail sample of the distribution is added to all iLHS predicted
values.
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3.6 Margin Assessment

For this analysis the performance requirement is that the predicted behavior be above 0.5 normal-
ized Qol units. Shifting the Qol predicted distribution by the mesh bias results in a positive margin
between the left tail of the prediction distribution and the performance requirement. Figure 3.9
shows how the percent of samples comprising the prediction distribution that are below the per-
formance requirement scales with mesh resolution. Almost 40% of predictions are below the
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Figure 3.9: Percent of the prediction distribution below the performance requirement (0.5) as a
function of mesh refinement. Percent values are based on the number of iLHS samples below
the threshold. Yellow dots correspond to actual meshes tested and the blue triangle is based on
the Richardson extrapolation estimate of the true value. Mesh refinements are shown as values
normalized by the nominal mesh.

performance requirement if only parametric uncertainty is considered. As the impact of mesh bias
for increasing levels of mesh refinement are taken into account, the percent of the prediction dis-
tribution below the threshold diminishes. If the Richardson extrapolated estimate of mesh bias
is incorporated into the prediction, then none of the 640 iLHS samples is below the performance
requirement. In terms of margin and uncertainty, the presented results are still concerning due to
the margin over uncertainty (M/U) ratio being significantly less than 1. While the importance of
the specific M/U value is debatable, having uncertainty in the prediction of a larger magnitude than
the margin is concerning.
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Chapter 4

Discussion

The approach presented for handling numerical and parameter uncertainty is the major VVUQ
development resulting from this analysis. If the mesh bias and parametric uncertainty sources had
not been shown to be separable, more conservative assumptions about their interaction would have
been necessary. An example of a common approach towards providing a conservative prediction
is to use engineering factors, which are multiplied by the identified uncertainty magnitudes to
calculate the uncertainty value ultimately included with the prediction.

The analysis results found that accounting for the spatial discretization error as a mesh bias
shifted the predicted performance distribution in a positive margin direction. Another way of
thinking about this result is that the nominal mesh provided conservative estimates of performance.
Neglecting mesh bias will not always provide a conservative performance estimate, which is only
a result of the direction in which the simulation performance converges. For analyses that cannot
afford additional uncertainty quantification simulations at higher mesh resolutions but whose so-
lution verification studies show the nominal mesh to be conservative, this might be exploited to
justify using results of nominal mesh, parametric studies as conservative performance estimates.

The numerical uncertainty identified within the simulation was characterized as a bias instead
of an uncertainty. This was done for two reasons. First, the impact of the mesh resolution was
clearly causing the nominal mesh simulation to be shifted to the left, resulting in a negative margin
for the question of interest. Additionally, if the spatial discretization error was characterized as
an uncertainty and that uncertainty was added to the parametric uncertainty, this would widen the
prediction distribution, increasing the amount of negative margin. We acknowledge that the char-
acterized mesh bias is only a best estimate of an epistemic uncertainty due to fitting the Richardson
extrapolation with three points. Communicating that additional uncertainty factor when providing
the simulation prediction allows the decision maker to determine its impact on their own analyses.
If that epistemic uncertainty source was aggregated into the simulation prediction by the thermal
analyst, the decision maker would be presented with a more conservative, but less informative
result.

The uncertainty characterizations produced to describe the uncertainty in material thermal
properties were largely epistemic. Some of the material properties may contain natural variability
due to manufacturing processes or different sources of the material, but it is generally believed that
the magnitude of those variabilities is significantly less than our lack of knowledge about the true
parameter value. This means that the prediction distribution is also largely epistemic in nature,
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which motivated our choice of margin assessment. The true prediction value could be anywhere
within the prediction distribution, so we characterized margin as the worst case simulation eval-
uation. Uncertainty in this margin assessment was then our epistemic uncertainty about the true
margin value. If the uncertainty in the prediction distribution had been largely aleatory, it would
have been more reasonable to think of margin differently. In a prediction dominated by aleatory
uncertainty, the uncertainty reflects possible instances of the margin, any of which could occur;
the margin may then be defined as the most probable possible margin. Communicating the correct
interpretation of the prediction’s margin assessment can have a significant impact on a decision
maker’s conclusions.

Ultimately, the margin assessment showed that minimal margin exists for the analysis question
of interest. The current simulations found positive margin, but when also accounting for the epis-
temic uncertainty in the mesh bias value, there is likely some portion of the prediction distribution
with negative margin. If the margin had been found to be significantly larger, both in value and
relative to the uncertainty in the prediction, then decision makers may not have needed to consider
the epistemic uncertainties associated with the prediction. Finding that minimal margin exists ver-
sus finding a significant portion of negative margin may result in different courses of action by a
decision maker, so the approach taken towards aggregating uncertainty/error sources was impact-
ful for this analyses. The sensitivity results indicate that further study of parameter 55 may provide
significant aid to making a decision based on the current analysis.

The present analysis indicates that our understanding of performance margin is clouded by
our lack of knowledge. If parameter 55’s uncertain characterization had represented true natural
variability in a material property, then the performance distribution would have represented the
probability of minimal margin existing. The difference in interpretation for decision makers is our
lack of knowledge indicates that minimal margin exists versus minimal margin exists with a certain
likelihood.

We have decided to think of computational simulation credibility as a framework to specify
objectives, enact VVUQ methods, and report assumptions, limitations, and results. To establish
the credibility of the work present within this document, we leveraged a VVUQ workflow largely
based on the elements of PCMM. Not all elements of the workflow were reported within this
document due to institutional limitations and project scope, but all were mentioned to provide a
reference of what we considered a full workflow. Through documenting assumptions absorbed into
the VVUQ analysis elements, working through elements in an integrated fashion, and orienting all
elements towards the project’s question of interest, customers should have greater clarity in how
the analysis results can be leveraged for their decision making process.
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Chapter 5

Conclusions

Like all projects with finite scope and resources, many questions remain and were left for future
work. The work presented provides a detailed account of a real engineering thermal analysis,
structured in a VVUQ workflow in order to progress towards providing a means of communicat-
ing simulation credibility to a customer. Using PCMM elements as the analysis components, the
assumptions and performance of the simulations are able to be concisely communicated. A novel
approach towards aggregating numerical uncertainty and parametric uncertainty was presented.
Through providing evidence that numerical and parametric uncertainty sources were independent,
they were able to be aggregated additively as an uncertainty plus bias. Future work may consider
additional simulation evaluations at a medium mesh resolution, allowing the generation of a surro-
gate model. A medium resolution surrogate model could then be compared against all evaluations
at the lower mesh resolution, providing greater evidence of the dependence between parametric
and numerical uncertainty sources, while still limiting the number of costly fine resolution evalu-
ations. Interpretation of prediction uncertainty as being primarily epistemic or aleatory in nature
has a significant impact on the interpretation of a margin assessment and should be communicated
to decision makers.
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Appendix A

General Description of Physics Equations
Solved

Heat Conduction

The mathematical description used to describe heat conduction in a stationary material region (€2)

is
aT d aT
P =gy (k,, ax,-) +0 (A1)
where p is the material density, C the specific heat, k;; the thermal conductivity tensor, Q the
volumetric heat source, ¢ the time, x; the spatial coordinates and 7 the temperature [3]. Materi-
als can be be heterogeneous with the conductivity tensor being at most orthotropic [2]. Material
properties can take functional forms with dependence on time, spatial location, chemical compo-
sition, and/or temperature. Energy release from chemical reactions is included in the variation of
0, which can take on the same tensor form as the other additive terms in (A.1). When enclosure
radiation is coupled with heat conduction all other pertinent field variables can take on specified
material dependencies.

Enclosure Radiation

Enclosure radiation is modeled using the net-radiation method as described in [11]. Associated
with each surface is a uniform temperature 7}, an area A; and a surface emissivity €;. An energy
balance for each surface in the enclosure leads to the following system of equations

N TS, 1—¢; .
S (G f

j=1 j=1

(A.2) relates the net energy loss (Q;) from each surface to the temperature of each surface, where
O is the unit tensor, o is the Stefan-Boltzmann constant and Fj_; are radiation view (configura-
tion) factors [3]. View factors for closed surfaces are defined as

1 cos 6 cos 0
Fi_j=— —————dA;dA A3
k—j Ay /Ak /Aj S2 J¢ ks ( )
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where S is the distance from a point on surface A; to a point on surface A;. The angles 6; and 6;
are measured between the line S and the normals to the surface [11]. When coupling (A.3) with
heat conduction, one must apply a flux boundary condition in order to evaluate the total surface
flux.

Convection

Bulk fluid elements are used as a conductive flux boundary condition to model convective heat
transfer [17]. It is suitable and computationally cost effective to take this approach instead of doing
full-up CFD modeled convection is not a dominant heat transfer mode for the temperature regime
of interest. Specifically, we specify heat transfer on a boundary surface that can be modeled using
Newton’s law of cooling, which specifies that the heat flux normal to a surface g, is proportional to
the difference between the unknown temperature of the surface 7' and some reference temperature
of the fluid in which the surface is immersed

qn — h (T - Tr) ) (A4)

where £ is the convection coefficient and 7 is the reference temperature [17].

Chemical Kinetics

When considering a material involving I species with J reactions, the description of the allowed
reactions (stoichiometry) is given by

1 1
Y vty — Y Vi, j=1,2,....J (A.5)
i=1 i=1

where v; ;, v;

for the ith species [31]. Stoichiometric equations are typically specified as reversible reactions, but
each reaction direction is treated as an individual reaction step within this formulation. To describe
global reactions, non-integer stoichiometric coefficients are used. For each step of the reaction, a
reaction rate r;, is usually defined in the form

! v’-} are stoichiometric coefficients (usually integer values) and . is the chemical symbol

1
ri=k; (T)[TIN]", j=1,2,....J (A.6)
i=1

where [N;] is the concentration of species i (or mole fraction) and y;; are the concentration expo-
nents (usually y;; = v j in kinetic theory, but here they are treated independently) [3]. Typically,
the expressions for the kinetic coefficients k;(7'), are given in an Arrhenius form

k;(T)=TPiA;exp (R—Tf) : (A7)
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where 3 ; 18 the coefficient for a steric factor, A; is the pre-exponential factor, E; is the activation

energy and the universal gas constant is R [38]. It is convenient to define v;; = (vf; — v j> , so that

the change in species concentration can be described as
d J
EﬂMF:ZfWW i=1,2,...,1 (A.8)
J:

where chemical reaction process is coupled directly to the thermal diffusion problem by the volu-
metric source term

J
=Y qrj, (A.9)
j=1

where g ; represents the known endothermic or exothermic energy release for reaction step j [14].
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