
Evaluating Support for OpenMP Offload Features
Jose Monsalve Diaz∗
University of Delaware

josem@udel.edu

Swaroop Pophale∗
Oak Ridge National Laboratory

pophaless@ornl.gov

Kyle Friedline
University of Delaware
utimatu@udel.edu

Oscar Hernandez
Oak Ridge National Laboratory

oscar@ornl.gov

David E. Bernholdt
Oak Ridge National Laboratory

bernholdtde@ornl.gov

Sunita Chandrasekaran
University of Delaware
schandra@udel.edu

ABSTRACT
The OpenMP language features have been evolving to meet the
rapid development in hardware platforms. DOE applications tend
to push the bleeding edge of features ratified in the OpenMP speci-
fication and tend to expose the rough edges of the features’ imple-
mentations. The software harness on DOE supercomputers such
as Titan and (upcoming) Summit include Cray, Clang, Flang, XL
and GCC compilers. It is critical, especially for Summit, that the
compilers support OpenMP offloading features. This paper focuses
on evaluating support for OpenMP 4.5 target offload directives
across compiler implementations on Titan and Summitdev, an early
access system, which is one generation removed from Summit’s
architecture enabling application teams to test the systems’ architec-
ture. Our tests not only evaluate the OpenMP implementations but
also expose ambiguities in the OpenMP 4.5 specification. We also
evaluate compiler implementations using kernels extracted from
productionDOE applications. This helps in assessing the interaction
of different OpenMP directives independent of other application
artifacts. We are aware that the implementations are constantly
evolving and are advertised as having only partial OpenMP 4.x sup-
port. We see this as a synergistic effort to help identify and correct
features that are required by DOE applications and prevent deploy-
ment delays later on. Going forward, we also plan to interact with
standard benchmarking bodies like SPEC/HPG to donate our tests
and mini-apps/kernels for potential inclusion in the next release
versions of SPEC OMP and SPEC ACCEL benchmark suites.

CCS CONCEPTS
• Computing methodologies → Parallel programming lan-
guages; • Hardware→ Testing with distributed and parallel
systems; • Software and its engineering→ Dynamic compil-
ers; Source code generation;

KEYWORDS
OpenMP 4.5, Offloading, Evaluation

∗These authors contributed equally

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.
ICPP ’18 Comp, August 13–16, 2018, Eugene, OR, USA

https://doi.org/10.1145/3229710.3229717

ACM Reference Format:
Jose Monsalve Diaz, Swaroop Pophale, Kyle Friedline, Oscar Hernandez,
David E. Bernholdt, and Sunita Chandrasekaran. 2018. Evaluating Sup-
port for OpenMP Offload Features. In ICPP ’18 Comp: 47th International
Conference on Parallel Processing Companion, August 13–16, 2018, Eugene,
OR, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3229710.3229717

1 INTRODUCTION
Top500 reports that eighty-six systems in the list are configured
with accelerators and coprocessors, of which sixty use NVIDIA
GPUs, twenty-one use Intel Xeon Phi cards, one uses AMD FirePro
GPUs, one uses PEZY technology, and three systems use a com-
bination of NVIDIA GPUs and Intel Xeon Phi coprocessors [28].
The trend towards heterogeneous architecture (CPUs+Accelerator
devices) only seems to be strengthening with more systems using
different types of cores with each year. The key advantage of het-
erogeneous systems is the performance for Watt contributed by
accelerators in comparison to the traditional homogeneous sys-
tems that only use CPUs. These heterogeneous architectures offer
tremendous potential in performance gains, but attaining that po-
tential requires scientific applications of thousands or even millions
of lines of code (LOC) to be migrated to support these architectures.
Without appropriate support in performance-portable program-
ming models that can exploit the rich feature sets of hardware
resources, this already daunting task would be prohibitively diffi-
cult.

We need programming paradigms to abstract the hardware dif-
ferences across different platforms and provide reproducible and
identical behavior for applications. Directive-based programming
models offer one of the best approaches to create reusable software
without burdening the scientific application developers to learn
about the programming paradigm or the intricacies of the hardware.
Using directives, the programmers insert hints into a given region
of code and the compiler automatically maps the code to efficient
parallel code for the target system. Directives aim to achieve a per-
formance portable code. Currently, the two popular directive-based
programming models are OpenACC [21], OpenMP [23]. Besides
directive-based approaches, other techniques to program acceler-
ators include CUDA [17], OpenCL [22], NVIDA Thrust [1], and
Kokkos [7].

OpenMP made a paradigm change to support heterogeneous
systems and released a specification Versions 4.0 and 4.5 in
2013 and 2015 respectively. Features included directives such
as SIMD, target, newer additions to task directive, such as
taskloop, taskloop simd, taskgroup construct and newer

https://doi.org/10.1145/3229710.3229717
https://doi.org/10.1145/3229710.3229717
https://doi.org/10.1145/3229710.3229717

ICPP ’18 Comp, August 13–16, 2018, Eugene, OR, USA J. M. Diaz and S. Pophale et al.

clauses for tasks such as priority, depend. Environment variables
included hardware thread affinity description, affinity policies, de-
fault accelerator devices while runtime library routines included
omp_get_initial_device, and other device memory routines. Tech-
nical reports have been augmenting OpenMP 4.0 and 4.5 with lan-
guage features to manage memory on systems with heterogeneous
memories, with features for task reductions, extensions to the tar-
get construct along with several clarifications and fixes. OpenMP
4.5 and above allows programmers to use the same standard to pro-
gram CPU, SIMD units, and the accelerators such as GPUs. This is
currently being used by DOE and other scientific developers to port
codes to heterogeneous systems. At Oak Ridge National Laboratory
(ORNL) Pseudo-Spectral Direct Numerical Simulation-Combined
Compact Difference (PSDNS-CCD3D) [4, 5], a computational fluid
dynamics code on turbulent flow simulation rely on OpenMP 4.5 for
on-node parallelism and run to scale on the Titan super-computer.
Other applications that have used OpenMP 4.5 include Quick-silver,
a Monte Carlo Transport code [27].

Compiler support for OpenMP 4.5 has been increasing in the re-
cent years [24]. GCC 7.1 (May 2017) provides support for OpenMP
4.5 in C and C++. IBM XL (Dec 2016) for little endian Linux dis-
tributions supports OpenMP 4.5 in C and C++ since V13.1.5, and
some of the offloading features in Fortran since V15.1.15. Intel ICC
17.0 compiler supports OpenMP 4.5 for C. C++ and Fortran. For
Cray systems the Cray Compiling Environment (CCE) 8.5 (June
2016) supports OpenMP 4.0 along with OpenMP 4.5 support for
device constructs, Finally, LLVM Clang 3.9 released support for all
non-offloading features of OpenMP 4.5, while a version of Clang
that supports offloading features is currently under development.

As the device offload feature set continues to evolve, it is critical
to ensure that their implementations conform to the specification.
Maintaining consistency with the definition in the specification is a
challenge as the description in the specification can be interpreted
in multiple ways. Due to such ambiguities, vendors tend to interpret
such descriptions differently and hence we find a particular feature
implemented differently in different compilers, sometimes these dif-
ferences are quite subtle but triggers a productive discussion to fix
the description in the specification. Our previous publications have
captured such discrepancies [15, 29]. OpenMP consumers benefit
greatly from having a way to evaluate each compiler’s implementa-
tion coverage of the given specification for each architecture where
OpenMP-enabled applications are used.

The following are the main contributions of this work:

• Identify extent of OpenMP offload support (target direc-
tives) in OpenMP implementations such as GCC, Clang, XL
and Cray.

• Analyze support for common code kernels identified across
a range of DOE applications and test their support across all
accessible OpenMP implementations.

• Identify and report inconsistencies or bugs in specific imple-
mentations to their respective compiler developers.

• Present performance data for different directives across dif-
ferent OpenMP implementations.

The remainder of the paper is organized as follows: Section 2
discusses the concepts of offloading directives in OpenMP 4.5. Our
experimental setup is described in 3. We discuss our tests and

findings on the extent of the support for offload features in differ-
ent compilers such as Clang, XL, GCC and Cray in Section 4. We
identify some common code snippets/kernels across applications
in Section 5 and test their support across different compilers. In
Section 6 we analyze the overheads of the target directives and
present our findings and analysis. In Section 8 we summarize our
findings and discuss next steps.

2 OFFLOADING IN OPENMP 4.5
One major change that was introduced in OpenMP 4.0 was offload-
ing code to accelerators. This new feature enables the possibility of
executing code in one or multiple co-processor devices (or accel-
erators) while at the same time running classical pre-OpenMP 4.0
parallel code on the multicore processor. Code offloading opens a
new world of heterogeneous computation for application develop-
ers, still, it brings signification changes to the OpenMP execution
and memory model. Specifically, the addition of a new indepen-
dent execution environment for each of the offloading devices (e.g.
a different memory address space, memory hierarchy or core’s
microarchitecture). Accelerators such as GPGPUs and Xeon Phi
coprocessors have heavily influenced the OpenMP definitions of
execution models and memory models for offloading.

OpenMP uses a host-centric execution model. The host corre-
sponds to the processor that initiates the program execution, and
the device corresponds to the co-processor or acceleration device
that is used to improve the computation of particular segments of
code in the program. At some point during the execution, the host
will offload data and computation to one or more target devices, wait
for the execution to complete in these devices (possibly executing
other code), and finally move results back to the host. This could
happen many times throughout the program.

As in a directive based programming models, the programmer
provides hints to the compiler by using OpenMP target constructs.
These directives will indicate the region of code that will be con-
sidered for offloading to the accelerator device during runtime.
Additionally, the programmer uses directives to define which data
is to be copied back and forth, or allocated on the offloading device.
The compiler converts these segments of code to kernel functions
in the accelerator’s instruction set, which can then be executed on
the target device architecture. Offloading of code requires the target
device to be present and supported by the compiler. If this is not
the case the code should still run on the host. Hence, a host version
of the target code will still be generated by the compiler. However,
as far as the specification is concerned, there is no fall-back mecha-
nism during runtime. This means that although the code could still
be executed on a host with no target device on it, if the device is
present but becomes unavailable during execution, or the execution
fails, the program execution could still fail.

The execution model of OpenMP 4.0+ continues to use the fork-
join model, as well as the previously introduced tasking execution
model. When the target construct is encountered, a new target
task is created, enclosing all the target region. It is possible to spec-
ify dependencies between host tasks and target tasks. Moreover,
the nowait clause can be used to asynchronously execute target
tasks and host tasks or parallel regions. On the other hand, within
the target region, the programmer can use the teams, distribute,

Evaluating Support for OpenMP Offload Features ICPP ’18 Comp, August 13–16, 2018, Eugene, OR, USA

TARGET DEVICE

#omp target

#omp parallel for

#omp simd

#omp teams

#omp distribute

TARGET OFFLOADING

Thread team

#omp target
// target region

 #omp teams
 // distributed between num_teams

 # omp distribute
 for (i:0:N)

 #omp parallel for
 for (j:0:M)

 # omp simd
 for (k:0:L) { … }

Figure 1: OpenMP 4.0+ Execution model.

parallel for, and simd to express parallelism in the fork-join
model as depicted in Figure 1. The target region executes in a single
thread. When the teams construct is encountered, a league of thread
teams is created. The master threads of each team will execute the
teams region. It is important to be aware that there is no implicit
barrier at the end of a the teams region. The other three constructs
distribute, parallel for and simd are loop constructs. The
distribute construct will split the iteration space among all the
league of thread teams. Hence, each master thread of each team
will be statically assigned with a chunk of the iteration space
for execution. The parallel construct allows parallelism within
the thread team. The iteration space is split between all the threads
within a team. Finally, the simd construct allows splitting an iter-
ation space into SIMD lanes, as long as this is supported by the
architecture.

On the host side, in order to support device offloading, a new
device thread exists per physically available device. This thread
is in charge of managing resources for that particular device, as well
as handling communication between the host and this particular
device. When a target region is encountered, the required data is
mapped (read transferred) to the device and the created target task
is scheduled into the selected target device. The caller thread could
either block or continue the execution depending if the nowait
clause is present. Once the accelerator has finished executing the
code, the output data is usually mapped back to the device.

Regarding the devicememorymodel, each target threadwill have
its own target data region that keeps track of memory mapping
between host and device. Variables can be present in the host, the
device or both. Synchronization of data, or data movement between
the two environments can be (and should be) managed by the
programmer. To do this, the map construct, together with a map-
type-modifier, are used in the target directive, the target data
directive, the target enter/exit data directives or the target
update directive. The map construct specifies if data should be
allocated (alloc modifier), deallocated (delete and release modifiers),
or moved (to, from and tofrom modifiers) between host and device.
If no modifiers are present, default mapping is in effect. Mapping

of primitive types (e.g. int and double) uses the to modifier, while
arrays and pointers use the tofrom modifier.

3 EXPERIMENTAL SETUP
For our experiments, we use Titan Cray XK7 [20], Summitdev [18]
and Summit [19] as our testbed environments. Each Titan node
uses a 16-core AMD Opteron x64 CPU and has access to 32 GB + 6
GB of DRAM. In addition, each node has one NVIDIA Kepler K20X
GPU. Summitdev is an early access system that is one generation
removed from OLCF’s next big supercomputer and features IBM
S822LC nodes with two IBM POWER8 processors. Each processor
has 10 cores, and each core has 8 hardware threads for a total of
160 threads per node. As target devices, there are 4 NVIDIA Tesla
P100 GPUs per node. Summit has a hybrid architecture with each
node containing multiple IBM POWER9 CPUs and NVIDIA Volta
GPUs all connected together with NVIDIA’s high-speed NVLink.
Figure 2 shows a picture representation of a Summit node. Each
node has over half a terabyte of coherent memory (high bandwidth
memory + DDR4). This memory is addressable by all CPUs and
GPUs. Additionally 800GB of non-volatile RAM is available (can
be used as a burst buffer or as extended memory). The nodes are
connected in a non-blocking fat-tree using a dual-rail Mellanox
EDR InfiniBand interconnect.

Because of page limit consideration we picked a subset of the
actual tests performed. Our complete list is available on our website
[8]. The table omits tests that are currently in the formulation or
in the development phase and as a result have not passed peer-
review. To ensure a broad coverage of the OpenMP offload direc-
tives, we present our analysis for target, target data, target
enter/exit data, target teams distribute and target update
in this paper. Each test is compiled with four different compilers that
are available to us. These compilers already support for OpenMP
4.5 constructs. This way we are able to analyze the validity of the
tests and at the same time the behavior of each compiler’s imple-
mentation for a particular construct under study. The compilers we

ICPP ’18 Comp, August 13–16, 2018, Eugene, OR, USA J. M. Diaz and S. Pophale et al.

Figure 2: A Summit Node.

use include GCC Version 7.1.1, IBM XL Version 14.1 Beta 7, Cray
CCE Version 8.6.5 and Clang Version 3.8.

Sections 4 and 5 looks at support for individual directives as
well as common kernels across different OpenMP implementations.
Section 4 gives information on overhead using different directives
along with clause(s).

4 SUPPORT FOR OPENMP 4.5 OFFLOADING
In order to assess the implementation state of different compilers
that support OpenMP 4.5, it is necessary to study the level of support
of the different OpenMP constructs involving offloading features.
Hence, we have created a set of tests that individually evaluate each
of the constructs and their associated clauses, in accordance with
the OpenMP 4.5 specification [23]. Each tests was compiled and ran
with multiple compilers available to us in three different systems
at ORNL as detailed in Section 3. These results are summarized in
Table 1 where each column represents a specific compiler running
on a particular system.

The tests undergo rigorous peer-reviews before we use them for
our analysis, we have not elaborated on this review process as this
is outside the scope of this paper. The version of the compiler is
on the column header. Each row represents a test for a particular
construct and clause. We differentiate between tests that Pass with
no issues (P), tests that pass compilation but have Runtime Errors
(RE), and tests that have Compilation Errors (CE). In the case of
Compiler Errors, some tests produce incorrect warning or error
messages, while others will crash the compiler. Examples of com-
piler errors are compiling is_device_ptr(var) with GCC clause,
which complains about var being mapped twice, and compiling
target enter data + ifwith CCE crashes the compiler. Runtime
Errors are differentiated between OpenMP specifications compli-
ance errors and program crashes. One example of a compliance
errors is defaultmap in XLC which maps enum variables as tofrom

by default, even though scalar variables are not mapped by default
and have a data sharing attribute of firstprivate. As of an exam-
ple of a program crashing is target data map (array sections)
compiled with CCE arrays. The device clause tests have been re-
moved from the CCE compiler as their results are inconclusive
given that Titan only has a single GPU per node available.

CCE seems to be the compiler with the most unsupported fea-
tures. Important feature like array section mapping fails for multidi-
mensional arrays, the if clause in some cases and map to of scalar
values are also problematic. Clang, despite being a beta release,
seems to be working well on the systems available to us. There are
some errors that only affect Summit, which might indicate issues
with the system-compiler interaction. GCC has extensive support as
well, showing issues with target data use device pointer. Fi-
nally, XLC’s defaultmap(tofrom: scalar) clause does not work
for enum variables. Additionally, target update devices does
not provide the right result either, and target teams distribute
parallel for if(parallel: ...) complains about the number
of thread not being as expected in the parallel region. The analysis
of the exact cause of the failure is outside the scope of this paper.
By providing timely feedback to the vendors we hope a quick reso-
lution is achieved. Most of the errors shown by these tests resulted
in bug reports one each compiler vendor or community.

5 SUPPORT FOR APPLICATIONS KERNELS
In this section we discuss few of the common kernels that we ob-
served across a range of applications. Some of these containmultiple
OpenMP directives and clauses. This is to verify that along with
individual directives, the implementations can correctly support
combination of OpenMP directives. We distill these application
kernels into tests to ascertain that they produce the correct results.

5.1 Offloading to multiple devices
Code 1 tests the computational offloaded to different devices. This
code distributes each row of a matrix to exactly one of the available
devices. To perform this, we use a loop that iterates through the
number of devices (lines 5-14), where each iteration performs data
movement and computation in a specific device. First, the target
data region maps a portion of the matrix to the device denoted
by the value of dev (line 6). Then, the target region performs the
computation on the device passed to the clause device (line 8).

Our first attempt defined the target region (line 8) without the
map clause for mapping the h_matrix array (i.e. #pragma omp
target device (dev)). Without the map clause map(from: h_matrix
[dev∗N:N]), the test reported success but at runtime the entire
h_matrix was implicitly copied to each one of the devices. Since
the intent was to divide data and minimize data movement we
had to ensure that each device got a portion of the array (a row)
rather than a copy of the h_matrix. To address this, we added
the clause map(from: h_matrix[dev∗N:N]) to line 8 such that the
h_matrix array present implicitly in a target region is not larger
than the original size already mapped in the outer region by the
target data construct in line 7. It is important to clarify that
the additional map(from: h_matrix[dev∗N:N]) will not perform the
data movement operation since the h_matrix array was already

Evaluating Support for OpenMP Offload Features ICPP ’18 Comp, August 13–16, 2018, Eugene, OR, USA

CCE 8.6.5 clang 3.8.0 Clang 3.8.0 GCC 7.1.1 XLC 13.1.6.1 xlc 13.1.7.0
Test Directive + Clause Titan Summit Summitdev Summitdev Summitdev Summit
1 target + async P P P P P P
2 target data + if P P P P P P
3 target data map (array sections) RE P P P P P
4 target data map (classes) RE P P P P P
5 target data map + devices - P P P P P
6 target data map P P P P P P
7 target data + use device ptr RE P P CE P P
8 target (defaultmap) RE P P P RE RE
9 target + device P P P P P P
10 target enter data + async P P P P P P
11 target enter data + devices - P P P P P
12 target enter data (global array) P P P P P P
13 target enter data + if CE P P P P P
14 target enter data (malloced array) P P P P P P
15 target enter data (struct) P P P P P P
16 target enter exit data + async P P P P P P
17 target enter exit data + devices - P P P P P
18 target enter exit data + if CE P P P P P
19 target enter exit data + map (global array) P P P P P P
20 target enter exit data + map (malloced array) P P P P P P
21 target enter exit data (struct) P P P P P P
22 target + firstprivate P RE P P P RE
23 target + if P P P P P P
24 target + is device ptr P P P P P P
25 target + map (allocated array) P P P P P P
26 target + map (global arrays) P P P P P P
27 target + map (local array) P P P P P P
28 target + default map (pointer) P P P P P P
29 target + map (pointer) P P P P P P
30 target + default map (scalar) P P P P P P
31 target + default map (struct) P P P P P P
32 target + private P RE P P P RE
33 target teams distribute device P P P P P P
34 target teams distribute + is device ptr P P P P P P
35 target teams distribute parallel for (defaultmap) RE P P P RE RE
36 target teams distribute parallel for + devices - RE P P P RE
37 target teams distribute parallel for + firstprivate P P P P P P
38 target teams distribute parallel for + if (no modifier) P P P P P P
39 target teams distribute parallel for + if (parallel modifier) RE P P P RE RE
40 target teams distribute parallel for + if (target modifier) P P P P P P
41 target teams distribute parallel for + map (default) P P P P P P
42 target teams distribute parallel for + map (to) RE P P P P P
43 target teams distribute parallel for + private P P P P P P
44 target teams distribute P P P P P P
45 target update + async P P P P P P
46 target update + devices - P P P RE RE
47 target update + from P P P P P P
48 target update + if P P P P P P
49 target update + to P P P P P P

Table 1: Level of support for multiple compilers and systems of OpenMP 4.5 offloading constructs. Passed(P) our tests, Com-
pilation Error(CE), and Runtime Error(RE)

1 i n t t e s t _map_dev i c e () {
2 i n t num_dev = omp_get_num_devices () , sum[num_dev] , e r r o r s = 0 ;
3 i n t ∗ h_matr ix = (i n t ∗) ma l l o c (num_dev ∗N∗ s i z e o f (i n t)) ;
4
5 f o r (i n t dev = 0 ; dev < num_dev ; ++dev) {
6 #pragma omp t a r g e t da t a map (from : h_matr ix [dev ∗N :N]) d e v i c e (dev)
7 {
8 #pragma omp t a r g e t map (from : h_matr ix [dev ∗N :N]) d e v i c e (dev)
9 {
10 f o r (i n t i = 0 ; i < N ; ++ i)
11 h_matr ix [dev ∗N + i] = dev ;
12 } / / end t a r g e t
13 } / / end t a r g e t da t a
14 }
15
16 / / check ing r e s u l t s
17 e r r o r s = 0 ;
18 f o r (i n t dev = 0 ; dev < num_dev ; ++dev) {
19 sum[dev] = h_matr ix [dev ∗N + 0] ;
20 f o r (i n t i = 1 ; i < N ; ++ i)
21 sum[dev] += h_matr ix [dev ∗N + i] ;
22 e r r o r s | = (dev ∗ N != sum[dev]) ;
23 }
24
25 r e t u r n e r r o r s ;
26 }

Code 1: Offloading computation to multiple devices

mapped in the outer target data region. All the test platforms (Ti-
tan (CCE 8.6.5), Summitdev (Clang 3.8, GCC 7.1.1, and XLC 13.1.6.1)
and Summit (Clang 3.8 and XLC 13.1.7)) could successfully handle
the decomposition and produce correct results.

5.2 Handling dependencies
The specification defines a task as any specific instance of exe-
cutable code and its data environment, which was generated when a
thread encountered a task, taskloop, parallel, target, or teams
construct [23]. Tasking constructs are important since they allow
a programmer to orchestrate the parallelism of an application by
expressing dependencies between its tasks. Code 2 shows a task
graph composed of host and target tasks that have dependencies
between each other. The resulting task graph is shown in Figure
3. First, the tasks defined in lines 6 and 10 are two host tasks that
initialize the input data and define their results as an output data
dependency using the clause depend(out: variable). Then, an op-
eration of data movement from the host to the device is performed

ICPP ’18 Comp, August 13–16, 2018, Eugene, OR, USA J. M. Diaz and S. Pophale et al.

Line 6
Init in_1

Line 10
Init in_2

Line 14
Target
enter
data

Line 19
Compute

array

Line 23
Target

exit data

Line 26
Sum
array

Host task

Target task

Figure 3: Task graph created by Code 2

using the asynchronous target enter data unstructured region
defined in line 14. The asynchronous behavior is specified using
nowait clause. In addition, line 17 specifies that the target task has
input dependencies for the variables in_1 and in_2 (i.e. depend(in
: in_1) and depend(in: in_2)). Finally, line 16 specifies that this
target task generates array h_array as an output dependency (i.e.
depend(out: h_array)).

Line 19 defines an asynchronous target region that performs
the computation on the device. This target region defines an in-
put/output dependency for the h_array variable using the depend(
inout: h_array). In terms of the input dependency this means that
the target region will wait until the task defined in line 14 is com-
pleted before starting its execution. It also means that the resulting
h_array is an output dependency of this task. Similarly, the nowait
clause specifies that the region will be executed asynchronously.

Line 23 specifies a data movement operation from the device
to the host using an asynchronous target exit data construct.
We specify an input dependency using the depend(inout: h_array).
This will ensure that the data is only moved once the computation
is done on the device. Also, as an output dependency, this means
that the host task in line 26 will not start until the data movement
is completed. Finally, we use the omp taskwait construct to signal
the runtime that execution of the program must wait until all the
tasks generated before this point are done.

Testing this on Summitdev led us to find that Clang produced in-
correct results, although Cray, GCC, and IBM XL compilers passed
the test. During the process of debugging, we determined that using
the nowait clause was the culprit. After discussions with repre-
sentatives of the OpenMP standard committee we were able to
verify that our interpretation of the dependencies between tasks
was correct. As a result, we filed a bug report with LLVM develop-
ers, providing a reproducible code of the error, the flags used for
compilation, the details about our testbed, and a description of the
faulty behavior. A possible workaround for this issue is to remove
the nowait clause. This implies that the code will be executed in a
serial fashion following the program execution order, which is not
the intent of a user that wants to exploit task parallelism.

1 doub le sum = 0 . 0 ;
2 doub le ∗ h_ar ray = (doub le ∗) ma l l o c (N ∗ s i z e o f (doub le)) ;
3 doub le ∗ in_1 = (doub le ∗) ma l l o c (N ∗ s i z e o f (doub le)) ;
4 doub le ∗ in_2 = (doub le ∗) ma l l o c (N ∗ s i z e o f (doub le)) ;
5
6 #pragma omp t a s k depend (out : i n_1) sha red (in_1)
7 { f o r (i n t i = 0 ; i < N ; ++ i)
8 i n_1 [i] = 1 ; }
9
10 #pragma omp t a s k depend (out : i n_2) sha red (in_2)
11 { f o r (i n t i = 0 ; i < N ; ++ i)
12 i n_2 [i] = 2 ; }
13
14 #pragma omp t a r g e t e n t e r da t a nowai t \
15 map (a l l o c : h_a r ray [0 :N]) map (to : i n_1 [0 :N]) \
16 map (to : i n_2 [0 :N]) depend (out : h_a r ray) \
17 depend (in : i n_1) depend (in : i n_2)
18
19 #pragma omp t a r g e t nowai t depend (i nou t : h_a r ray)
20 { f o r (i n t i = 0 ; i < N ; ++ i)
21 h_ar ray [i] = in_1 [i] ∗ in_2 [i] ; }
22
23 #pragma omp t a r g e t e x i t d a t a nowai t \
24 map (from : h_ar ray [0 :N]) depend (i nou t : h_a r ray)
25
26 #pragma omp t a s k depend (in : h_a r ray) \
27 sha red (sum , h_ar ray)
28 { f o r (i n t i = 0 ; i < N ; ++ i)
29 sum += h_ar ray [i] ; }
30
31 #pragma omp t a s kwa i t
32 e r r o r s = 2 . 0 ∗N != sum ;

Code 2: Testing a task graph with dependencies.

1 t y p ed e f s t r u c t node {
2 doub le da t a ;
3 s t r u c t node ∗ nex t ;
4 } node_t ;
5 vo id map_ l l (node_t ∗ head) {
6 i f (! head) r e t u r n ;
7 #pragma omp t a r g e t e n t e r da t a map (to : head [: 1])
8 whi l e (head−>next) {
9 / / Note : u s ing a r r ay d e r e f e r e n c e syntax , a r r ay s e c t i o n

on l e a f on ly
10 / / Attachment i s ∗ not ∗ e x p l i c i t l y gua ran t eed
11 #pragma omp t a r g e t e n t e r da t a map (to : head [0] . nex t [: 1])
12 #pragma omp t a r g e t
13 {
14 head−>next = cur ;
15 }
16 }
17 }
18
19 vo id unmap_l l (node_t ∗ head) {
20 i f (! head) r e t u r n ;
21 #pragma omp t a r g e t e x i t d a t a map (from : head [0] . d a t a)
22 whi l e (head−>next) {
23 / / Note : on ly c o p i e s back the da t a e lement to avo id

o v e rw r i t i n g nex t p o i n t e r
24 #pragma omp t a r g e t e x i t d a t a map (from : head [0] . nex t [0] . d a t a)
25 }
26 }

Code 3: Mapping linked list to device

5.3 Mapping linked-list to device
The linked list is a data structure very commonly used in HPC
applications. One potential way of mapping it to the device en-
vironment is shown in Code 3. The map_ll function (line 5) uses
target enter data directive to first map the head of the linked
list and subsequently the pointer to the next link using array deref-
erencing syntax. The unmap_ll (line 19) function explicitly copies
the data using map-type from with target exit data map.

A correct mapping of a linked list on the device with explicit
attachment is shown in Code 4. The code shows a correct way to
map andmodify a linked list on a device by using the target enter
data directive. The only downside is that the explicit mapping is
slower and not intuitive. Code 4 is part of a test that was devel-
oped from analyzing an ECP application that uses linked lists. The

Evaluating Support for OpenMP Offload Features ICPP ’18 Comp, August 13–16, 2018, Eugene, OR, USA

1 t y p ed e f s t r u c t node {
2 doub le da t a ;
3 s t r u c t node ∗ nex t ;
4 } node_t ;
5
6 vo id map_ l l (node_t ∗ head) {
7 i f (! head) r e t u r n ;
8 #pragma omp t a r g e t e n t e r da t a map (to : head [: 1])
9 whi l e (head−>next) {
10 / / Note : e x p l i c i t a t t a chment
11 node_t ∗ cur = head−>next ;
12 #pragma omp t a r g e t e n t e r da t a map (to : cur [: 1])
13 #pragma omp t a r g e t
14 {
15 head−>next = cur ;
16 }
17 }
18 }

Code 4: Explicitly mapping linked lists to device

function map_ll at line 6 accepts the head of the linked list as an
argument. The pointer is mapped to the device environment (line 8)
and then each node of the linked list is explicitly mapped using the
target enter data map (line 12). The unmap_ll function remains
unchanged. All the test platforms (Titan (CCE 8.6.5), Summitdev
(Clang 3.8, GCC 7.1.1, and XLC 13.1.6.1) and Summit (Clang 3.8 and
XLC 13.1.7)) could successfully handle creation, addition, deletion,
modification and traversal of linked lists.

5.4 Deep Copy
Code 5 is another test case derived from a full-scale ECP applica-
tion. It shows the use of declare target directive to ensure that
procedures and global variables can be executed and data can be
accessed on the device. When the C++ methods are encountered,
device-specific versions of the routines are created that can be called
from a target region. Deep copy is performed through the use of
target enter data (lines 43 and 44) by first mapping the class
and then the individual class members. This kernel failed to execute
correctly on Titan (CCE 8.6.5) but was correctly interpreted and
executed on Summitdev (Clang 3.8, GCC 7.1.1, and XLC 13.1.6.1)
and Summit (Clang 3.8 and XLC 13.1.7).

6 PERFORMANCE COMPARISON
Another aspect that is important for an OpenMP user is to under-
stand the overhead introduced by the translation between OpenMP
clauses and the actual code that runs on the machine. A compiler
that supports OpenMP directives implements an OpenMP runtime
that acts behind the scenes to provide the desired functionalities.
In the case of offloading, the OpenMP compiler translates the di-
rectives to device code and runtime calls. We look at the timing
overhead as it provides valuable information that, in conjunction
with the support status of OpenMP 4.5 clauses described in Section
4, helps the user decide on the appropriate compiler to use for their
particular application. As performance is key, timing also gives us
insights into the maturity of the implementations.

However, evaluating OpenMP runtime can be complicated espe-
cially when there is a lack of a standardized tools eco-system that
can report at the granularity of the runtime calls. For our work we
thus focus at the OpenMP directive level as we only intend to con-
trast the performance of different OpenMP implementations on the
same platform. We propose a indirect methodology to measure run-
time overhead for offloading clauses in OpenMP. This evaluation

1 # d e f i n e RealType doub le
2 # d e f i n e N 10
3
4 #pragma omp d e c l a r e t a r g e t
5 c l a s s MyVector
6 {
7 pu b l i c :
8
9 i n l i n e RealType op e r a t o r () (i n t i , i n t j , i n t k) c on s t
10 {
11 r e t u r n X[k+Length [2] ∗ (j +Length [1] ∗ i)] ;
12 }
13
14 i n l i n e RealType& ope r a t o r () (i n t i , i n t j , i n t k)
15 {
16 r e t u r n X[k+Length [2] ∗ (j +Length [1] ∗ i)] ;
17 }
18
19 MyVector (i n t l , i n t m, i n t n)
20 {
21 Length [0] = l ;
22 Length [1] = m;
23 Length [2] = n ;
24 X = new RealType [l ∗m∗ n] ;
25 }
26
27 RealType ∗& ge tDa ta () { r e t u r n X ; }
28
29 RealType ∗ ge tDa ta () c on s t { r e t u r n X ; }
30
31 i n t g e t S i z e () c on s t { r e t u r n Length [0] ∗ Length [1] ∗ Length [2] ;

}
32
33 i n t Length [3] ;
34 RealType ∗ X ;
35 } ;
36 #pragma omp end d e c l a r e t a r g e t
37
38 i n t main () {
39
40 MyVector gamma (N , N , N) ;
41 i n t s i z e = gamma . g e t S i z e () ;
42
43 #pragma omp t a r g e t e n t e r da t a map (to : gamma)
44 #pragma omp t a r g e t e n t e r da t a map (to : gamma . X [0 : s i z e]) map (to :

gamma . Length)
45
46 #pragma omp t a r g e t
47 f o r (i n t i = 0 ; i < N ; i ++)
48 f o r (i n t j = 0 ; j < N ; j ++)
49 f o r (i n t k = 0 ; k < N ; k++)
50 gamma (i , j , k) = 1 . 0 ;
51
52 #pragma omp t a r g e t e x i t d a t a map (from : gamma . X [0 : s i z e])
53
54 f o r (i n t i = 0 ; i < N ; i ++)
55 f o r (i n t j = 0 ; j < N ; j ++)
56 f o r (i n t k = 0 ; k < N ; k++)
57 cou t << gamma (i , j , k) << " . " ;
58 r e t u r n 0 ;
59 }

Code 5: Deep Copy of C++ class members

intends to provide an idea of the impact on the user code whenever
target constructs and each of its clauses have been used. Follow-
ing are some valid assumptions and observations when measuring
overheads at OpenMP directive level:

• Given the nature of offloading code to the device, there will
be some overhead inherent in the underlying system (e.g.
host-device interconnection, bandwidth). However, as long
as we are running on the same system we expect this system
overhead to be a constant across all implementations.

• It is not possible to make any decisions based on the ac-
tual timing numbers. These are for comparison purposes
only (same hardware different compilers). The expectation is
that the different results can provide an idea of the support
and maturity of a particular implementation. Depending on
which implementation has better support for the directives

ICPP ’18 Comp, August 13–16, 2018, Eugene, OR, USA J. M. Diaz and S. Pophale et al.

1 OMPVV_INIT_TEST ;
2 f o r (i = 0 ; i < NUM_REP ; i ++) {
3 OMPVV_START_TIMER ;
4 #pragma omp . . .
5 OMPVV_TEST_LOAD ; / / i f n e c e s s a r y
6 OMPVV_STOP_TIMER ;
7 OMPVV_REGISTER_TEST ;
8 }
9 OMPVV_PRINT_RESULT ;

Code 6: Overhead measurement testing methodology

used by their application, a user can choose one over the
other.

• To amortize the effect of memory transfers and kernel op-
erations we try to minimize their size and computational
complexity. Thus, the results we obtain should reflect the
code added by the compiler’s OpenMP runtime.

All of our tests have the structures presented in listing 6. Slight
modifications are applied depending on the nature of the construct
being tested. For example the firstprivate or the map clauses
require an extra variable.

The different parts of the tests preceded by OMPVV_ are
implemented in C macros to guarantee consistency. With
OMPVV_INIT_TEST the timer values, average, max and min are ini-
tialized. OMPVV_START_TIMER and OMPVV_STOP_TIMER do exactly
that. OMPVV_REGISTER_TEST adds the current time to the average
calculation as well as updates the max and the min. This process is
executed NUM_REP (that for our case is 1002 times). However we dis-
card the max and min values of all runs to remove possible outliers
in the data set. OMPVV_TEST_LOAD is applied to all the clauses that
require a region of code. Finally OMPVV_PRINT_RESULT reports
the average, maximum and minimum time for all the runs.

The C macros are translated to code that uses the
gettimeofday() available in the sys/time.h library which
has a resolution of µs .

We used Summitdev for the overhead calculation as it allowed
us to compare the larger number of compilers. We turn off all the
compiler optimizations using -O0 and -g. We discovered that each
compiler has a different way of calling the CUDA compiler. Using
the verbose mode we observed that GCC does not seem to call
the compiler directly, and it is not possible to infer the flags. Clang
uses ptxaswith these flags: -m64 -g --dont-merge-basicblocks
--return-at-end -v . Finally XLC calls nvcc with these flags: -g
-G -v. For this reason, we took the results for the target directive
shown in figure 4a, and we used nvprof to obtain the average exe-
cution time of each target region and removed it from the average
execution time of our experiments. This way we obtained figure
4b.

Under these conditions, there is a clear disadvantage when us-
ing GCC over Clang and XL running on Power8 architecture. We
believe that the former two compilers have better optimized imple-
mentations.It seems like XLC does not compile the kernel regions
without optimizations, as their execution time is an order of mag-
nitude lesser than xlc and GCC. We then see that clang and XLC
are mostly similar across most of the constructs.

Other interesting results include overhead measurements when
using the depend clause, execution times are much larger. It is
likely that the required synchronization mechanisms for this clause
comes with an additional cost. We also observe that using the

firstprivate clause is expensive; their execution time is double
compared to other clauses. The additional time is from mapping
scalar values.

7 RELATEDWORK
Related efforts include work that discusses the status of implemen-
tations of OpenMP 3.1 features and OpenACC 2.5 features with
different compilers [12, 30]. Such work has both highlighted am-
biguities in the specifications and reported compiler bugs thus
enabling application developers to be aware of the statuses of com-
pilers. Similarly [25] validates OpenSHMEM library API. This work,
in addition to feature tests, also provides micro-benchmarks that
can be used to analyze and compare performances of library APIs.
This is of special interest when targeting different OpenSHMEM li-
brary implementations on varying hardware configurations. Work
in [15, 16] presents validations of implementations of OpenMP
2.0 features, which was further extended and improved in [29] to
develop a more robust OpenMP validation suite and provided up-
to-date test cases covering all the features until OpenMP 3.1. Since
2013, OpenMP can support heterogeneous platforms and the speci-
fication was extended with newer features to offload computation
to target platforms.

The parallel testsuite [6] chooses a set of routines to test the
strength of a computer system (compiler, run-time system, and
hardware) in a variety of disciplines with one of the goals being to
compare the ability of different Fortran compilers to automatically
parallelize various loops. The Parallel Loops test suite is modeled
after the Livermore Fortran kernels [14]. Overheads due to synchro-
nization, loop scheduling and array operations are measured for
the language constructs used in OpenMP in [26]. Significant differ-
ences between the implementations are observed, which suggested
possible means of improving future performance. A microbench-
mark suite was developed to measure the overhead of the task
construct introduced in the OpenMP 3.0 standard, and associated
task synchronization constructs [3].

Other related efforts to building a testsuite include Csmith [31],
a comprehensive, well-cited work where the authors perform a
randomized test-case generator exposing compiler bugs using dif-
ferential testing. Such an approach is quite effective to detecting
compiler bugs but does not quite serve our purpose since it is hard
to automatically map a randomly generated failed test to a bug
that actually caused it. Thus we could say that our approach is
complimentary to that of Csmith’s approach. LLVM has a testing
infrastructure [13] that contains regression tests and whole pro-
grams. The regression tests are expected to always pass and should
be run before every commit. These are a large number of small
tests that tests various features of LLVM. The whole program tests
are referred to as the LLVM testsuite. The tests itself are driven by
lit testing tool, which is part of LLVM. The LLVM testsuite itself
does not contain any OpenMP accelerator tests excepting a very
few tests on offloading and tasking.

8 CONCLUSION AND FUTUREWORK
As we move to the CPU+device model, OpenMP’s offloading capa-
bilities will become more critical for an application to scale over fat
nodes. Our detailed analysis on the support provided by different

Evaluating Support for OpenMP Offload Features ICPP ’18 Comp, August 13–16, 2018, Eugene, OR, USA

504.74

504.32

1,001.95

504.32

1,002.60

504.26

504.16

530.71

504.99

545.34

553.08

31.50

30.94

32.75

31.63

34.57

31.19

31.52

30.53

30.50

43.17

48.71

11.87

11.80

116.26

14.12

11.83

12.55

11.79

11.80

11.82

17.57

22.33

0 200 400 600 800 1000 1200

[target]

[target_defaultmap]

[target_dependvar]

[target_device]

[target_firstprivate]

[target_private]

[target_if]

[target_is_device_ptr]

[target_map_to]

[target_map_from]

[target_map_tofrom]

Time (μs)XLC CLANG GCC

(a) target directive

494.24

493.67

988.54

493.94

988.1

493.3

493.78

520.64

494.28

534.6

541.51

11.76

11.09

11.65

11.93

13.54

12.85

12.68

12.14

12.2

20.33

25.5

10.49

10.43

114.89

12.74

10.46

10.96

10.42

10.42

10.45

15.98

20.95

0 200 400 600 800 1000 1200

[target]

[target_defaultmap]

[target_dependvar]

[target_device]

[target_firstprivate]

[target_private]

[target_if]

[target_is_device_ptr]

[target_map_to]

[target_map_from]

[target_map_tofrom]

Time (μs)XLC CLANG GCC

(b) target directive no device region

347.04

337.33

337.42

0.04

337.10

337.36

10.96

0.18

0.18

0.03

0.17

54.83

10.47

0.14

0.14

0.03

0.14

54.48

0 100 200 300 400

[target_enter_data_map_to]

[target_enter_data_map_alloc]

[target_enter_data_map_if_true]

[target_enter_data_map_if_false]

[target_enter_data_map_device]

[target_enter_data_map_depend]

Time (μs)XLC CLANG GCC

(c) target enter data directive

175.59

160.55

160.45

0.03

160.41

160.38

17.15

0.21

0.19

0.03

0.19

52.96

14.31

0.15

0.16

0.02

0.16

54.20

0 50 100 150 200

[target_exit_data_map_from]

[target_exit_data_map_delete]

[target_exit_data_map_if_true]

[target_exit_data_map_if_false]

[target_exit_data_map_device]

[target_exit_data_map_depend]

Time (μs)XLC CLANG GCC

(d) target exit data directive

7.58

7.31

0.03

7.30

7.29

13.29

13.26

0.03

13.18

13.29

10.87

10.85

0.03

10.91

75.59

13.99

12.05

0.03

12.06

117.66

10.52

10.42

0.02

10.46

115.33

13.33

11.75

0.02

11.69

115.67

0 50 100 150

[target_update_to]

[target_update_to_if_true]

[target_update_to_if_false]

[target_update_to_device]

[target_update_to_depend]

[target_update_from]

[target_update_from_if_true]

[target_update_from_if_false]

[target_update_from_device]

[target_update_from_depend]

Time (μs)XLC CLANG GCC

(e) target update directive

493.67

498.83

506.83

506.47

506.76

11.30

12.56

23.25

23.11

23.05

10.88

12.00

22.21

22.18

22.19

0 100 200 300 400 500 600

[target_data_map_to]

[target_data_map_from]

[target_data_map_tofrom]

[target_data_device]

[target_data_if]

Time (μs)XLC CLANG GCC

(f) target data directive

Figure 4: Overhead measurement results

OpenMP compiler implementations available for HPC applications
gives insights into the maturity of these implementations as well as
the ambiguities with respect to interpreting description of language

features within the OpenMP specification. A by-product of this ex-
ercise is a collection of feature and performance tests segregated by
the device construct that are a good foundation for a validation and
verification testsuite. As next versions of the OpenMP specification

ICPP ’18 Comp, August 13–16, 2018, Eugene, OR, USA J. M. Diaz and S. Pophale et al.

(OpenMP 5.0) will have a significant overlap, these tests any be
valid as is or with some minor edits. We also see these tests as a
resource for OpenMP users. Although there is a official resource
for OpenMP 4.5 examples [2], the examples are not exhaustive in
their coverage of directives in combination with all possible clauses
defined in the specification. We also try to capture common cases
that we believe might be prone to implementation errors or that
are important to applications. Some of these cases are derived from
large scale applications to test the common usage of OpenMP con-
structs, which may be using a combination of OpenMP directives
and clauses. We also discuss overheads associated with different
directives across their implementations prevalent on different plat-
forms that we have access to. Although the majority of our current
set of tests are implemented in C and C++, we plan to have Fortran
versions in the near future.

We aim to make the our tests publicly available for anyone to use.
Going forward, we also plan to interact with standard benchmark-
ing bodies like SPEC/HPG that released SPEC ACCEL V1.0 [9–11]
to donate our tests and kernels for potential inclusion in the next
release versions of SPEC OMP and SPEC ACCEL. Discussions are
underway to eventually make the tests available as an official ARB
testsuite. These tests will be used for acceptance testing in various
facilities such as ORNL, LLNL, ANL to ensure the stability, per-
formance, and functionality of future platforms at their respective
locations.

9 ACKNOWLEDGEMENTS
This material is based upon work supported by the U.S. Department
of Energy, Office of Science, the Exascale Computing Project (17-SC-
20-SC), a collaborative effort of the U.S. Department of EnergyOffice
of Science and the National Nuclear Security Administration under
contract number DE-AC05-00OR22725. We would also like to thank
Tom Scogland from Lawrence Livermore National Laboratory for
his contributions of OpenMP offloading usage in ECP applications
and Hal Finkel from Argonne National Laboratory for his valuable
input.

REFERENCES
[1] [n. d.]. NVIDIA Thrust. https://developer.nvidia.com/thrust. ([n. d.]). Accessed:

2017-02-03.
[2] OpenMP Architecture Review Board. [n. d.]. OpenMP Application Programming

Interface. http://www.openmp.org/wp-content/uploads/openmp-examples-
4.5.0.pdf. ([n. d.]).

[3] J Mark Bull, Fiona Reid, and Nicola McDonnell. 2012. A microbenchmark suite
for openmp tasks. In International Workshop on OpenMP. Springer, 271–274.

[4] MP Clay, D Buaria, PK Yeung, and T Gotoh. 2018. GPU acceleration of a petascale
application for turbulent mixing at high Schmidt number using OpenMP 4.5.
Computer Physics Communications 228 (2018), 100–114.

[5] M. P. Clay, D. Buaria, and P. K. Yeung. 2017. Improving Scalability and Accelerat-
ing Petascale Turbulence Simulations Using OpenMP. http://openmpcon.org/
conf2017/program/. (2017). To Appear.

[6] Jack Dongarra, Mark Furtney, Steve Reinhardt, and Jerry Russell. 1991. Parallel
Loops?A test suite for parallelizing compilers: Description and example results.
Parallel Comput. 17, 10-11 (1991), 1247–1255.

[7] H Carter Edwards, Christian R Trott, and Daniel Sunderland. 2014. Kokkos:
Enablingmanycore performance portability through polymorphicmemory access
patterns. J. Parallel and Distrib. Comput. 74, 12 (2014), 3202–3216.

[8] Jose Monsalve Diaz, Swaroop Pophale,Oscar Hernandez, David Bernholdt, and
Sunita Chandrasekaran. [n. d.]. OpenMP 4.5 Validation and Verification Suite.
https://crpl.cis.udel.edu/ompvvsollve/. ([n. d.]).

[9] Guido Juckeland, William Brantley, Sunita Chandrasekaran, Barbara Chapman,
Shuai Che, Mathew Colgrove, Huiyu Feng, Alexander Grund, Robert Henschel,
Wen-Mei W Hwu, et al. 2014. SPEC ACCEL: a standard application suite for

measuring hardware accelerator performance. In International Workshop on Per-
formance Modeling, Benchmarking and Simulation of High Performance Computer
Systems. Springer, 46–67.

[10] Guido Juckeland, Alexander Grund, and Wolfgang E Nagel. 2015. Performance
portable applications for hardware accelerators: lessons learned from SPEC
ACCEL. In Parallel and Distributed Processing Symposium Workshop (IPDPSW),
2015 IEEE International. IEEE, 689–698.

[11] Guido Juckeland, Oscar Hernandez, Arpith C Jacob, Daniel Neilson, Verónica
G Vergara Larrea, Sandra Wienke, Alexander Bobyr, William C Brantley, Sunita
Chandrasekaran, Mathew Colgrove, et al. 2016. From describing to prescribing
parallelism: Translating the SPEC ACCEL OpenACC suite to OpenMP target
directives. In International Conference on High Performance Computing. Springer,
470–488.

[12] GrahamLopez Kyle Friedline, Sunita Chandrasekaran and Oscar Hernandez. [n.
d.]. OpenACC 2.5 Validation Testsuite targeting multiple architectures. In
Proceedings of P3MA Workshop co-located with ISC 2017 ([n. d.]). To appear.

[13] LLVM. [n. d.]. LLVM Testing Infrastructure Guide. http://www.llvm.org/pre-
releases/4.0.0/rc2/docs/TestingGuide.html#test-suite. ([n. d.]).

[14] Frank H McMahon. 1986. The Livermore Fortran Kernels: A computer test of the
numerical performance range. Technical Report. Lawrence Livermore National
Lab., CA (USA).

[15] Matthias Müller and Pavel Neytchev. 2003. An openmp validation suite. In Fifth
European Workshop on OpenMP, Aachen University, Germany.

[16] Matthias S Müller, Christoph Niethammer, Barbara Chapman, YiWen, and Zheny-
ing Liu. 2004. Validating OpenMP 2.5 for fortran and c/c++. In Sixth European
Workshop on OpenMP, KTH Royal Institute of Technology, Stockholm, Sweden.

[17] NVIDIA. [n. d.]. CUDA SDK Code Samples. http://developer.nvidia.com/cuda-
cc-sdk-code-samples. ([n. d.]). Accessed: 2017-02-03.

[18] Oak Ridge National Lab. [n. d.]. Ascending to Summit: Announcing Summit-
dev. https://www.olcf .ornl.gov/2017/02/28/ascending-to-summit-announcing-
summitdev/. ([n. d.]).

[19] Oak Ridge National Lab. [n. d.]. Summit. https://www.olcf .ornl.gov/olcf-
resources/compute-systems/summit/. ([n. d.]).

[20] Oak Ridge National Lab. [n. d.]. Titan supercomputer. https : / /
www.olcf .ornl.gov/titan/. ([n. d.]).

[21] OpenACC. [n. d.]. OpenACC, Directives for Accelerators. http : / /
www.openacc.org/. ([n. d.]).

[22] OpenCL. [n. d.]. OpenCL. https://www.khronos.org/. ([n. d.]).
[23] OpenMP. [n. d.]. OpenMP 4.5 Specification. http://www.openmp.org/wp-

content/uploads/openmp-4.5.pdf. ([n. d.]).
[24] OpenMP. [n. d.]. OpenMP Compilers. http://www.openmp.org/resources/

openmp-compilers/. ([n. d.]).
[25] Swaroop Suhas Pophale, Anthony Curtis, Barbara Chapman, and Stephen Poole.

2013. Poster: Validation and Verification Suite for OpenSHMEM. In Proceedings
of the Seventh Conference on Partitioned Global Address Space Programming Model
(PGAS 2013). 257,258.

[26] Fiona JL Reid and J Mark Bull. 2004. Openmp microbenchmarks version 2.0. In
Proc. EWOMP. 63–68.

[27] David F Richards, Ryan C Bleile, Patrick S Brantley, Shawn A Dawson,
Michael Scott McKinley, and Matthew J O?Brien. 2017. Quicksilver: A Proxy App
for the Monte Carlo Transport Code Mercury. In Cluster Computing (CLUSTER),
2017 IEEE International Conference on. IEEE, 866–873.

[28] Top500. [n. d.]. Global Supercomputing Capacity Creeps Up as Petascale Sys-
tems Blanket Top 100. https://www.top500.org/news/global-supercomputing-
capacity-creeps-up-as-petascale-systems-blanket-top-100/. ([n. d.]).

[29] Cheng Wang, Sunita Chandrasekaran, and Barbara Chapman. 2012. An openmp
3.1 validation testsuite. In International Workshop on OpenMP. Springer, 237–249.

[30] Cheng Wang, Rengan Xu, Sunita Chandrasekaran, Barbara Chapman, and Oscar
Hernandez. 2014. A validation testsuite for OpenACC 1.0. In Parallel & Distributed
Processing Symposium Workshops (IPDPSW), 2014 IEEE International. IEEE, 1407–
1416.

[31] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and under-
standing bugs in C compilers. In ACM SIGPLAN Notices, Vol. 46. ACM, 283–294.

https://developer.nvidia.com/thrust
http://www.openmp.org/wp-content/uploads/openmp-examples-4.5.0.pdf
http://www.openmp.org/wp-content/uploads/openmp-examples-4.5.0.pdf
 http://openmpcon.org/conf2017/program/
 http://openmpcon.org/conf2017/program/
https://crpl.cis.udel.edu/ompvvsollve/
http://www.llvm.org/pre-releases/4.0.0/rc2/docs/TestingGuide.html#test-suite
http://www.llvm.org/pre-releases/4.0.0/rc2/docs/TestingGuide.html#test-suite
http://developer.nvidia.com/cuda-cc-sdk-code-samples
http://developer.nvidia.com/cuda-cc-sdk-code-samples
https://www.olcf.ornl.gov/2017/02/28/ascending-to-summit-announcing-summitdev/
https://www.olcf.ornl.gov/2017/02/28/ascending-to-summit-announcing-summitdev/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.olcf.ornl.gov/titan/
https://www.olcf.ornl.gov/titan/
http://www.openacc.org/
http://www.openacc.org/
https://www.khronos.org/
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/resources/openmp-compilers/
http://www.openmp.org/resources/openmp-compilers/
https://www.top500.org/news/global-supercomputing-capacity-creeps-up-as-petascale-systems-blanket-top-100/
https://www.top500.org/news/global-supercomputing-capacity-creeps-up-as-petascale-systems-blanket-top-100/

	Abstract
	1 introduction
	2 Offloading in OpenMP 4.5
	3 Experimental Setup
	4 Support for OpenMP 4.5 Offloading
	5 Support for Applications kernels
	5.1 Offloading to multiple devices
	5.2 Handling dependencies
	5.3 Mapping linked-list to device
	5.4 Deep Copy

	6 Performance Comparison
	7 Related work
	8 Conclusion and Future Work
	9 Acknowledgements
	References

