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Abstract—The eccentricity of a vertex is defined as the length
of the longest shortest path to any other vertex. While eccen-
tricity is an important measure of vertex centrality, directly
computing exact eccentricity for all vertices on large-scale graphs
is prohibitively costly. Takes and Kosters proposed an iterative
algorithm that uses multiple runs of single-source shortest path
(SSSP) to compute lower and upper bounds on eccentricity at
every vertex [1]. Their technique converges to exact eccentricity
by performing SSSP from only a small percentage of vertices,
when sources are efficiently selected. However, their source
selection strategies do not always yield rapid convergence.

We propose a pincer movement source selection algorithm
that efficiently selects source vertices based on analysis of the
lower and upper bounds produced by SSSP. We also leverage
k-BFS, which runs breadth-first search (BFS) from multiple
sources concurrently on HavoqGT, a high performance vertex-
centric message-passing graph processing framework [2], [3], to
achieve an additional significant performance improvement on
distributed-memory systems.

We demonstrate that our novel source vertex selection strategy
has better performance on various real-world graph datasets
compared with the previous strategy [1]. In addition, we compute
exact eccentricity for graphs with more than 1000 x more edges
(112B undirected edges) than graphs in the previous literature

(1], [4].

I. INTRODUCTION

The eccentricity €(i) of a vertex ¢ is defined as the longest
shortest path from ¢ to any other vertex and can be computed
directly by running a single-source shortest-path (SSSP) al-
gorithm from ¢. Vertex eccentricity has been considered as
an important metric of vertex centrality and is well-studied
[S] — its applications include tissue characterization and
classification in biology [6] and analyzing chemical structures
[71, [8]. The exact eccentricity of all vertices in an unweighted
graph can be computed by performing breadth-first search
(BFS) from all vertices in a graph. However, the computation
time of such a naive approach is not acceptable for large-
scale graphs (direct computation is O(|V|*|E|) on unweighted
graphs). Takes and Kosters proposed an iterative algorithm that
bounds €(7) to avoid executing BFS from every vertex in a
graph [1]. The algorithm utilizes values achieved after running
each BFS to update all vertices’ lower and upper bounds,
and the heuristic for BFS source selection is critical for rapid
convergence to €(i). The current source selection strategies
are non-optimal for some datasets (see Section V-C) and we
develop theory that informs our source selection algorithm in
Appendix A.

We propose a novel source selection strategy which is
designed for selecting efficient source vertices based on theory
and detailed observations of the behavior of the bounding
algorithm. The intuitive idea of our pincer movement' (PM)
source selection strategy is that it attempts to select non-
redundant source vertices in the graph periphery, and as well
those near the graph core, in order to efficiently accomplish
correct lower and upper bounds of many vertices by attacking
from all sides. In Section IV, we first illustrate the properties
of important vertices that would deliver the correct lower
or upper bounds for large sets of vertices. Additionally, we
describe details about the strategies to select those vertices
efficiently by utilizing heuristic scores without causing any
notable overhead.

In addition, we leverage k-BFS (also called multi-source
BFS), which conducts BFS from multiple £ sources simulta-
neously [4], [9]-[12]. When processing massive-scale graphs,
using distributed-memory systems is common since it needs
large amount of main memory capacity and computing power.
The vertex-centric message-passing is a popular models for
distributed memory graph processing [13], [14], and more
mentioned in [15]. We utilize the idea of £-BFS in a vertex-
centric framework to reduce the number of total messages for
additional performance improvements. We implement k-BFS
in HavoqGT, a high performance vertex-centric and message-
passing graph processing framework [2], [3].

We demonstrate that our PM strategy outperforms the origi-
nal source selection strategy combined with £-BFS (TK-k) by
up to 3x speed up and 1.66x on average on various real-world
graph datasets. We also found that there is a real-graph dataset
for which TK-k does not efficiently select source vertices but
PM does. Using our efficient source selection strategy and
k-BFS, we were able to compute exact eccentricity in graphs
with up to 112 billion edges; to our knowledge, this is more
than three orders of magnitude larger than graphs in previous
studies.

II. PRELIMINARIES

We denote a graph by G(V, E), where V is the set of n
vertices and FE is the set of m edges, pair-wise relationships
of the form (4, j) for 4, j € V. In this work, we assume G is
undirected, (i,j) € E iff (4,1) € E, G has no self-loop edges,

Uhttps://en.wikipedia.org/wiki/Pincer_movement



(i,1) ¢ E forany ¢ € V, and G is unweighted. To simplify the
rest of description, we only consider connected graphs where
all vertices in a graph are reachable from other vertices by a
sequence of connected edges. The distance d(v,w) between
two vertices v,w € V is defined as the length of a shortest
path between v and w.

A. Eccentricity
The eccentricity e(v) of a vertex v € V' is

e(v) := Iﬁé“’}{d(”’w)}‘ (1)
The diameter diam(G) of a graph G is given by diam(G) =
max,cy €(v).

We can compute €(v) by running a single source shortest
path (SSSP) algorithm with v as the source. A naive approach
to computing exact eccentricity for all vertices is performing
SSSP from all vertices (known as all-pairs shortest path).
Given the assumption G is unweighted, we can use faster
algorithms such as breadth-first search (BFS). Performing BFS
from all vertices takes O(nm) time as the time complexity of
a single BFS is O(m). While significant prior research has
enabled large-scale BFS [16]-[20], driven in large part by
Graph500 list [21], it is not realistic to perform BFS from
all vertices on large-scale graphs.

B. Eccentricity Bounds

In order to avoid computing SSSP from every vertex, an
algorithm that produces lower/upper bounds on eccentricity
was proposed by Takes and Kosters [1]. If we run SSSP from
a vertex s, then we know €(s) and d(s, w) for any other vertex
w € V. Then, we have the following lower/upper bounds

L) .= max {e(s) — d(s,w), d(s,w) }, (2)

e(w) >
< U = e(s) +d(s,w). (3)

Note that for any one source s, Lq(jjS ) < Ul(us ) for any w # S.
The basic approach is to run SSSP from a subset of vertices,
S = {s1, 82,...}, and iteratively update the best lower and
upper bounds

Loy max{Lw, L) } Uy min{Uw, Uss) }

When L,, = U,, we say vertex w is solved.

We observe that for a non-source vertex w to be solved
there must be a pair of source vertices sp,sy such that
L3 = U We detail the implications of this observation
in Appendix A, but summarize the main conclusions here.
Figure 1 is an intuitive illustration of the configurations where
Algorithm 1 solves a vertex w. A furthest vertex from w is
denoted with a prime (i.e. w’).

(a) Lower Bound Is Correct. There are two patterns where
the correct lower bound of vertex w is obtained by Algo-
rithm 1. First pattern (I) is that SSSP is performed from a
furthest vertex of w, that is, s;, = w’ and L., = d(sr, w).
Another pattern (II) is that SSSP is performed from a
vertex which shares a common furthest vertex with w and
a shortest path from the source to the furthest vertex that

Ly, = d(s,w)
asow = C2 1, = e~ ats,w)

\ ;v
\\—’/

(a) Cases Where Correct Lower Bound Is Delivered

Uy = d(sy,w)-€(sy)

O

(b) Case Where Correct Upper Bound Is Delivered

Fig. 1. Intuitive Ideas of Eccentricity Lower and Upper Bounds

goes through w exists, i.e., L, = €(s) — d(sp,w). To
meet with this pattern, d(sy,,w) must be equal to or less
than 6(52—”; otherwise sy, and w can not have a common
furthest vertex.

Note that this situation also demonstrates where redun-
dant sources may occur: there could be other vertices on
the left side of s;, for which a shortest path to w’ goes
through w. Thus, when SSSP is performed from those
vertices, the correct lower bound of w is also delivered.

(b) Upper Bound Is Correct. There is only one pattern
where the correct upper bound of vertex w is obtained.
The correct upper bound of w is delivered when SSSP is
performed from a vertex which shares a common furthest
vertex with w and is in between vertex w and the furthest
vertex. The correct upper bound U,, of w is equal to
d(sy,w) + €(sy)

Pseudocode for a serial algorithm that computes eccentricity
via lower and upper bounds is given in Algorithm 1. We first
initialize L and U, arrays for eccentricity lower and upper
bounds of all vertices, with 0 and oo, respectively (lines 1
— 4). Next a SSSP source vertex s is selected from the set
of unsolved vertices W (line 7) and SSSP is performed to
achieve distances to the other vertices in G(V, E)) from s (line
8). The eccentricity of vertex s is achieved and s is removed
from the set of unsolved vertices W (line 9). Then, we apply
Equations (2) and (3) to all unsolved vertices (lines 11 — 12).
If a vertex is solved, it is removed from the set of unsolved
vertices W (line 14). Repeat lines 6 — 17 until the set of
unsolved vertices W becomes empty.

C. Interchanging Eccentricity Bounds Source Selection Strat-
egy

By utilizing the eccentricity of a SSSP source vertex to
solve other vertices’ eccentricity, Algorithm 1 may drastically
reduce the number of SSSPs to achieve the exact eccentricity
of all vertices in a graph. However, selecting proper source
vertices is critical for optimality.



Input: G(V, E)
Output: ¢ {Array of all eccentricity of v € V'}
: for all v € V do
Liv] < 0 {L is an array for lower bounds}
Ulv] < oo {U is an array for upper bounds}
end for
: W+« V {W is a set of unsolved vertices}
while W £ () do
s < SELECTSOURCE(W)
ds < SSSP(G, s) {Get distances from s to all other
vertices }
9:  ¢[s] « MAX(dy), W + W\ {s}
10: for all w € W do

X DN A RN

11: L{w] + MAX(L[w], €[s] — ds[w], ds[w])
12: Ulw] + MIN(U[w], €[s] + ds[w])

13: if L{w] = U[w] then

14: W W \ {w}

15: end if

16:  end for
17: end while

Algorithm 1: ECCENTRICITY BOUNDS ALGORITHM [1]

Takes and Kosters proposed to select SSSP sources using
the lower bound, upper bound, and degree of vertices based on
their other work regarding graph diameter [22]. Specifically,
the algorithm alternately selects source vertices with the small-
est lower bound and the highest upper bound at each iteration;
when two vertices have the same lower or upper bound, degree
is used to break ties.

D. Optimization Technique for Single-Degree Vertices

To reduce the number of iterations required in Algorithm 1,
Takes and Kosters also proposed an optimization technique
for single degree vertices [1]. Let v be a vertex which has
only one edge, and let w be the parent, the single vertex that
is connected to v. As paths from vertex v go through vertex
w to access other vertices in the graph, the eccentricity of
vertex v is automatically determined as e(v) = e(w)+ 1. After
the eccentricity of a source vertex is achieved by performing
SSSP, this technique is applied for all single degree vertices
the source vertex has (this routine can be inserted between
line 9 and 10 in Algorithm 1).

ITII. K-SOURCES BREADTH-FIRST SEARCH (k-BFS) ON
DISTRIBUTED-MEMORY

Along with using the eccentricity bound algorithm, in
this section, we describe another key technique, k-BFS, to
accelerate computing eccentricity.

Due to the high demands for performing analysis on massive
real-world graphs, there has been much recent work on graph
processing frameworks in distributed computing systems. To
leverage those studies, we design our eccentricity computing
algorithm targeting vertex-centric message-passing communi-
cation model, which is a popular graph processing computation
and communication model widely used in many frameworks

such as Pregel [13], Giraph [14], and HavoqGT [3]. Vertex-
centric graph processing is represented as a message exchange
between adjacent vertices — each vertex sends/receives mes-
sages to/from its neighbor(s) as the core algorithmic operation.
In such frameworks, reducing the number of messages is
important to accelerate graph processing workloads.

Aiming at earning another significant performance improve-
ment for BFS on such graph processing frameworks, we lever-
age k-BFS (also known as multi-source BFS), which conducts
BFS from k sources simultaneously. When a vertex is visited
by multiple different source vertices at the same level (the
distance from a source vertex), messages that will be sent from
the vertex to its neighbors can be aggregated. Specifically, each
message holds the visit information of multiple source vertices.
The visit information consists of flags denoting which sources
have visited the vertex, represented as a bitmap for memory
and message compactness.

A. Pseudocode

In order to fully utilize the advantage of k-BFS, we use
level-synchronous BFS, where all vertices in level [ are visited
before visiting any vertices in level [ + 1. A pseudocode of
a level-synchronous k-BFS algorithm with a vertex-centric
message-passing communication framework is described in
Algorithm 2.

As the pseudocode is designed for a distributed-memory
framework, we assume that G(V,E) is distributed across
multiple processes; to simplify the pseudocode, we assume
that each vertex is assigned to only one process, and all edges
of a vertex are stored in the same process where the vertex is
assigned. The pseudocode takes G(V, E) and k BFS source
vertices. A function LOCAL(input_set) returns a set of vertices
assigned to the process from the input_set argument.

At the beginning, variables visited and distance are initial-
ized (line 1 — 6) to oo. Next, variables visited and distance
for the source vertices assigned to each process are initialized
(line 7 — 10): each source vertex is marked as “visited” by
itself, and the distance from itself is set as 0. At line 11, a
set of frontier vertices frontier is initialized with the source
vertices assigned to each process. Line 13 is the beginning of
the main loop; global_bfs_termination_check(frontier) returns
true when variables frontier in all process are empty, that is,
there are no vertices to be visited. Line 14 — 18 are a scatter
step; vertices in frontier send messages to their neighbors to
visit. Each message is initialized with its destination vertex
n and visited information visited[v] of vertex v which the
message is sent from. Line 19 — 28 are for a visit step where
processes receive messages from its neighbors. At line 22, it
checks whether destination vertex dv has visited by source
vertex s. If dv has not yet visited by s, we update the visit
information of dv and put it into the next frontier (line 23 —
25). At line 31, we synchronize all processes before moving
to the next level.



Input: G(V, E)
Input: sources {BFS k source vertices}
Output: distance {2D array of distances from source ver-
tices}
1: for all v € LOCAL(V) do
2:  visited[v] < 0
3 for all s € sources do
4 distance[Vv][s] < oo
5. end for
6: end for
7: for all s € LOCAL(sources) do
8:  visited[s] < visited[s] U s
9:  distance[s][s] <+ O
10: end for
11: frontier +— LOCAL(sources)
12: level «+ 1
13: while not global_bfs_termination_check(frontier) do
14 for all v € frontier do

15: for all n € neighbor[v] do
16: SEND(msg_queue, n, visited[v])
17: end for

18:  end for
19:  for all msg € RECEIVE(msg_queue) do

20: dv < msg.destination_vertex

21: for all s € msg.visited do

22: if s ¢ visited[dv] then

23: visited[dv] < visited[dv] U s
24: distance[dV][s] < level

25: next U {dv}

26: end if

27: end for

28:  end for

29:  frontier < next
30:  level < level +1
31:  global_sync()

32: end while

Algorithm 2: Pseudocode of Level-synchronous k-BFS on a
Vertex-centric Message-passing Communication Framework

B. Space Complexity

Compared with a single source (conventional) BFS, k-BFS
requires more memory for the following two data structures:

e Message. To propagate by which source vertices the
vertex was visited at the level, k bits of additional space
is used.

« Distance array. To store the distances from each source
vertex to other vertices, the length of the array is |V|k
(10 — 16 bits would be enough for each element in many
real-world graphs).

IV. PINCER MOVEMENT SOURCE SELECTION ALGORITHM

In this section, we propose the pincer movement (PM)
source selection strategy which is designed for selecting
efficient source vertices based on the theory in Appendix A
and the detailed observations of the behavior of the bounding

algorithm described in Section II-B. First we illustrate the
properties of important vertices that would deliver the correct
lower or upper bounds for large sets of vertices. We describe
the details about our strategies to select those important
vertices efficiently.

A. Important Vertices To Achieve Correct Lower and Upper
Bounds

1) For Lower Bound: For a vertex w whose lower bound
is not yet correct, there are two types of source vertices that
deliver the correct lower bound of w as illustrated in Figure 1:
(I) furthest vertices of w; (II) vertices that shares a common
furthest vertex with w and have a shortest path to the furthest
vertex that goes through w. However, due to the following
two reasons, we consider furthest vertices (type I) as the most
important vertices and select them with the highest priority.

o There are many graph structures that make it obvious that
furthest vertices should be selected as source vertices.
For example, to achieve the correct lower bound of a
single degree vertex, SSSP has to be started from either
the vertex itself or one of its furthest vertices. Given the
well known observation that many single degree vertices
are found in real-world graphs, selecting furthest vertices
is highly beneficial since it is common that multiple
unsolved vertices share a common furthest vertex.

o As it has been reported in many studies (for example in
[23]), it is likely that real world graphs have long tails
and/or skewed structures; accordingly, we believe that the
number of those furthest vertices is considerably smaller
than the number of total vertices in the graph. Moreover,
if this expectation is true, we can find furthest vertices
without any additional heavy work by using the results
of previous BFS.

It is less straight-forward to directly and efficiently choose
source vertices of type II for a large set of unsolved vertices.

2) For Upper Bound: The correct upper bound of vertex w
is delivered when SSSP is performed from a vertex situated
in between w and a common furthest vertex with w (see the
illustration at the bottom of Figure 1). Let W be a set of
vertices that share a common furthest vertex w’; to maximize
the number of vertices that achieve correct upper bounds, the
priority of each vertex w € W must be the inverse of the
distance to w’.

B. Source Selection Strategies

Here we describe details about the source selection strate-
gies we designed to efficiently select such important vertices
by utilizing heuristic scores without causing any notable
overhead.

1) Selecting Non-Redundant Furthest Vertices: After run-
ning k-BFS, we can easily get the list of furthest vertices
of the source vertices. However, we need to take care of
redundant vertices that share the exact or almost equal shortest
paths for other further vertices. Figure 2 shows an example
of redundant vertices. Let the three vertices on the far right
be furthest vertices of vertex w. In this example, two of the



three vertices are considered as redundant vertices. This is a
common phenomena we have observed in many large, real-
world graphs.

Fig. 2. Example of Redundant Furthest Vertices

However, it is not easy to determine whether multiple
furthest vertices are sharing similar shortest paths; therefore,
we take a heuristic approach to remove such redundant vertices
S0 as to not cause any notable overhead. We select only one
furthest vertex for each source vertex by comparing hash
values of the furthest vertices. In addition, we remove the
furthest vertices which have selected before — note that even
if the exact eccentricity of a vertex is already solved, it is still
one of candidates of source vertices. By applying this filter,
we will achieve less than or equal to k source vertices for the
next k-BFS.

2) Selecting Central Vertices: When the number of selected
furthest vertices is less than k, we select the remaining source
vertices as follows. We combine the following 3 sub-strategies
to select vertices that are expected to deliver the correct upper
bounds efficiently. Specifically, we use the three sub-strategies
in the nested order of max|U - L|, min(L), Degree; when
multiple vertices have the same priority next sub-strategy is
used to break a tie.

(a) min(L). Takes et al. proposed min(L) as one of source
selection strategies inspired by traditional branch-and-
bound algorithms [1]. We also use this source selection
criteria and provide some additional insight to why it is
useful. Here, let s be a source vertex, ¢t be a furthest
vertex of s, and ¢ be a vertex sharing the same furthest
vertices with s (thus, ¢ is on a shortest path between s
and t). As we move down a shortest path from source
s towards ¢, d(s,%) is increased and e(s) — d(s,4) is
decreased. Consequently, the vertex at the center of a
shortest path has the minimum lower bound. This shows
that fairly central vertices tend to be selected by this
criteria, particularly in the case where s was a furthest
vertex in a previous run. Given this property, we select
vertices that have the smallest lower bounds.

(b) max|U - L|. If we just use only min(L), there is a pos-
sibility that our source selection strategy selects sources
in some small area. To deal with the concern, we use
this score along with min(L) to select vertices in an
unexplored area, relatively far from previous sources.
Specifically, we select vertices which have the largest
|U - L] to find unexplored areas since the purpose of
Algorithm 1 is decreasing the gap between upper and
lower bound of each vertex.

(a) Degree. When two vertices have the same min(L) and
|U - L|, we use the degrees of the vertices. Although the

degree of a vertex does not directly determine the position
of the vertex, we deem it is a useful score because all
other vertex properties being equivalent, higher degree
vertices may be on more shortest paths than lower degree
vertices. As for the source selection for the first iteration
(BFS), all vertices are compared by this strategy since
other information like lower and upper bounds are same.
Takes et al. also use this to break ties.

When 3 sub-strategies return the same values, a hash value of
each vertex’s ID is used as the final tie breaker. Note that all
vertices that are marked as the furthest vertices of past source
vertices, including redundant furthest vertices, are removed
from the candidate vertices for this strategy in the beginning.
‘When all unsolved vertices are redundant furthest vertices, we
select sources by only using Degree.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our PM
algorithm on multiple real-world graph datasets. In addition,
at the end of this section, we show eccentricity distributions
of some large-scale real-world graphs.

A. Experimental Setup

1) Dataset: To perform the series of experiments, we used
9 real-world graph datasets listed in Table I. We use 6 datasets
(yt, wk_t, rn, or, pt, fr) from Stanford Large Network Dataset
Collection (SNAP Datasets) [24] and 3 other real-world graph
datasets (wk_h, tw, wb).

Wikipedia hyperlink graph (wk_h) is a new graph dataset
that we have curated. We constructed the dataset by extracting
hyperlinks between all pages in English Wikipedia dump as of
July Ist, 2017. The dump data contains the entire edit history
of the pages in English Wikipedia from January 15, 2001,
which is the date English Wikipedia was founded. The graph
contains hyperlinks not only between article pages but also
other types of pages such author (user) pages and Category
pages.

Since our exact eccentricity algorithm assumes that graphs
are undirected, have no self-loop edges, and are connected,
we removed all duplicated edges and self-loop edges; we ran
a connected component algorithm and extracted the largest
component from each graph. The numbers of vertices and
edges shown in Table I are after this preprocessing. To our
knowledge, this is the first effort which computed all exact
eccentricity on graphs larger than 40 million edges. We have
processed graphs 1 — 3 order(s) of magnitude larger than prior
work.

2) Implementation: For performance comparison, we im-
plemented the source selection algorithm and single degree
vertex optimization technique proposed by Takes et al. — de-
tails are described in Section II-C and Section II-D. To conduct
a fair performance comparison with our PM algorithm, we
implemented their algorithm with k-BFS, and we refer to this
implementation as TK-k.

We implemented TK-k and our PM algorithm on HavoqGT
[2], [3]. HavoqGT is a high performance vertex-centric and



TABLE I
GRAPH DATASETS

Graph Name Type

Social network
Road network

com-Youtube (yt) [25]
California road network (rn) [26]
wiki-Talk (wk_t) [27], [28]
com-Orkut (or) [25]

cit-Patents (pt) [29]

Wikipedia hyperlink (wk_h)
Twitter (tw) [30]

com-Friendster (fr) [25]
Webgraph (wb) [31]

Social network
Citation network
Hyperlink graph
Social network
Social network
Hyperlink graph

message-passing graph processing framework; it is written in
C++ and uses MPI for interprocess communication. HavoqGT
constructs graph data into files so that it can utilize node-local
storage devices; however, we store the graph data (files) into
tmpfs space in this evaluation.

3) Machine: Our experiments were run on the Quartz
cluster at LLNL. Each compute node has two Intel Xeon
E5-2695 CPUs (18 physical cores per socket) with 128 GB
DRAM (available tmpfs size is 64GB); compute nodes are
connected with Intel Omni-Path. We used up to 128 compute
nodes with 36 MPI ranks per node. The actual number of
compute nodes used for each graph is listed in Table II).

B. k-BFS Performance

To demonstrate the efficiency gains with k-BFS, we show
the performance of k-BFS varying k, number of concurrent
BFSs, in Figure3. We used the Twitter (tw) graph on 64
compute nodes with BES source vertices selected randomly.
The y-axis denotes the execution time to perform 128 BFSs
in seconds, that is, 128 independent BFSs are required with
k = 1 while only a single k-BFS is required with k£ = 128.
The total execution time decreases as k increases from 1 to
128. It required 76.8 seconds to finish with £k = 1 while it
took only 8.9 seconds with k£ = 128; thus, we were able to
achieve 8.7x speed up by employing k-BFS.

=
N
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N

N
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H

.

N

2 4 8 16 32 64 128
k (number of concurrent sources)
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w
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=

Fig. 3. Execution Time of k-BFS computing 128 BFS traversals and varying
k on the Twitter (tw) graph.

C. Performance Comparison between TK-k and PM

We evaluated the performance of PM against TK-k in
terms of the number of iterations and execution time. Both
algorithms use k-BFS, we used k£ = 64 for com-Youtube (yt)
and wiki-Talk (wk_t) and k& = 128 for the rest of datasets
except Webgraph (wb). For Webgraph (wb), it turned out

Communication network

# Vertices in the Largest CC ~ # Unique Edges
1,134,890 2,987,624

1,957,027 2,760,388

2,388,953 4,656,682

3,072,441 117,185,083

3,764,117 16,511,740

40,311,467 851,853,231

41,652,230 1,202,513,046

65,608,366 1,806,067,135

3,355,386,234  111,635,885,335

that k = 4 was enough to finish the whole eccentricity
computing in spite of the size of the graph. We used 1 compute
node for com-Youtube (yt) and wiki-Talk (wk_t); 8 compute
nodes for California road network (rn), com-Orkut (or), and
cit-Patents (pt); 64 compute nodes for Twitter (tw), com-
Friendster (fr) and Webgraph (wb); 128 compute nodes for
Wikipedia hyperlink (wk_h).

Results of the performance comparison experiment are
presented in Figure 4. Table II has the actual number of
iterations and execution time (sec.) TK-k and PM took, as
well as the number of k-BFS sources (k) and compute nodes
used.

For Wikipedia hyperlink (wk_h), we stopped the experiment
with TK-k before it finished but after a reasonable time. It
turned out that TK-k did not efficiently select source vertices
even after running more than twice as long as PM, resulting
in running k-BFS from many vertices without receiving ben-
efits from eccentricity lower and upper bounds algorithm. In
Section V-D1, we describe more details regarding the progress
of eccentricity computing — the number of unsolved vertices
over time — on Wikipedia hyperlink (wk_h) with TK-k.

1) Performance Improvement in Number of Iterations:
Figure 4a shows the performance improvements of PM over
TK-k in terms of the number of iterations to finish eccentricity
computing. The values shown in the figure are calculated by
IITP—KA‘I’“ — 1, where [ is a number of iterations. Overall, PM
exhibits better performance than TK-k on all graph datasets
— PM achieved its best result with 205.4% speed up on
California road network (rn) and 65.6% speed up on average
on all datasets. As for large-scale graphs, PM outperforms
TK-k by 63.8% on Twitter (tw), 66.7% on com-Friendster
(fr), 33.3% on Webgraph (wb).

It is important to note that the number of source vertices
required to compute the eccentricity of all vertices are surpris-
ingly small on com-Friendster (fr) and Webgraph (wb), even
though the two datasets have 65 million and 3.3 billion vertices
respectively. For the Webgraph (wb) with our PM algorithm,
only 3 iterations with k = 4, that is, 12 source vertices, are
needed for solving all vertices’ eccentricity.

2) Performance Improvement in Execution Time: Next,
Figure 4b shows the performance improvements of PM over
TK-k in total execution time. The reported total execution
time does not include the graph construction or pre-processing
time, while it includes the other steps such as source selec-
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Fig. 4. Performance Improvement of PM Over TK-k (PM outperforms TK-k in all cases; speed up % is calculated by Iggwk -1
TABLE I
NUMBER OF ITERATIONS AND EXECUTION TIME PM TOOK
Graph Name (k) Ta;#(_llt(eratlolr)lli/[ TKTll(me mn SC;M (# compute nodes)
com-Youtube (yt) 64 58 37 28.19 17.09 1
California road network (rn) | 128 2086 683 9609.23 2682.41 8
wiki-Talk (wk_t) 64 222 183 144.96 115.67 1
com-Orkut (or) 128 4994 | 4746 | 12084.22 | 10389.95 8
cit-Patents (pt) 128 2681 | 1554 2383.96 1308.54 8
Wikipedia hyperlink (wk_h) | 128 | (N/A) | 4326 (N/A) | 20568.47 128
Twitter (tw) 128 1864 | 1138 | 11842.59 7229.32 64
com-Friendster (fr) 128 20 12 156.71 99.34 64
Webgraph (wb) 4 4 3 2636.7 2238.04 64

tion, eccentricity bound algorithm, and single-degree vertices
optimization time in TK-k. However, it resulted in that k-BFS
accounted for most of execution time and other steps took
negligible time — this result indicates that there is no no-
table overhead in PM algorithm for selecting sources. The
performance comparison metric used in Figure 4b is defined
as TTTPIXI’“ — 1, where T' is a total execution time.

Same as observed in Figure 4a, PM outperforms TK-k on
all graphs. On average PM achieved 73.3% of speed up over
TK-k. As for graphs with over 10 million vertices, PM is
63.8%, 57.8%, and 17.8% faster than TK-k on Twitter (tw),
com-Friendster (fr), and Webgraph (wb) respectively.

D. Detailed Analysis

1) Progress of Eccentricity Computing: The figures in
Figure 5 show the progress of eccentricity computing on the
four largest graph datasets in our study: Wikipedia hyperlink
(wk_h), Twitter (tw), com-Friendster (fr), and Webgraph (wb).
For each figure, the x-axis denotes the number of BFS sources;
y-axis (log scale) denotes the number of unsolved vertices
remaining.

First, for Twitter (tw), TK-k and PM were able to solve
96% and 93% of vertices with the first 1024 BFS sources,
respectively. After around 100K BFS sources the gap between
the two lines started increasing gradually; TK-k finished
with 239K sources while PM required only 146K sources.
Second, for Wikipedia hyperlink (wk_h), TK-k was not able
to efficiently select source vertices; as a result, only 2.3M
vertices were solved with 963K BFS sources. However, PM
was able to select efficient sources and solved 97% of vertices

(39M vertices) with only 1024 BFS sources, and used 554K to
solve all vertices (40M vertices). Finally, for com-Friendster
(fr) and Webgraph (wb), TK-k and PM were able to compute
all eccentricity in the graphs with remarkably small number
of sources regardless of the large size of the two graphs.

2) Breakdown of Selected Source Types: Another detailed
analysis for PM algorithm is a breakdown of the number of
selected sources by source types. In Figure 6, Non-Redundant
Furthest and Central corresponds to the two types of source
vertices PM selects, non-redundant furthest vertices and cen-
tral vertices, as described in Section IV. Redundant Furthest
corresponds to the furthest vertices marked as “redundant”
and were not selected by the two source selection strategies;
thus, after performing k-BFS from all vertices belong Non-
Redundant Furthest and Central, we had to perform k-BFS
also from Redundant Furthest vertices if they remained. The
y-axis denotes the number of selected vertices by source type.
Note that vertices selected at the first step and the last step
with a case where the number of left unsolved vertices is equal
to or less than k are not included in the reported numbers.

As we expected, significantly small number of non-
redundant furthest vertices were selected in overall. Specifi-
cally, 2, 7, 4, and 2 non-redundant furthest vertices are selected
on Wikipedia hyperlink (wk_h), Twitter (tw), com-Friendster
(fr), and Webgraph (wb), respectively. On the other hand, no
redundant vertices were selected on all graphs except com-
Orkut (or).

The ratio of the total selected sources over the total number
of vertices for each graph by PM is 0.2%, 4.5%, 0.5%, 19.8%,
5.3%, 1.4%, 0.3%, 2.3E-05%, and 3.6E-09%, respectively
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E. Scaling Study

We performed scaling study of PM on Twitter (tw), com-
Friendster (fr) and Webgraph (wb). We used 32, 64 and, 128
compute nodes on Twitter (tw) and com-Friendster (fr); 64
and 128 nodes on Webgraph (wb) because it did not run
with 32 nodes due to out-of-memory error during the graph
construction step — the size of constructed graph were around
2 TB which is close to the total available tmpfs size on the
compute nodes. The execution time of PM varying the number
of compute nodes is shown in Table III. PM achieved 1.7x
and 3.0x speed up by increasing the number of compute
nodes from 32 to 128 on Twitter (tw) and com-Friendster (fr),
respectively; 1.7 speed up from 64 to 128 compute nodes on
Webgraph (wb).

FE. Eccentricity Computing with Error <1

While exact eccentricity is used as a very important metric,
it would be interesting if our PM algorithm also works well
on computing other important metrics. Thanks to strong error
tolerant properties of machine learning algorithms, there are

TABLE III
EXECUTION TIME (SEC.) OF PM (STRONG SCALING)

# Compute Nodes

32 \ 64 \ 128
Twitter 10432.2 | 7229.3 | 6187.2
com-Friendster 163.0 99.3 54.3
Webgraph (N/A) | 2238.0 | 12855

some cases where those algorithms can accept data with a
certain error. We found that PM also can be beneficial for
computing eccentricity with a certain error. Figure 7 shows
how many BFS sources TK-k and PM needed until all vertices
w € V met with |U,, — L,,| <1, i.e., the gap of the lower
and upper bounds of every vertex becomes less than or equal
to 1.

Regarding small and middle size graphs (5 graphs on the
left side), PM shows up to 5.4 speed up against TK-k. Same
as the previous results, TK-k did not finish on Wikipedia
hyperlink (wk_h) within a reasonable time while PM needed
only 640 BFS sources. As for other large-scale graphs (3
graphs on the right side) TK-k and PM both showed similar
results: TK-k required 1536, 512, and 16 sources while PM
required 1792, 512, 12 sources, respectively.

G. Eccentricity Distribution

Finally, we show the exact eccentricity distributions of
some large-scale graphs. Leveraged by our PM algorithm,
we successfully achieved the exact eccentricity distributions
for the largest real-world graphs studied in the literature
with reasonable execution time. We show the eccentricity
distributions in Figure 8. First, only one peak and very skewed
distribution were observed in each graph. For our Wikipedia
Hyperlink Graph (wk_h), its diameter is 67; the eccentricity of
99.9% of vertices are between 43 and 45; there are 3 vertices
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which have the largest eccentricity (67). For Webgraph (wb),
its peak is at eccentricity 331 and contain 57% of vertices; the
eccentricity of 86% of vertices are between 330 and 333; 2
vertices have the largest eccentricity (650).
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VI. RELATED WORK

In addition to Takes and Kosters [1], Shun et al. [4] also con-
ducted a study on large-scale graph eccentricity. However, this
work mainly focuses on eccentricity estimation on a shared-
memory machine. Taking our distributed system approach,
we could compute exact eccentricity on up to more than
three orders of magnitude larger graphs than these previous
studies. Even compared with the estimation of eccentricity
done by [4], we were able to compute exact eccentricity on
an approximately 17 times larger graph.

Sariyiice et al. proposed graph manipulation techniques for
fast centrality computation [32]. They described some vertex
types can be useful to compress and split graphs in order to
reduce the amount of work to compute centrality. Although,
finding some types of vertices, such as articulation/bridge
vertices and side vertices, involves high overhead without de-
veloping efficient techniques, their proposed techniques could
bring an additional speed up to eccentricity computing. We

address detailed evaluation and developing new techniques for
finding such featured vertices as future work.

There are some studies about k-BFS: targeting shared-
memory machines [9], [10], including GPU and Intel Xeon
Phi [11]; GPU and distributed-memory systems [12]. Shun et
al. [4] also applied k-BFS to compute exact eccentricity, yet
on a shared memory machine. Our work is different in that
we demonstrate the impact of £-BFS on a distributed message-
passing communication framework. Some proposed techniques
by those studies, such as efficient multiple source selection
strategies in terms of the performance of k-BFS, could be
applied to the distributed setting.

As for speeding up BFS performance, direction-optimizing
(DO) BFS is a well known algorithm [18]. Compared with
the performance improvement by DO BFS in a shared- and
distributed-memory systems [18], [19], our k-BFS was able
to achieve similar speed up on the same Twitter graph (see
Figure3 in SectionV-B) against the conventional (top-down)
BFS algorithm. Moreover, Pan et al. reported that HavoqGT’s
delegation technique (splitting high-degree vertices) and DO
BFS fitted together well [33]. Combining £-BFS and DO BFS
and evaluate its performance would be one of our future work.

VII. CONCLUSION

We proposed the pincer movement (PM) source selection
strategy to accelerate computing eccentricity with the lower
and upper bounds algorithm from [1]. We proved several
theoretical results that were used to improve heuristics in the
design of the PM source selection strategy. Furthermore, we
employed k-BFS on a vertex-centric message-passing graph
processing framework to achieve an additional significant
performance improvement on distributed-memory systems.
Compared with the original source vertex selection strategy
from [1] combined with k-BFS (TK-k), our PM algorithm
was able to achieve up to 3 x speed up (1.66x on average) on
various real-world graph datasets. These advances allowed us
to compute exact eccentricity in graphs with up to 112 billion
edges; to our knowledge, this is more than three orders of
magnitude larger than graphs in previous studies.

APPENDIX A
THEORETICAL RESULTS

Graph distance satisfies the triangle inequality,
d(i, k) < d(i, j) + d(j, k). )

We use this, properties of shortest paths, and the definition
of eccentricity in Equation (1) to derive several conditions
on solved vertices that we use to justify the source selection
strategies we present in Section IV. First, we present an
important lemma that we leverage throughout this section.

Lem. 1. (ON A SHORTEST PATH) Let 4, j, k € V. If d(i, k) =
d(i,7) + d(j, k), then there exists a shortest path from i to k
through j.

Proof. Let Py be any shortest path from ¢ to j and P; be any
shortest path from j to k. Concatenating P; and P35 gives a



walk containing j. To show paths P} and P share no other
vertex than j, we form a contradiction. If ¢ # j is in both P;
and P;3, then d(i,q) < d(i,7) and d(q, k) < d(j, k) and

d(i, k) <d(i,q) + d(gq, k) < d(i,j) +d(j, k) = d(i, k),

a clear contradiction. This implies that the concatenated walk
is a path from ¢ to k. Because

PL|+ P3| = d(i, j) + d(j, k) = d(i, k),

it is also shortest path. Therefore j is on a shortest path by
construction. O

Def. 1. (FURTHEST VERTICES) The set of all furthest vertices
of a vertex ¢ € V is F(i). For any j € F (i), d(i,j) = €(3).

From Equation (2), we see that there are two possibilities
for the best lower bound from a given source. This yields
two possible situations for the associated lower bound to be
correct.

Lem. 2. (LOWER BOUND 1s CORRECT) Given a source s and

another vertex 4 such that e(i) = LES), we have either

(a) s € F(i), or

(b) There exists t € F(s) N F(i) such that ¢ is on a shortest
path between s and ¢.

Proof. If €(i) = d(i, s), then clearly s € F(i) and case (a) is
realized. On the other hand, if €(i) = LZ(-S) = ¢(s) — d(i, s),
then let ¢ € F(s). Rearranging the equality, we have (i) +
d(i, s) = d(s,t) = €(s). Using triangle inequality, we see
d(s,i) +d(i,t) > d(s,t) = e(s) = e(i) + d(3, s),

or €(7) < d(t,1). If this inequality is strict, then €(7) < d(¢, 1),
which is a contradiction, so €(i¢) = d(t,4). This means that
t € F(i) as well. Lastly, we apply Lem. 1 to

d(i,s) +€(i) = e(s)
d(i,s) +d(i,t) = d(s,t)

to see that ¢ must be on a shortest path between s and ¢.
O

Similarly, from Equation (3) we get the conditions on the
upper bound being correct.

Lem. 3. (UPPER BOUND IS CORRECT) Given a source s and

another vertex ¢ such that €(i) = UZ-(S), we have a vertex t €

F(s) N F(3), exists such that s is on a shortest path between
7 and t.

Proof. Pick any t € F(i). Using triangle inequality,
d(t,8) + d(s, i) > d(i,t) = e(i) = U = e(s) + d(i, s),

or €(s) < d(t, s). If this inequality is strict, then €(s) < d(¢, s),
which is a contradiction, so €(s) = d(t, s). This means that
t € F(s) as well. Lastly, we apply Lem. 1 to
d(i,s)+ Es = F;
d(i,s) +d(s,t) = d(i,t)

to see that s must be on a shortest path between ¢ and t. [

For the final result we observe that two sources si, So are
required for a non-source vertex to have €(i) solved (and no
information is gained for ¢ from a third source). We combine
this and the previous results to determine the necessary re-
lationships between a solved vertex and any solving pair of
sources.

Thm. 4. (SOLVED VERTEX) If ¢ € V is solved but was never
a source, then there exist two sources si, S2, such that either

(a) s1 € F(i) N F(s2) and sy is on a shortest path between
7 and s1, or

(b) there exists t; € F(i) N F(s1) N F(s2) and a shortest
path between s; and ¢; containing both ¢ and ss.

Proof. First assume €(i) = d(s1,4) = €(s2) + d(s2,4). In this
case, €(i) = d(s1,1), so s1 € F(i). We have,

d(s1,82) + d(s2,1) > d(s1,1) = €(s2) + d(s2,1),

implying d(s1,s2) > €(s2), for which equality must hold.
Thus, 51 € F(s2) as well. Then we apply Lem. 1 to

d(i,s2) +e(sa) =

d(i, 82) + d(827 81) =

d(i,sl)
d(i,Sl)

to see that s, must be on a shortest path between 7 and s;.

In the case €(i) = €(s1) — d(s1,1) = €(s2) + d(s2,1), we
apply Lem. 2(b) to see that there exists a t; € F(s1) N F(i).
Then,

d(tl, 82) + d(827 Z) + d(’L, 81)
d(tl,Sl) = E(Sl) =
€(s2) + d(s2,1) +d(i, s1),

Y

implying d(t1,s2) > €(s2), where equality must hold. Thus,
t1 € F(s2) as well. Then we apply Lem. 1 to

e(i)

d(l7 tl)

Cl(Z7 52) —+ 6(52)
d(i, 52) + d(SQ, tl)

to see that s, must be on a shortest path between ¢ and ¢,
and to

d(i,s1) +€(i) =
d(i,s1) +d(i,ty)

€(s1)
d(Sl, tl)

to see that ¢ must be on a shortest path between s; and ;.
Combining these two facts we get the result.
O
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