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ABSTRACT:

Seismic signals are composed of the seismic waves (phases) that reach a sensor, similar to the
way speech signals are composed of phonemes that reach a listener’s ear. Large/small seismic
events near/far from a sensor are similar to loud/quiet speakers with high/low-pitched voices. We
leverage ideas from speech recognition for the classification of seismic phases at a seismic
sensor. Seismic Phase ID is challenging due to the varying paths and distances an event takes to
reach a sensor, but there is consistent structure of the makeup (e.g. ordering) of the different
phases arriving at the sensor.

Current Phase ID techniques do not take into account the global spectrotemporal structure of a
waveform that includes a phase arrival for an event. Together with scalar value measurements of
seismic signal detections, we use the seismogram and its spectrogram as inputs to a merged deep
neural network with convolutional and recurrent layers to learn the frequency structure over time
of different phases. Our best results come from the use of a Long Short-Term Memory network
merged with horizontal slowness, amplitude, SNR of signal detections, and the time since the
previous signal detection. The classification performance of First-P phases versus non-First-P
(95.6% class average accuracy) and suggests a significant impact on the reduction of false and
missed events in seismic signal processing pipelines.

INTRODUCTION:

Since 2012, neural-inspired deep neural networks have revolutionized speech recognition [1], an
extremely competitive multimillion dollar industry. Because of the similarities of seismic and
acoustic signals and sensors, speech recognition algorithms are well-suited to seismic Phase ID,
the classification of seismic phases at a seismic sensor. Seismic Phase ID is challenging due to
the varying paths and distances seismic events take to reach a sensor, but there is discriminative
spectrotemporal structure of the different phases arriving at the sensor and consistent ordering of
the phases in time based on geophysical properties.

Seismic signals are composed of seismic waves reaching a sensor, similar to speech signals
being composed of phonemes reaching a listener’s ear. Moreover, large/small seismic events
near/far from a sensor are similar to loud/quiet speakers with high/low-pitched voices. Neural-
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inspired deep neural networks have revolutionized speech recognition, a competitive
multimillion dollar industry. The Deep Speech 2 speech recognition algorithm [2] captures the
frequency structure over time of an input acoustic signal and identifies words as sequences of
phonetic labels. Figure 1 shows how the Deep Speech 2 architecture can be applied to seismic
Phase ID. For both acoustic and seismic signals, spectrograms are valuable computational steps
to capture spectrotemporal content. The early layers of Deep Speech 2 utilize convolutional
layers to identify larger geometric structures in spectrograms. Deeper recurrent layers perform
sequence learning on the spectrotemporal structure from the convolutional layers. In theory, the
Connectionist Temporal Classification (CTC) loss function will be able to apply a sequence of
phase labels to the input signal without segmentation of individual phases and with some gaps
between phases from the same event.
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Figure 1. Conceptual application of Deep Speech 2 neural network to seismic Phase ID. Input to the network is at the bottom and
output from the network is at the top.

Current Phase ID techniques do not take into account the global spectrotemporal structure of
phase or event seismograms. Seismic Phase ID can follow a similar approach as Deep Speech 2

to classify the elements of an event’s seismogram that a station records, but it is nonetheless
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extremely challenging and exploratory. The primary challenges lie in the difference between
acoustic signals and seismic signals.

Seismic events create different types of energy that reach seismic sensor stations via
differing paths through the earth. The distance between the event and the sensor affects
the spectrotemporal content of an event’s waveform recorded at a station.

Depending on the size of the event and distance between station and event, seismic
signals can have very low signal-to-noise ratios (SNR), unlike most speech recognition
applications.

When a seismic phase is detected at a station, identifying the phase can help determine
where and when the event occurred and which phases are associated with the event.

Figure 2 shows a record section of an event detected at many stations, illustrating the
propagation of seismic waves in distance versus time. The same event produces multiple phases
recorded at each station. The distance from a station to the event and the type of energy received
from the event determines the labels of phases received at each station. The predictable sequence
of phases in time suggests that a sequence learning approach to Phase ID is worth exploring.

Phase Legend: S SS

Each waveform below is from a different seismic monitoring station.
The first arriving phase of an event will be the leftmost detection in time.
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Figure 2. Example record section displaying seismograms recorded for an event at multiple seismic monitoring stations at
varying distances from the event.
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Sequence learning, utilizing a geophysics model of phase arrivals in time, is the ultimate goal of
our work on Phase ID, but current results apply to the classification of segmented phases based
on their arrival times.

DETAILED DESCRIPTION OF EXPERIMENT/METHOD:

Phases detected at the Makanchi seismic array (MKAR) in Khazakstan were used in this
research. MKAR has been a primary station in the international monitoring system (IMS) since
January, 2002, and is sensitive to detect phases from seismic events around the world. Figure
3Figure 3 shows a map with the location of MK AR and detected events. The type of phase
detected at MAKR is a function of the type of energy from the event, the distance from the event,
the depth of the event, and the magnitude of the event.

Figure 3. Events detected by MKAR (red triangle). Yellow dots indicate event locations.

Table 1 lists 30 different seismic phases detected at MK AR since 2002 that were used in our
experiments.
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Table 1. Descriptions of seismic phases used in Phase ID experiments. Phases in Bold are considered First-P. The number of each
phases listed in the IMS LEB Association table between 2002 through 2017 is in the Count column.

Phase Description Count

A longitudinal wave, bottoming below the uppermost mantle; also an upgoing longitudinal

P 271220
wave from a source below the uppermost mantle.

Pn Any P wave bottoming in the uppermost mantle or an upgoing P wave from a source in the 34579
uppermost mantle.
At short distances, either an upgoing P wave from a source in the upper crust or a P wave

Pg bottoming in the upper crust. At larger distances also arrivals caused by multiple P-wave 2979
reverberations inside the whole crust with a group velocity around 5.8 km/s.

PKP | Unspecified P wave bottoming in the core. 17430
PKPab | P wave bottoming in the upper outer core; ab denotes the retrograde branch of the PKP caustic. | 5836
PKPbc | P wave bottoming in the lower outer core; bc denotes the prograde branch of the PKP caustic. 11795

A wave group observed at larger regional distances and caused by superposition of multiple S-
Lg wave reverberations and SV to P and/or P to SV conversions inside the whole crust. The 20426
maximum energy travels with a group velocity around 3.5 km/s.
S A shear wave, bottoming below the uppermost mantle; also an upgoing shear wave from a 2747
source below the uppermost mantle.
Sn Any S wave bottoming in the uppermost mantle or an upgoing S wave from a source in the 13554
uppermost mantle.
PP Free surface reflection of P wave leaving a source downwards. 2594
pP P resulting from reflection of upgoing P at the free surface. 8101
sP P resulting from converted reflection of upgoing S at the free surface. 614
PcP | P reflection from the core-mantle boundary. 17326
ScP | S to P converted reflection from the core-mantle boundary. 5557
PKiKP | P wave reflected from the inner core boundary. 7068
PKKPbc | PKKP bottoming in the lower outer core. 3329
pPKPbc | PKPbc resulting from reflection of upgoing P at the free surface. 1698

Pdiff | P diffracted along the core-mantle boundary in the mantle. 1509

PKP2 | Free surface reflection of PKP. 1387
PKhKP | a precursor to PKPdf due to scattering near or at the core-mantle boundary. 1367

pPKP | PKP resulting from reflection of upgoing P at the free surface. 1061
SKPbc | SKP bottoming in the lower outer core. 834
PKP2bc | Free surface reflection of PKP; be denotes the prograde branch of the PKP caustic. 652

PKKPab | PKKP bottoming in the upper outer core. 583
PKKP | Unspecified P wave reflected once from the inner side of the core-mantle boundary. 488
SKP | Unspecified S wave traversing the core and then the mantle as P. 404
P4KPbe P wave reﬂected 3 times from inner side of the CMB; bc denotes the prograde branch of the 356
PKP caustic.
pPKPab | PKPab resulting from reflection of upgoing P at the free surface. 255
SKKPbc | SKKP bottoming in the lower outer core. 217
P3KPhe P wave reﬂected 2 times from inner side of the CMB; bc denotes the prograde branch of the 200
PKP caustic.
Preliminary Phase ID

The simplest phase classification experiment we conducted was between two classes of similar
phases: Pg, Pn, and P vs. S, Sn, and Lg. This level of Phase ID is potentially the simplest test of
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our classification approach. The most impactful Phase ID experiment conducted is classification
of First-P phases vs. non-First-P phases, given all the different phases in Table 1.

Impactful Phase ID

The Probabilistic Event Detection, Association, and Location (PEDAL) algorithm uses seismic
signal detections to create probabilistically realistic hypothetical events on a 3-D grid covering
the earth, including depth. It determines event location and origin time by assuming all signal
detections are first-arriving compressional waves (P phases) at each station and finds the grid
point where the pairwise combinations of detection observations (arrival time, azimuth, and
horizontal slowness) at different stations compared with predictions is highest (assuming an
event originating at the grid point). First-P phases are defined from 0 to 180 degrees and include
Pg at local distances, Pn at regional distances, and P, then PKP, then, PKPbc and PKPab at
teleseismic distances. In practice, many automated detections are not First-P phases and can lead
to the false events by the PEDAL algorithm. If a phase classifier can filter all but First-P phases
for PEDAL during event detection and location, the number of false and missed events could be
significantly reduced and the quality of valid events improved. Therefore, the primary Phase ID
experiment conducted in this work is that of First-P vs. not-First-P classification.

Classification Features

The data used to discriminate between classes of phases are described in Table 2 and include
beamed waveform data extracted 5 seconds before the arrival time of the signal detection
through10 seconds after the arrival time, spectrograms computed from the waveforms, and scalar
measurement values from the signal detection. Spectrograms were computed on 601 samples of
the seismograms using 256-sample Fast-Fourier Transforms (FFTs) with 248-sample overlap.

Table 2. Data elements derived from a signal detection used for Phase ID.

Description Notation Data Type Normalization
If Sh < 0, exclude phase
Horizontal Slowness Sh Scalar If Sh > 35, set Sh =35
Sh=Sh/35

If Amp < 0, exclude phase

If Amp > 100, set Sh =100

Amp=(9 * Amp/100) + 1

Amp = logl 0(Amp)

If SNR > 100, set SNR = 100

Detection Signal to Noise Ratio SNR Scalar SNR = (9 * SNR /100) + 1

SNR = log10(SNR)

If first phase, set T=0

Time since prior detection T Scalar If T> 1600, set T = 1600

T =1ogl10(T) / log10(1601)

Se =2 * (Se-min(Se) /
(max(Se)-min(Se)) - 1

Array of 36 time steps | Sp =1ogl10(9*Sp + 1)

x 76 frequency steps | Sp = Sp / max(Sp)

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia
LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525.
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The classifier used for seismic Phase ID can utilize all the features described in Table 2
simultaneously in a merged deep neural network (DNN) shown in Figure 4. The signal detection
measurements for each phase detected by MKAR (based on arrival ID in the IMS LEB
association table) are taken from the arrival table and waveform samples from 5 seconds before
the phase arrival time through 10 seconds after are extracted from which spectrograms are
computed. All or subsets of this information can be fed into the DNN simultaneously together
with the phase’s ground truth label during training. During testing the same input can be input
and the output of the DNN can be compared against ground truth.

Fully
Connected
Layer
Sh, >
T; ¥ Softmax
Amp;, ¥ Layer
SNR,; >
1D CN N‘ Layers
e Phase
e. e > >—»
S, ' Class
Spi >

2D CNN Layers

Sp; >

LSTM Layer

Figure 4. Merged deep neural network for Phase ID. Input to the network is on the left and output from the network is on the
right.

RESULTS:

Results of our merged DNN solution to Phase ID were compared against 2 other approaches
1. The horizontal slowness of a detection.
2. The Phase ID field (iphase) in the arrival table for each detection in the IMS that comes
from an automated Phase ID system.
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It took us much of the project to arrive at a system that produced acceptable results. We don’t
show quantitative results except for our final system, but below is a list of challenges and break-
throughs of the R&D process, all of which involves data issues.

1. The first attempt at training a phase classifier used from just the single 3-component
element of the Makanchi array. The hope was that using all three components would help
distinguish between phases. This may be the case, but we used just one filter band for
each component (0.5 Hz — 6 Hz) and the SNR for much of the data was too low to see
any identifiable signal in waveforms and spectrograms. At this point in the project, we
also had a bug in our code of extracting waveforms 5 seconds before the arrival time
through 10 seconds after. Therefore, our negative result is not conclusive.

2. To increase the SNR of waveforms and subsequent spectrograms, we performed beam-
forming of all waveforms leveraging the location of events relative to MKAR. Although
in real-life, the location of an event is not known when a detection arrives at a station, it
is common practice to beam-form in multiple directions from the station, choosing the
waveform with the highest SNR for further processing, in this case Phase ID. This
process was a significant step in providing data with discernible structure in waveforms
and spectrograms.

3. Finally, given that the type of phase is unknown for a detection nor even the distance
from the station to the event, the use of multiple filter bands was used as follows.

e 05Hz-1.5Hz

e ]1.0Hz-2.0Hz
e 15Hz-3.0Hz
e 20Hz-4.0Hz
e 40Hz-8.0Hz

The combination of beamed waveforms and multiple filter bands provided spectrograms
with discriminative structure for our final Phase ID results.

Results of two phase classification experiments are given below, one a simple demonstrative
experiment and the other an experiment suggestive of high impact on improved event detection
and location with PEDAL. All experiments used a classifier with the following elements.

e A spectrogram fed into a single bidirectional LSTM layer with 40 nodes and Scaled
Exponential Linear Unit (SELU) activation functions. The spectrogram data input to the
classifier is from beam-formed waveforms with 5 filter channels.

e The output of the LSTM network merged with four detection measurements (slowness,
amplitude, SNR, and time since previous phase) in a fully connected layer of 20 nodes
with SELU activation functions.

e The output of the FC layer fed into another FC layer with 40 nodes with SELU activation
functions.

e A softmax layer with 2 nodes as the final output.

Figure 5 shows plots of seismograms for three different phases next to their corresponding
spectrograms. Note that the arrival time of a phase should be 1/3 from the left of each plot, but
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some phases have more gradual onsets or lower SNR, making it harder to discern or the arrival
time may always be accurate. Another issue in need of further exploration is the optimal amount
of time to use before and after the arrival time of each phase.

Seismograms Spectrograms

Lg

Sn

Figure 5. Seismograms and spectrograms for P, Lg, and Sn phases.

Figure 6 shows tables of binary classification results on the preliminary Phase ID experiment.

Using the horizontal slowness value for each detection does very well in classifying between a
class of Pn, Pg, and P phases and a class of Lg, Sn, and S phases. The merged DNN, however,
does a better job by reducing misclassifications of Lg,Sn, and S.
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® Accuracy on held-out Test Set

Merged = 99.7% Overall
Network 99.3% Class Average Network Predictions
T TR
Ground Pn,Pg,P 1121 99.8%
Truth L g,sn,S 2 172 98.9%

= Accuracy on held-out Test Set

Simp|e = 98.1% Overall
= 93.8% Class Average

Slowness Network Predictions

(sh) Test _
Pn,PgP:sh<173 Ground Pn,Pg,P 1120 99.7%
Lg,SnS:sh>173  Tuth 1 gsns 21 153 87.9%

Figure 6. Simple binary phase classification (Pn, Pg, and P vs. Lg, Sn, and S) results. The top table shows results from a merged
DNN. The bottom table shows results using a horizontal slowness threshold.

Figure 7 shows tables of binary classification results on the First-P Phase ID experiment. The
merged DNN offers superior performance than the other two approaches. The accuracy numbers
suggest that it could have a significant impact in reducing missed and false event detection in a
seismic signal processing pipeline.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia
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Merged = Accuracy on held-out Test Set
= 97.0% Overall
Network «  05.6% Class Average Network Predictions
I T T T
Ground Not First-P 94.2%
Truth  First-p 29 1393 98.0%
Simple = Accuracy on held-out Test Set
= 83.7% Overall
Slowness = 58.1% Class Average Network Predictions
(sh) Test Vot irstp | Firstp | Accuracy
First-P: sh <15 Ground Not First-P 189 278 40.5%
Truth  First-p 30 1392 97.9%

Automated " Accuracy on held-out Test Set
65.7% Overall

Phase ID = 51.9% Class Average Network Predictions
(iphase) e e L o
Ground Not First-P 114 24.4%
Truth  First-P 294 1128 79.3%

Figure 7. First-P vs. Not First-P phase classification results. The top table shows results from a merged DNN, the middle table
shows results using a horizontal slowness threshold, and the bottom table shows results from the automated IMS phase labeler.

DISCUSSION:

Seismic Phase ID is a difficult problem because of the differing paths of identical phases, low
SNR of some signal detections, and the additional information used by human analysts beyond
individual waveform inspection and detection measurements. Much of the R&D was spent
wrangling with data in such a way that DNNs could learn discriminative features for use in Phase
ID. Whereas machine learning projects historically involved significant investment in feature
engineering, much practical application of deep learning, particularly in uncharted waters, is
largely about data engineering. For the foreseeable future and likely forever, machine learning
will require investment and guidance from experts in the data related to the application.

The exploration of deep neural networks to capture spectrotemporal structure in phase
waveforms in combination with a few signal detection measurements in a merged classifier led
to a successful automated solution to Phase ID in a controlled, yet realistic and meaningful
setting. The potential impact of higher quality event detections (fewer missed and false events)
on operational seismic signal processing pipelines is significant. Since only one seismic
monitoring station in a global network was used in this R&D, additional investigation is
warranted into different kinds of monitoring stations used in different networks for different
applications than global nuclear explosion monitoring. Human analysts often inspect waveforms
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia

LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration
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from multiple stations to determine event detections and phase labels. We did not explore that
here, but as long as there are examples with some ground truth of the steps that analysts take,
merged DNNs may likely offer some assistance.

Typical machine learning projects are dominated with data issues and this project did not
disappoint. In addition to the importance of improving SNR via beam-forming and the use of
multiple filter bands, seismic Phase ID, particularly with the IMS data used, has severe class
imbalances. Table 1 shows that P phases are about an order of magnitude more common than the
next most common phase, Pn, and three orders of magnitude more common than some infrequent
phases. This issue must be addressed while training a classifier so that it doesn’t learn to predict
everything as a P phase and get high accuracies numbers. We developed a custom minibatch
sampler to present to the classifier during each iteration of training. The minibatch sampler is
capable of collecting specific numbers of training sample by phase and/or by class. In this way,
we get good class average accuracy results.

I presented initial results of the Phase ID work at the 2018 Machine Learning and Deep Learning
Workshop and presented more details of final results at the University of New Mexico Meeting
on Machine Learning Applications to Seismology. It was suggested by an attendee to use particle
motion detection (e.g., the rectilinear detection measurement) for 3-component (non-array)
stations. Exploration of other detection measurements is warranted in the future since our focus
was on evaluating the value of the spectrotemporal structure in waveforms for Phase ID.

Although the First-P phase classifier performed admirably, discriminating between individual
phases (see Table 1) will likely require contextual information, such as treating a collection of
phases as a sequence and leveraging a geophysics model of the ordering of phases in time. Table
3 lists 22 events and the associated list of phases (sometimes just one) for each event detected by
MKAR. Each sequence is like a spoken word in speech recognition and utilizing a sequence
learning approach to individual Phase ID will likely bear fruit.

Table 3. Phase sequences for multiple events.

Origin ID Phase List
15148126
15148127
15148128
15148166 | PKP
15148216 | P,pP,ScP
15148226 | P
15148268 | Pn
15148273 | P,S,PKKPbc
15148278 | PKP,SKPbc
15148281 | Pn,Sn,Lg

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia
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15148323 | P,PcP
15148325 | P
15148366 | P
15149933 | Pn
15149965 | P
15149971 | Pn,Sn,Lg
15150034 | P
15150038 | P
15150039 | P,PcP
15150043 | P
15150070 | P,PcP,ScP
15150076 | PKP

Figure 8 illustrates how the CTC loss function can perform supervised learning on sequence data
without requiring alignmfent between input data and labels or segmentation of signal elements.

P(__TH____E_—-_C__AAA__TT__-)
. P(THE—CAT—)
PCT__H__EE__— _C__AA__T___-)

e FEF
! r Sequence of
I r Speech

.,‘

Spectrogra ms

" (LHEEE

Figure 8. The use of Connectionist Temporal Classification for speech recognition. On the bottom is a sequence of spectrograms
in time. On the top are multiple examples of the same words spoken in different time durations and with different delays.

Figure 9 shows how CTC might be used for Phase ID on a sequence of detections or a streaming
waveform data.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia
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Figure 9. Streaming Phase ID.

ANTICIPATED OUTCOMES AND IMPACTS:

The results from the exploratory R&D clearly demonstrate superior performance over standard
automated methods of Phase ID on controlled experiments. This suggests positive impacts on the
following applications.

e PEDAL — In addition to reducing the number of false and missed seismic events by
filtering non-First-P phases from the event detection and location step of PEDAL, our
automated Phase ID approach will likely help in the signal association step of PEDAL as
well. Since this work used just one IMS station, an open question is how best to train an
entire network of monitoring stations. Is a custom Phase ID classifier necessary for each
station or class of stations (e.g., all array stations) or can a single classifier can be trained
for an entire class of stations?

e Dynamic Networks — The ability to distinguish between noise and non-noise detections
would have a significant impact on event detection with high-density local and regional
seismic monitoring networks. We did not conduct and experiments to demonstrate this
capability, but our results are highly suggestive of success.

e Hazard Prediction — Identifying the phases from large earthquakes as soon as possible is
an important part of an early warning of potential hazards.

Although the above list relates to applications of our work, much research remains to develop
fully an automated Phase ID capability.

Data

=  Qur Phase ID approach is data driven, where the more examples that are used for
training, the better the system is expected to generalize. Because of the exploratory nature
of this project, we used just 7 months of data out of 16 years of data from one IMS array
station. Training with all 16 years of data is expected to improve results dramatically.

= In addition to the phase labels that exist in association tables, there is an opportunity to
search for additional phase labels for events using “Probabilistic Labelling” since many
phases are not added to analyst-reviewed bulletin if the phase was not of primary
importance. Given a known event (E) and its magnitude (my), distance from a station (A),
and depth (d), if the probability of detecting a particular phase (ph) at station S, P(ph,S |
my, A, d), is greater than a pre-specified threshold and that phase does not exist in the
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association table, then a highly-sensitive signal detector can be used to detect that phase
in the waveform near its predicted arrival time. If the SNR of the detection is greater than
a pre-specified threshold, then an additional label for that phase has been found. P(ph,S |
my, A, d) values exist for all stations in the IMS.

= In addition to utilizing labeled data for training a phase classifier, semi-supervised
learning algorithms exist that leverage unlabeled data to improve classification
performance beyond that with labeled data alone. Unlabeled data is particularly plentiful
in a streaming, continuous processing environment.

Features

= The Phase ID approach demonstrated here utilized waveform data plus a few detection
measurements. Many more measurements exist for each detected signal. The use of
particle motion features (e.g., rectilinear motion) may offer value, particularly for 3-
component stations and would be easy to add to a merged DNN.

Sequence Learning

= Instead of classifying segmented waveforms, the ultimate Phase ID classifier treats
phases in sequence with the use of a geophysics model of how different phases are
expected to be ordered in time at a seismic monitoring station, similar to the way speech
recognition treats phonemes in sequence with the use of a language model of how
phonemes are ordered in time in words at a listener. Sequence learning algorithms are
more difficult to train and we were unable to pursue this avenue in this exploratory work.
Two approaches can be investigated.
1. Use a continuous stream of waveform as input, identifying phases as they arrive. This

would match the standard speech recognition approach.
2. Use a sequence of detections as input, more easily leveraging the current work for
each element of the sequence.

Algorithms
=  Advances in deep learning occur frequently. In this work, we chose well-established
algorithms, but newer algorithmic approaches may offer superior performance.
Cost-Sensitive Classification
= Cost-sensitive training can minimize the misclassifications that a user cares about most.
For example, in a First-P Classifier for PEDAL, it is important to not miss First-P
detections, which may result in a missed event detection, even if the system wrongly
classifies more non-First-P detections.

CONCLUSION:

Seismic Phase ID is known as an important element of event detection, location, and origin time
determination as well as early warning of hazardous earthquakes. It is also known to be a
difficult task to automate and involves significant human resources. Seismic applications of
machine learning, particularly deep learning, abound since 1) much data (waveforms and
automated measurement of signals) has been collected and for which some ground truth labeling
exists and 2) although noisy at times, there is structure in the data corresponding to conclusions
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important to the seismology and geoscience communities. Specifically, there are wonderful
opportunities for innovate, modern solutions to automated Phase ID.

In this exploratory R&D, it was demonstrated that deep neural networks perform well on a
classification problem impactful to the seismology community. It uses multiple types of data
(spectrograms from beamed waveforms and detections measurements) from the IMS station
MKAR to identify whether a detected signal is a First-P phase or not. Filtering all detections that
are not First-P phases can lead to fewer missed and false events in a seismic signal processing
pipeline. Identifying individual phases instead of important classes of phases will likely require
context of each phase in time utilizing a geophysics model or how phases propagate. Sequence
learning neural network methods used for speech recognition offer a potential solution.
Addressing the needs of the seismological community with modern deep learning techniques on
available partially-labeled seismic data will continue to be a rich domain for impactful R&D.
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