SANDIA REPORT

SAND2018-10553
Unlimited Release
Printed September 2018

Neural Algorithms for Low Power
Implementation of Partial Differential
Equations

James B Aimone, Aaron J Hill, Richard B Lehoucq, Ojas Parekh, Leah Reeder,
and William Severa

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated
by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA0003525.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of their
employees, nor any of their contractors, subcontractors, or their employees, make any warranty,
express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represent that its use
would not infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government,
any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Government, any agency thereof,
or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov

Online ordering: http://www.osti.gov/scitech

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.gov

Online order: https://classic.ntis.gov/help/order-methods/

SAND2018-10553
September 2018
Unlimited Release

Neural Algorithms for Low Power
Implementation of Partial Differential Equations

James B Aimone!, Aaron J Hill%, Richard B Lehoucg?®, Ojas Parekh*, Leah Reeder!,
and William Severa!

Data-driven and Neural Computing, Center for Computing Research
2Sensors & Embedded Systems, Threat Intelligence Center
3Computational Mathematics, Center for Computing Research
“Discrete Math and Optimization, Center for Computing Research
Sandia National Laboratories
P. O. Box 5800
Albuquerque, New Mexico 87185-MS1327

Abstract

The rise of low-power neuromorphic hardware has the potential to change high-performance
computing; however much of the focus on brain-inspired hardware has been on machine learning
applications. A low-power solution for solving partial differential equations could radically
change how we approach large-scale computing in the future. The random walk is a fundamental
stochastic process that underlies many numerical tasks in scientific computing applications. We
consider here two neural algorithms that can be used to efficiently implement random walks on
spiking neuromorphic hardware. The first method tracks the positions of individual walkers
independently by using a modular code inspired by grid cells in the brain. The second method
tracks the densities of random walkers at each spatial location directly. We present the scaling
complexity of each of these methods and illustrate their ability to model random walkers under
different probabilistic conditions. Finally, we present implementations of these algorithms on
neuromorphic hardware.

7.

TABLE OF CONTENTS

INEEOAUCTION ...ttt ettt ettt ettt et sbe e bt eaee bt enbens H
Overview of Neuromorphic Hardwarecccceeeiiiiiiiiiinieiiicieceeeeeeee e 13
2.1. History and overview of neuromorphic architectures...........ccccveervvveerreeenueeenneenns 13
2,2, Core computation it tienromOrphic BATAWATE .ouessssms sussnsssspasmnrssssssnsssrnssn sessiass 15
2.2.1, ITENRS TR .o i o' A 5 15
222, THE SYNAPSE ...veeevvieiieeiiieiie ettt et ete ettt beesereebeeesbeensaesaeeenne 16
2.2.3. CONNECTIVITY ..vvieivieeeitieeereeeeteeeeiteeeeaae e et e e s taeesstaeessneeessseeenssaeesseesnsaeens 18
224, Neuromorphic algorithm designcccceevieiiiieiiieiiiiiiieeieeieceeeie 19
Overview of Random Walles and DifBI0N. ..cussresmnsusmsssssmmmmss sussoxussspmmnsssssasnsssinssn sessiass 21
3.1. Random Walk MoOdel..........ccceiiiiiiniiiiiiieiieieeeeeeee s 21
3.2. Rationale for Mapping Random Walks to Neuromorphic Hardware.................... 21
3.3. Two perspectives of random Walks...........cccceeviiriiiiiiniiienieciieieeeee e 22
Particle Method Neural AIZOTIthimcccooiieiiiiiiiiiiieieee e 25
4.1, Alporithin TIESETIDIMITE s omsmmmusimmssmmsuninssmmsmmsin s s s 25
4.2. Theoretical ASSESSIMENLccverueriiriieriirieniierteete ettt ettt s sbe b nees 28
4.3, SImulation RESULLScouiiiiiiiiii e 29
4.4. Boundary Condition IMplications..........ccccueevuieriieiiieniieiienie et 30
4.5. SPINNAKET RESUILS.....cciiiiiiiieiiieiiie ettt e e e saaeeenaneeens 32
Density Method Neural AlZOTINIm .mswisusumssmmsmsimnssmsssmmmmsimm s s 35
5.1, Alorithm DESCIIPHION ...c..eieiiiiiieiieiie ettt ettt ettt et e et esereebeessaeeseens 35
5.1.1. Circuit-Level DesCription.........ccueeecveeeiieeeiiieeeieeesieeeeveeesveeesaeesveeens 35
5.1.2. Temporal DeSCIIPHION.eeeuieriieeiieiie ettt 36
5.1.3. Stochastic Neuron Requirements...........cccecvveereieeenieiencieeenieeeeiee e 37
3.2, Theoretion] ASSESETIEITE .cmswnmsnnsummmsssbss s s s s s 37
BB, DRI i consoismansiasiinsioiasiisiiosods s sl o AR 37
5.4. Boundary Condition ImpliCations..........ccceerueeriierieeniieniieiie e 39
5.5, TrueNorth ReSUltS......cooiiiiiiiiii e 40
APPICAION TMPACT....cciiiiiiiiieiiie ettt sre e e s e e s e e e aaeeessseeennneeens 47
6.1. Comparison of Particle and Density MEthods ...sumssssssousesspmsmpsssosssnsssnssn nessiass 47
6.2. Consideration towards Radiation Transport and Molecular Dynamics................. 48
6.3. Density Method =2 Graphs?cccccoeeiiiieiieiieiesieeee et 49
6.3.1. Finding the Shortest Pathccccoooiiiiiiiiiiiie e, 49
6.3.2. Triangle INCIUSIONccviiiiiiiieiie et 50
6.3.3. Graph Partitioning.........cccueeeiiieiiiieiiiie e 51
6.3.4. TrIADE S D P ST G0 v .00 s msmas v s s .0 050 505 A A3 5 R 51
CONCIUSION ..ttt sttt et e a ettt st e bt est e ebtenbeeatesaeenbeenbeenneaes 53

References 55

FIGURES

Figure 1-1: Speed and power costs of #1 Supercomputer from Top500 from 2005 until 2018. . 10

Figure 3-1: Walker-centric basis for particle algorithmccccooeeeiieiiiieiiiieiiie e 22
Figure 3-2: Location-centric basis for density algorithmccccccoviiiiiiiiiiniiineieeee, 23
Figure 3-3: Approximated density derived from 2000 walker simulationcccceeveuveerneenne 24
Figure 3-4: Example walkers of 2000 walker Monte Carlo simulation..........c..ccccceeeveeneriennnne. 24
Figure 4-1: Modular POSItION CITCUIL.eeeiuueeeiireeiiieesiteeesieeesteeessseeessseeesreeessaeessseesssseessneesseeenns 26
Figure 4-2: Update circuit for NeUral TINgS.cccueeviieriiiiiienieeiieeieeieeete ettt sve e seae e 27
Figure 4-3: Results from particle algorithm............cccccviiiiiiiiiiiiiie e 30
Figure 4-4: Illustration of boundary conditions in particle method............cccceevvvievieniienieniennnen. 31
Figure 4-5: Scaling of compilation time on Spinnaker............cccccuveeeiieeeiieeiieecciee e 33
Figure 4-6: Illustration of random walks on SPINNAKETcccceeviiriieniieiieiieeiee e 34
Figure 5-1: Diagram of density algorithm.cccooiuiiiiiiiiiiiii e 35
Figure 5-2: Walker distribution over time for a one-dimensional random walkcccc..e.e. 38
Figure 5-3: The spike raster plot for a one-dimensional random walk.............cccceevviieriiieninnenne 38
Figure 5-4: Sample walker distributions from two separate two-dimensional experiments. 39
Figure 5-5: Plotted are the number of walkers over time at three different locations. 40
Figure 5-6: A scalable buffer functionality implementation in TrueNorth............ccccocevevriennennen. 41
Figure 5-7: A 1D random walk eXample.cooiiiiiiiiiiiieniieccite e 42
Figure 5-8: Graphical representation of a TrueNorth crossbar configurationc.ccecueeeennne. 43
Figure 5-9: Sandia Thunderbird image used to define unique probabilities for each node.......... +4
Figure 5-10: Evolution of walker movements on a 150 x 150 2D mesh.c.cccccevveviiniriennnne. 44
Figure 5-11: Binary encoding of directions in a TrueNorth crossbar configuration. 45
Figure 6-1: Illustration random walk simulation of radiation transportccccceceevvenerienenne 48
Figure 6-2: Shortest path in graph found with density algorithm............cccooevviiiiiiieiiiieniiieces 50
Figure 6-3: Triangle counting with density algorithm.............cccocoeviiiiiiiniiiiiieiiieee e, 50
Figure 6-4: Graph partitioning with density algorithm.............ccccveeiiiiiiiiiiiiiccecceeee e 51
Figure 7-1: Conceptual illustration of Fugu programming stack............cccceeveerieenieniiieneenieennen. 53

NOMENCLATURE

Abbreviation

Definition

Al Artificial Intelligence

ANN Artificial Neural Network

ASIC Application-Specific Integrated Circuit
CMOS Complementary metal-oxide semiconductor
CPU Central Processing Unit

DSMC Direct Simulation Monte Carlo

FPGA Field Programmable Gate Array

GPU Graphical Processing Unit

HPC High-performance computing

LIF Leaky Integrate-and-Fire

PDE Partial Differential Equation

ReRAM Resistive device Random Access Memory
RW Random Walk

1. INTRODUCTION

Progress in computing research, and especially research in high-performance
computing (HPC), has been driven largely by application demands. While there are a
wide range of computing applications; scientific computing tasks, such as the solution
of large systems of partial differential equations (PDEs), has long been central to the
development of new computing approaches. The ability to solve large scientific
computing tasks has long had recognized economic, societal, and national security
importance. Whether considering global climate models for environmental studies,
protein folding assessments for drug-design, financial derivative models for business
risk management, or acrodynamics models for a new airplane wing design, the
application of PDE-dependent applications on HPC is pervasive. Accordingly, key
computing foundations that persist to modern times, such as the von Neumann
architecture, were originally conceived with the application of numerically-sensitive
scientific computing tasks in mind.

A notable exception to this application-driven technology development is
neuromorphic computing. Neuromorphic computing, broadly defined, refers to
computing hardware architectures designed to mimic some aspect of the human brain
[17, 18]. While this broad definition has led to a plethora of somewhat unrelated
approaches starting from the 1980s, in recent years there has been a consolidation
towards scalable architectures that can yield significant benefits in power-efficiency
and potential algorithmic capabilities. The potential for a novel low-power architecture
based on the brain is being seen as a critical advance at a time when Moore’s Law is
thought to be slowing down and the related Dennard scaling law is believed to have
ended” [34]. There are several aspects of neuromorphic hardware that make it well-
suited for low-power computation (see Section (). A number of large computing
companies, notably Intel [11] and IBM [22], have focused on a few of these features,
including spiking (the event-based communication of low-precision information
between neurons) and extreme parallelization of neurons (targeting >10° neurons per
chip), while constructing architectures that should be readily scalable. Interestingly,
unlike early neuromorphic efforts that focused on analog computing, the Intel and
IBM solutions, as well as a growing number of smaller academic efforts, are focusing
on leveraging the best of conventional computing (such as high-density CMOS
transistors and digital logic) in their designs.

While neuromorphic computing remains appealing to the broader research community
due to this low-power potential and its potential suitability to emerging artificial
intelligence (Al) applications, the point remains that neuromorphic hardware has
emerged as a potential solution without a clear application in mind. Currently, much of
the research in neuromorphic computing is focused on Al applications, which is

* Moore’s Law is the observation by Gordon Moore of Intel that the number of transistors in an integrated circuit
tends to double every couple of years[23] . This relates directly to the miniaturization of transistors over time and
the associated costs of fabricating smaller devices. While smaller devices are still being forecasted, the rate has been
slowing since approximately 2010, and the costs of smaller transistors are increasingly seen as prohibitive. Dennard
scaling is a parallel observation that smaller transistors require less power, keeping power density on hardware
constant [12]. Dennard scaling ceased to be valid around 2006; at which point thermal effects began to limit the
speed at which transistors could operate.

reasonable due to their structural similarities to artificial neural networks (ANNs) and
their ability to emulate other forms of neural computation that may emerge as critical
Al solutions [1]. Perhaps due to the association of neuromorphic computing with low-
precision analog computing or learning-dependent ANN algorithms, scientific
computing applications have received comparably little attention from the
neuromorphic community.

While the link between scientific computing and neuromorphic computing has
remained relatively unexplored, there is potentially significant value for using a new
low-power approach to computing tasks typically relegated to conventional CPUs and
GPUs. As seen in Figure 1.1 below, while HPC systems have grown dramatically
since 2005, the rate of growth of the world’s fastest supercomputer (per Top500.org)
has slowed considerably in recent years, falling below a trendline set from 2005-2011.
Part of this slowing can be explained by the high-power costs associated with large
HPC systems, which severely limits the growth of systems. An exception to this is the
recent #1 Summit machine at Oak Ridge, which achieved significant power savings
from heavy use of GPUs to achieve their performance. While GPUs are generally
programmable and can be highly efficient for many tasks, their benefits are not
ubiquitous, as will be discussed in later sections.

1000000 20000
18000
16000
000 14000 _
4 12000 2
g 10000 10000 3
E 8000 5
6000
1000 4000
2000
100 -~ 0
Jun-05 Jun-08 Jun-11 Jun-14 Jun-17

Axis Title

—e—Speed --eo--Trend 2005-2011 —e— Power

Figure 1-1: Speed and power costs of #1 Supercomputer from Top500 from 2005
until 2018. Note that aside from the 2018 leader (the GPU-heavy Summit
machine at ORNL), advancing HPC systems beyond 1 petaflops has required
significant increases in power.

This report considers the potential use of emerging neuromorphic computing hardware
for the use in solving scientific computing tasks. Specifically, we consider the specific
case where neural algorithms can provide solutions to the diffusion PDE through
modeling the random walk (RW) process. Diffusion is a critical component of many
scientific computing PDE problems, and the stochastic solutions leveraged in this
study are currently used in a number of application areas today.

10

There are three important findings of this project that the subsequent chapters will
expand on:

1. RW algorithms appear to be well-suited for neuromorphic architectures.

2. The neural perspective for algorithm design enables well-understood numerical
techniques to be reformulated, potentially yielding novel computational benefits.

3. Current neuromorphic platforms potentially are already competitive with current
HPC systems if scaled appropriately.

Combined, these findings strongly support the project’s ultimate conclusion that
neural algorithms, when leveraging neuromorphic hardware, merit full consideration
for scientific computing applications, especially at HPC scale.

11

12

2.1.

OVERVIEW OF NEUROMORPHIC HARDWARE

As neural-inspired algorithms have become more prevalent and more successful, there
has been a renewed focus on developing neural-inspired hardware. Various
neuromorphic architectures have been developed by industry as well as academia [17,
18]. This section provides a background of the neuromorphic computing field and
describes the basics of the emerging model of computation that these platforms will
enable.

History and overview of neuromorphic architectures

While core principals behind conventional computing have not changed dramatically
since the Von Neumann architecture was introduced in the middle of the 20" century;
the idea of basing future computing architectures on the brain has been discussed for
nearly as long. Von Neumann’s last scientific contribution was a series of lectures,
written but never delivered nor fully completed, on the topic “The Computer & the
Brain” [33]. This this work, written just prior to his death and in an era with limited
knowledge of neurobiology, von Neumann recognized several key aspects of the brain
that were distinct from the computers of his day, and indeed those that have followed.
First, the brain is clearly inherently highly parallel, making it markedly different than
the serial processing typically considered within computing. Second, neurons can be
thought of as logic units, albeit ones with considerably more complexity than
conventional Boolean logic. Third, time is non-trivial in biological neurons, though
the implications of this were unclear. Fourth, the brain’s memory must be of a
different form than that used in conventional systems at the time. And finally, the
brain seemed to benefit from a mixed digital / analog operation.

While von Neumann clearly identified many of the key features that would make
neuromorphic computing a viable alternative to his namesake architecture; his
observations were made several decades before there was sufficient neuroscience to
constrain those concepts or capabilities in microelectronics to implement features. The
first concerted effort towards neuromorphic computing, which is still felt today, was
by Carver Mead in the 1980s and early 1990s [21]. Mead’s work, and that of groups
derived from his, has focused primarily on the relationship of analog computing,
specifically sub-threshold transistor computing, with neuromorphic principles.
Arguably, the relationship created at this time between analog computing and
neuromorphic computing was so strong that the two concepts have been difficult to
dissociate to this day. Early on, much of this effort focused on the ability for analog
processors to emulate the analog dynamics observed in neuron electrophysiology, and
work focused primarily on instantiating individual neuron or synapse dynamics
efficiently. In recent years, there has been a more of an effort to scale these analog
approaches up to more application-useful scales. Of particular note are the Neurogrid
system out of Stanford [5] and the BrainScaleS system out of the Human Brain Project
[26]. While these systems can scale to a large number of neurons and operate at high
speeds, they tend to be spatially quite large due to the space required for analog
components (e.g., BrainScaleS uses wafer-scale integration).

13

An alternative approach that has seen renewed emphasis in recent years is to forego
the emphasis on analog computing and rather focus on the highly parallel
implementation of neurons using digital CMOS technology. While analog presumably
confers benefits in energy efficiency, analog components are challenging to fabricate
reliably and tend not to allow the same transistor density that digital approaches can
level. Digital neuromorphic platforms aim to achieve energy-efficiency instead by
leveraging event-driven communication through neuron spiking (described in detail
below). This approach has proven remarkably successful in seeing high-density, low-
power neuromorphic capabilities. The IBM TrueNorth chip, by leveraging a
hierarchical communication structure and spiking communication, has just over 1
million neurons per chip without embedded learning [22]; and the recently released
Intel Loihi chip has 128K neurons per chip with embedded learning capabilities [11].
Both of these chips are extremely low-power —TrueNorth operates around 100mW for
Instance.

The final approach to neuromorphic computing platforms that is broadly considered in
the field is the use of configurable conventional platforms, such as field-
programmable gate arrays (FPGAs) and specialized ARM processors, to streamline
neural computation. Often, these platforms are considered as intermediate design stage
that allow an architecture or system to be prototyped in advance of investing in an
application-specific integrated circuit (ASIC) that will be more efficient, such as
Sandia’s STPU neuromorphic FPGA architecture [16]. However, there is an
increasing appreciation in the community that there is no “ideal” neuromorphic
architecture, and as such a platform that preserves the flexibility of a programmable
FPGA or ARM design may be preferable in many application domains. The most
notable example of this is the SpiNNaker neuromorphic platform [14], from the
University of Manchester under the Human Brain Project. SpiNNaker is basically a
highly scalable parallel architecture of ARM-chips configured to perform lightweight
neural computation. The original, and still primary, intent of SpiNNaker is to achieve
realistic-scale simulations of biological neural circuits. Each SpiNNaker chip has 18
cores; 16 of which are committed to simulating ~250 neurons. SpiNNaker then uses a
sophisticated communication routing system to transmit information between neurons
in the systems, which can scale to thousands of chips.

It is important to note that while all three of these platforms (analog, digital, and
configurable) leverage modern fabrication capabilities to enable individual operations
to be performed very rapidly, the limiting factor in terms of time is most often the
communication. Whether a system is modeling the brain or performing abstract neural
computing applications, most often these platforms have algorithms that achieve
benefits from neurons communicating at effectively large distances on the chip. The
spike-based communication used in neuromorphic platforms is highly energy-
efficient, but typically speaking the numerous stages of routing (however
implemented) forces the processing to occur at a far slower rate than typically seen in
conventional electronics. For instance, while each SpiNNaker core operates around
180MHz, the overall SpiNNaker platform operates at a significantly slower speed
(~10k model updates per second). TrueNorth is similarly throttled back to run at
similar speeds to avoid collisions in the spike communication.

14

2.2,

2.2.1.

While each of these approaches as clear benefits and challenges; it is important to note
that the field is rapidly evolving. Each successive generation of neural processor adds
new capabilities (such as learning on Loihi) and pushes previous limitations in neuron
or synapse density and power. Further, these platforms are positioned to take
advantage of parallel efforts in microelectronics; such as the development of resistive
memory technology (ReRAM) [3, 13, 30]. Although memristors or other emerging
memory technologies such as phase-change devices are sometimes called
neuromorphic simply because of their energy-efficiency and analog nature; they are
not inherently neuromorphic in isolation. However, these technologies are potentially
very well-suited for achieving higher synapse density or even potentially more
compact neuronal dynamics [25]. Combined with the aforementioned neuromorphic
architectures, it is reasonable to expect that the capabilities of brain-inspired chips to
continue to improve in the near to medium term.

Core computation in neuromorphic hardware

There are two fundamental components that all neuromorphic platforms have to have:
neurons and synapses. How these two components are implemented and how these
neurons and synapses interact with one another differ considerably across
architectures, and not surprisingly the details of how neurons and synapses are
implemented on a given architecture often matter considerably when it comes to
whether a neural algorithm is an appropriate fit for a given hardware system. This
section describes each of these two conceptually and provide considerations of their
varying implementations, as well as a discussion about how neural algorithms can be
considered generically above the neural hardware considerations.

The neuron

As the name implies the workhorse of neuromorphic computing is the neuron itself.
Biological neurons are incredibly complex entities, exhibiting immense diversity in
dynamics (most neurons have action potentials, aka spikes, though several populations
do not), influence (some neurons have excitatory impact on targets, some are
inhibitory, and some “modulate” the computation of other neurons), and size (motor
neurons can extend for over a meter; certain interneurons are less than a few dozen
microns in size). This diversity is not necessarily surprising for a genetically-encoded
system, and it is perhaps advantageous within the organic, three-dimensional substrate
of the brain. However, this diversity does present a challenge to neuromorphic
hardware, as there cannot be a formal mathematical definition for what a neuron is
available from the neuroscience perspective.

From a neural computing perspective, it is useful to define the dynamics of a neuron
as follows:

dv(t
C ()/dt = Z Iions(t: V) + Isyn(t: V) + lienarites(t, V)
Where C is the capacitance of the neuron soma, V(z) is the neuron voltage, at time ¢,

Lions(t, V) represents the collection of ionic currents (i.e., Na+, K+, Cl- in a biological
neuron), Ly (t, V) is the synaptic input at ¢, and liendrires(?, V) 1s current that may be

15

2.2.2.

arising from some other part of the neuron, typically from the dendrites. Note how in
the general case, the local ionic currents, intracellular currents, and synaptic currents
are all potentially a function of the local voltage.

For a Hodgkin-Huxley neuron, the ionic currents are quite complex, requiring at least
several additional differential equations. When configured correctly, the structure of
those dynamics is sufficient to intrinsically produce an action potential, or the
neuron’s “spike,” when a voltage threshold is crossed. Further, simulating the
dynamics of a morphologically complex neuron often requires a large number of
spatial components, further increasing the size of the model. Likewise, a thorough
biophysical accounting of synapse dynamics can become complex, especially if
additional neurotransmitters, such as calcium which is involved in learning, are

considered.

For neuromorphic hardware, it is prudent to reduce the dynamical description as much
as is possible given the desired neural application. There are a rather large number of
reduced neural models that have been proposed, each aiming to maximally account for
a few aspects of neuronal computation while minimizing disruption to other behaviors.
Furthermore, there is a value to representing spikes discretely (i.e., as an “all or none”
event) for communication, as opposed to the extended action potential dynamics
present in a Hodgkin-Huxley formulation. For these reasons, artificial spiking neurons
typically have a form as follows:

av(t
C ()/dt = Isyn(tl V) — gleakv(t) + Idendrites(tz V)

fO=1

if (V(t) > Vthreshold) V(t) “V ;
rese

Where f(?) is the firing of a neuron at time ¢, Vinreshoia 1S the voltage at which a neuron
spikes, Viyeser 1S the voltage that the neuron takes after a spike, and gjeqx is the
conductance of an artificial “leak” current. This model, known as a “leaky-integrate
and fire” or LIF neuron, may take a similar form, but generally reduces the
computational complexity by consolidating ionic currents into a single “leak™ current
and by eliminating all of the dynamics associated with action potential generation and
recovery by a discontinuous discrete “spike” and “reset” operation. Further, many
implementations — although not all — treat neurons as “point neurons,” whereby there
are no compartments and thus no dendritic current. Similarly, most neuromorphic
implementations make simplifying assumptions on the synapses, as will be discussed
in the next section.

The synapse

While neurons are the source of the most substantial computation in neural models; in
practice the synaptic connections between neurons are typically the computationally
most prohibitive. This is the case for both biological models as well as neural
algorithms. Individually, even the most complex synapse model is generally far
simpler than its associated neuron model; however, there are typically hundreds or
thousands of synapses per neuron.

16

The complexity of synapse models can vary considerably, especially if the synapse is
capable of learning (through a mechanism such as spike-timing dependent plasticity or
long-term potentiation / depression). As the applications described here do not involve
learning, and as most neuromorphic chips do not leverage learning (although this is
changing) we will focus on basic non-learning synapse dynamics.

There are three general classes of synapse models that are worth considering for
neuromorphic hardware. First is what is known as a conductance based synapse,
whereby

Isyn () = gsyn(t) (Esyn - V()

_At
gsyn(t) = YGsyn,0€ /x

In this model, a spike opens a conductance of level gsyy o, Which progresses to

decreases exponentially from the time of the spike (At) according to the time constant
1. The associated synaptic current is then the product of the open conductance times
the difference of neuron’s voltage and the reversal potential of that synapse (more
precisely, the reversal potential of the neuromodulator associated with that synapse).
For instance, the reversal potential for glutamate, the standard excitatory transmitter, is
OmV, so the amount of current due to a glutamatergic synapse is proportional to the
neuron’s voltage. In contrast, the reversal potential for chlorine is roughly -80mV,
making the opening of that conductance inhibitory.

Conductance-based synapses are more biologically accurate and provide some
interesting dynamics such as shunting inhibition, but in general for neuromorphic
hardware they are somewhat more complex than desirable. For this reason, most
neuromorphic platforms simplify synapses. The second model widely used in neural
algorithms is the current-based synapse, whereby

dl t
syn()/dt = _Tlsyn(t) + fsource (t)Wsyn

Where the synaptic current exponentially decays according to t, while new synaptic
inputs are provided as a fixed delta function when the source neuron spikes (or offset
by an appropriate delay), multiplied by a synaptic weight, w. In this case, the weight is
not strictly a conductance, but rather a weighted value that increases the overall
current through that synapse. Importantly, this model for synapses allows all of the
similar synapses (i.e., the same 1) onto a neuron to be summed together easily and
efficiently, meaning that a neuron only need to keep track of the source activations and
one (or two) synaptic currents, not thousands of independent synaptic sources.

Finally, the simplest synapse model is the basic point synapse.

Isyn(t) = z fsource (t)Wsource,syn

sources

Point synapses are not particularly biological, rather they are more similar to artificial
neural net synapses. However, in neuromorphic hardware, they can be useful
approximations because there are no dynamics that have to be tracked — at any given

17

2.2.3.

time step the currents from active synapses are all accumulated and sent to the neuron
for processing.

While the computational complexity of these synapse types does not seem markedly
different, the large number of synapses in most neural algorithms makes the
differences quite striking. A point synapse is highly compact and, when combined
with event-driven computation, requires relatively few computing operations to
process. Further, compact memory technologies, such as SRAM or envisioned
ReRAM, likely will achieve maximal advantage by point-like synapses. In contrast, a
conductance based model requires several state variables and parameters, six or seven
operations per synapse per timestep, and the decay means that even when no spiking
events occur they must still be checked. Given that there are potentially millions of
synapses on a chip, these differences in complexity can become quite prohibitive. For
this reason, neuromorphic hardware has leaned towards the simpler synapses.

Connectivity

The final consideration around neuromorphic hardware concerns the routing of spikes.
While neurons and synapses are relatively local, consisting of a few state variables
that must be updated according to some rules at each time step, the connections
between neurons and synapses can be quite extended. In the brain, a typical neuron
receives ~10* synapses, and of these a large number are often what would be
considered “non-local,” in that they come from neurons that are located relatively far
away within the brain. The 3D configuration of the brain, coupled with the incredible
efficiency and reliability of axons (the output channels of neurons) makes this feasible.
However, on 2D silicon where long-distance communication is costly, the ability to
reliably and efficiently communicate from two arbitrary neurons is a non-trivial
challenge.

Like other design decisions, there are a few approaches to spike-based communication
on neuromorphic hardware. The most common historically has been “Address Event
Representation,” or AER. This protocol is simply that a spiking neuron communicates
its address (typically a binary neuron id), and the routing substrate then passes that
address by all other potential neurons (typically through some routing process) that
check if those neurons are on the receiving end of a spike from that source. While
AER is effective and increasingly a commonly-used standard for communication
between spiking sensors and hardware, it is not the only approach.

While AER is source-addressed, with all targets receiving it and checking for
suitability, communication on TrueNorth is destination-addressed, wherein a firing
neuron sends the spike off with a pre-set path to a target location. Once that spike hits
the target core (which consists of 256 possible neuron outputs), a cross-bar like lookup
mechanism is used to check which targets get activated. Other methods, such as
SpiNNaker and the STPU, use hybrid scheme by which a source address, like AER, is
used to communicate at large distances but then a subsequent routing set-up based on
the local chip architecture is used to distribute the spikes locally.

Unlike the neuron and synapse models, the precise manner of communication is more
of an architectural feature or cost that needs to be accounted for in forecasting

18

2.2.4.

performance, but it rarely disrupts an algorithm’s performance. That is unless a
hardware platform imposes restrictions on connectivity along one dimension or
another. In practice, all hardware platforms will have some limitation, however this is
more often the case with platforms such as TrueNorth, which restrict outputs to 256
targets (along with a few other restrictions).

Neuromorphic algorithm design

When considering the above descriptions, the potential programming of a
neuromorphic platform may seem both complex and unconstrained, particularly since
most well-known neural algorithms for computing (e.g., neural networks) do not
leverage many of the dynamics discussed here.

To simplify the discussion, the algorithms described in the following sections are
rather simple; using a simple LIF model with no spatial complexity. Some neurons in
these algorithms leverage decays (the “leaky” aspect), whereas other neurons are
strictly integrate-and-fire, with total decay between time-steps. All the synapses
described in the following sections are point synapses, without any intrinsic dynamics.

When considering very simple synapses and rather simple neurons, it is perhaps easier
to consider these neuromorphic platforms as very large-scale parallel machines, with
each “neuron” representing a very simple computational core that is capable of only a
very limited number of operations (basically, integrating over a set of inputs and a
thresholded output). Once this logical machine is considered, the challenge of
algorithm design is to construct a neuron circuit, or a neuron graph, that produces the
desired computation.

While the prospect of constructing an otherwise serial algorithm as a set of neurons
with hand-crafted connections between them is not a common practice, we have begun
to develop a series of algorithms with this approach. These include algorithms for
cross-correlation [27], optimization [32], sorting and related functions like max / min
[31], and matrix multiplication [24]. In many respects, these algorithms have
considerable similarity to the extensive work from the threshold gate community in
the 1980s and 1990s [28]; but in other ways the spike-based logic that is described
here often depends on leveraging the temporal dynamics conferred by a system of
neurons, even if their local activity has limited dynamics.

19

20

3.1.

3.2.

OVERVIEW OF RANDOM WALKS AND DIFFUSION

The classic random walk, a stochastic process, underlies many numerical
computational tasks. The random walk is a direct reflection of the underlying physical
process and models Brownian Motion, among other processes. Random walks have
found myriad applications across a range of scientific disciplines including computer
science, mathematics, physics, operations research, and economics[20]. For instance,
the treatment of ionic movements as a random walk process is critical to deriving
Nernst-Plank dynamics for ions in understanding the biophysics of neurons [19].
Additionally, random walks are also used in non-physics domains, such as financial
option pricing [6, 35] and ecology [9].

Random walks are typically straightforward to implement, and can be computationally
appealing in high dimensional domains that are ill-suited for other numerical
approaches. Because they are typically used to independently sample a population,
simulations of many random processes are easily distributed across a parallel machine;
with each computational core responsible for a distinct process. However, the utility of
multi-core systems for multi-agent models such as random walks is still limited in
many applications [8]. Most simulations that utilize random walks to statistically
arrive at a solution require the aggregation of a population of walkers before any
conclusions can be made. Thus, while the walkers themselves are easily parallelized,
the overall simulation is still constrained by the integration of information across the
population.

Random Walk Model

Consider a system, S, that consists of a mesh of discrete locations. For simplicity we
will consider the case where the mesh is a lattice of NV grid points along each of D
dimensions, although in practice a lattice is not a requirement. Within S is a population
that evolves through a random walk process that is suitable to model as a population of
independent particles, such as a diffusion process where each particle moves through
space according to a Brownian motion evolution. We consider only the case where
each particle is independent without interactions.

If a simulation models K independent particles, then the average position of the K
particles approaches the expected value of the population at a rate of O(K™*3) as a
consequence of the central limit theorem.

Rationale for Mapping Random Walks to Neuromorphic Hardware

Neuromorphic hardware presents a compelling architecture to consider the
implementation of random processes. In the ideal, a neuromorphic platform can be
viewed as an incredibly large parallel architecture, albeit one with very simple
processors (i.e., the neuron) [27]. In particular, we hypothesize that neuromorphic
platforms that leverage spiking neurons, such as the LIF neuron, and have inherent
capability for probabilistic sampling, such as either stochastic synapses or probabilistic
thresholds, may offer compelling advantages for modeling a random walk process.

This paper describes two spiking neural circuits for simulating random walkers. We
then analyze these models in the context of emerging neuromorphic computing

21

3.3.

architectures, such as the Intel Loihi chip [11] and the ARM-core based Manchester
SpiNNaker platform [14]. We note that the approach taken here for modeling
stochastic processes relies on relatively small circuits with very precise use of
stochastic events, whereas an alternative approach to modeling stochastic inference
consists of more dynamical population models of neurons [7].

Two perspectives of random walks

The following two chapters of this report describe spiking neural algorithms for
simulating the random walk process. Notably, they perform this simulation on a diff.

The particle algorithm (Section 4) simulates the random walk process by
committing a population of neurons to each walker to represent location (and
any other state variables), with potentially no neuron connectivity between
walkers. This approach is embarrassingly parallel over walkers, and it is
conceptually the same with the Monte Carlo simulations of Markov random
walk processes common on conventional platforms, including HPC
simulations (Figure 3-1).

P1 P2
e
“P17P2

Figure 3-1: Walker-centric basis for particle algorithm

Because this approach is conceptually the same as conventional random walk
simulation approaches, it also comes with comparable considerations and
overhead. Most notably, while the behavior of any given walker has some
value, particularly for path-dependent computations, for most PDE
applications what is desired is a population average or distribution over all of
the walkers. As a result, while the simulation of these walkers is entirely
parallelizable, the consolidation of information from all the walkers is an
additional cost that must be considered. Further, because the walkers are all
independent, the relationships between walkers (such as for interactions) is an
additional cost, potentially a substantial one, that must be considered if
interactions part of the model.

The density algorithm (Section 5) uses a distinct basis for computing the
random walk. Rather than committing a population of neurons to each walker
to represent location, the density algorithm rather commits a population of
walkers to each spatial location, such as a vertex in a mesh. This population of
neurons then can represent the probability density of particles at each location.

22

e o

Figure 3-2: Location-centric basis for density algorithm

The crux of the density method’s simulation is that at each time step, walkers
are moved from one location to another. For instance, in Figure 3-2, each
walker at location (0 has a probability of moving left (p;) or right (p2) at a given
time step. Upon the time-step initiation, the totality of walkers at location 0
(po) are then sent to its neighbors according to those probabilities, and the
neighbors likewise send walkers back according to their probabilities.

This approach is mathematically the same as the particle-based approach, but it
has different advantages and disadvantages. Most notably, the algorithm is no
longer embarrassingly parallel — it can only operate at the speed of the location
with them most walkers. However, it confers several key benefits. First, an
approximation of the local density of the walkers are what is represented
explicitly at every time-step; this is convenient as this is often the relevant
measure necessary for PDEs. Second, the locations being modeled do not need
to be Euclidean or even spatial — rather they can comprise any graphical
structure that has weighted probabilities of transitions. Finally, boundary
conditions, such as absorption or reflection conditions, can often be directly
instantiated in the graph itself, and identifying which particles may interact is
potentially encoded implicitly in the densities as well.

To illustrate that these two methods are effectively equivalent in approximating the
diffusion process, we implemented a simple random walk simulation in MATLAB,
whereby 2000 random walk processes starting at the origin were independently
simulated over the range [-1, 1] for 200 timesteps (Figure 3-4). As seen in the figure,
the mean of the population does not change, while the walkers begin to diverge
considerably from their stating location.

Figure 3-3 shows what the local densities of these particles look like over time for
different bins in space, and is what the output of the density method simulation of this
would produce directly. In cases where this histogram representation of the probability
density is the desired output of a simulation, the density method directly provides an
approximation of that over time.

23

2000 diffusing walkers

15 T T T T T
——— Walker mean
— — Several individual paths
1+ VU\ i
/\I\l iy 2 N
/ =g RNA
i \'\[\/\AJ N ,/ \ My v
F NV \
05 / \ /\AX,\/ :‘\ /\b \ - - IJ A
n Y. ST v A
f"{v‘i /f‘/ /</[W\\(IA// \\/// ;\W)\\ 4 \/ V\A\// \‘}////\j\?'}\[/%ﬂ\/ L T /
/7 ~ W a1 A =5 n N s
XM i b [M) T I il
T W& WA ~ / N 7N Nard g N
A v
e W e D I 4 '
% \w V] d ' \/V \,\/‘\’/L’// v
\/\ A
)
.05+ \ . 4
\ I
N N
DL /w“\/“
\J N\ ol \\/\ \\ f\\/‘/ﬂ
A V o \f -
_15 1 1 1 1 L 1 1 L 1
0 0.2 0.4 0.6 0.8 1 12 14 1.6 1.8 2
t

Figure 3-4: Example walkers of 2000 walker Monte Carlo
simulation.

Relative probability histogram for 2000 diffusing walkers

Temporal snapshots

Figure 3-3: Approximated density derived from 2000 walker
simulation

24

41.

PARTICLE METHOD NEURAL ALGORITHM

The most straightforward approach to modeling a random walk is to commit a subset
of neurons to modeling each particle independently. A simple neural algorithm for a
particle consists of three parts: the stochastic process, which determines what random
action is taken, a spatial location, which tracks the location, and an action circuit,
which updates the location based on the output of the stochastic process and any
boundary conditions, if relevant.

In most implementations, the dominating neuron cost for simulating individual
walkers will be the spatial location. Even if particles are relatively restricted in their
local movements, each particle circuit must be able to represent all spatial locations
that are relevant for the simulation. Thus, if space (i.e., number of neurons) is the
primary consideration, a compact code, such as a binary representation is well suited,
as it requires only O(D log N) neurons to represent space. However, a binary code is
non-trivial to update using neurons, and the average activity of the network is
relatively dense. Alternatively, a unary code --- where one neuron represents each
spatial location --- can be highly energy efficient (only one spike required to
communicate location) and straightforward to update, albeit spatially impractical
(requires O(N”) neurons to represent space).

Here, we present a neural algorithm that lies between these extremes, offering a
compromise between a binary and unary representation of space.

Algorithm Description

One potential model that lies between unary and binary is a modular code, also known
as a residue numeral system. Our approach to implementing a modular code is shown
in Figure 4-1. This model is inspired by a model for grid cells in the entorhinal cortex
brain, which has been shown to have very high capacity for spatial locations relative to
the more unary-like place cells in the hippocampus [29].

For each dimension, the particle circuit will have M ring oscillators, each with a
unique prime number of neurons, C; for i < M, with states at time ¢, c;(z) for i < M with
the combined state represented by the vector C(t)=/ci(t), c2(?), ..., cu(t)], where each
state is the integer index of which neuron is active in each ring. This provides the
circuit with Cyy=/1(C;) possible states. For example, consider a particle with M=3 and
C1=3, C>=5, and C3=7, then the particle's spatial code would have Cy=105 possible
states.

25

Walker

Reference

Figure 4-1: Modular position circuit. Each walker consists of M rings of
different lenghts (lengths are co-prime). At each time step, each ring
advances by one unless there is a particle movement. The position of the
walker can be computed by computing the difference of the ring positions
of the walker and a reference walker (i.e., set at the origin). The set of
differences forms a modular code; in this case [0,5,5] out of a [5, 7, 11]
modular basis. This code would represent a shift of +35.

To implement the random walk in neurons, we consider the case where a position x is
encoded by the offset between the particle's state vector C and an equivalently sized
reference population, R, which consists of rings of the same size. At each time-step,
for the state of each ring oscillator in the reference and particles advances by one,

Ci(t) +1, lf ¢ < Ci
0, otherwise

ci(t+1)={

The position, x is then generated from C and R by subtracting the two states. For each
oscillator, a difference

6 =(c;i—m)

is computed, from which we know, by the Chinese Remainder Theorem, that the
position, x, can be decoded. (One useful reference may be pages 873-876 in [10].) One
extension of residual codes such as these is that addition and multiplication involving
x can be performed by the equivalent modular arithmetic operation on each of the
component rings. Therefore, a change of Ax in the position of a walker can be
represented by adding Ax to each of the states ci(?).

26

Structuring a neural circuit to advance a ring oscillator continuously is
straightforward, with each ring of C; size being comprised of C; LIF neurons (see
Section 2.2.1)connected in a ring configuration, with the synaptic efficacy being
sufficient to drive the downstream neuron to fire. However, a non-obvious circuit is
necessary to reliably speed up or slow down the oscillators if the random walk moves
the location. Figure 4-2 shows one circuit solution that uses spike delays to "add' and
“subtract' to the position of the ring by one using spike delays. The integrate-and-fire
neurons in this circuit all have a spiking threshold of 7, a reset value of 0, and
immediate decay (i.e., a time constant of (). In this implementation, a ring neuron at
location 7 is connected to the neuron at i+/ with a weight /, and to the neuron at i+2
and to itself with weight 0.5. Each of these ring connections has a delay of 2. With this
setup, without any other inputs the ring will advance by one state every 2 clock cycles.

O

Left? Right?

w=5
d=1

w=5
d=1

Figure 4-2: Update circuit for neural rings. At least 3 (up to 5) pairs of
update neurons are required within each ring oscillator. For each ring
neuron, a positive shift and a negative shift neuron are associated with it.
The activation of a given update neuron (through coincident activation of
the assigned ring neuron and an update ‘left’ or ‘right’ signal) then will
bias the ring’s activation forward or back by one neuron according to the
circuit shown here.

A secondary circuit is then placed on all rings of a walker to advance or stall the
circuit (thus generating an offset relative to the reference). We consider here the case
where the particle has three potential movements ("left', ‘right', or “stay'); with a
source neuron for each direction using a stochastic threshold or synapse to determine
whether to move in one direction or not and communicating that action to each of the
particle's rings for that dimension. The currently active ring neuron, i, sends an input
of weight 0.5 and delay / to both of its respective update neurons. In the case where
the circuit is advanced (labeled right' in Figure 4-2), all positive update neurons get a
0.5 input as well, allowing the appropriate positive update neuron to fire. That neuron
then sends a +0.5 to the i+2 ring neuron and a -0.5 to the i+/ ring neuron, effectively
shifting the ring forward by /. The negative update is similar, except for driving the
source i neuron rather than the i+2 neuron.

27

4.2.

Importantly, because the rings are only locally activated and impact up to two ring
neurons away, these update neurons can be reused every three ring neurons.
Ultimately, this means either four or five pairs of update neurons are required, because
there are a prime number of ring neurons.

The dynamical representation of position as the offset of these oscillators confers
several advantages. First, it is consistent with the transient state of neurons. Rather
than a neuron having to self-activate to maintain a state, the ring simply evolves at a
steady rate when position is not changing. Second, it allows updates to be more
efficiently implemented. When there is a random movement of the particle, in
whatever dimension is being considered, the particle's rings are in unison accelerated
or decelerated by one. The use of a common reference for all particles also allows
changes in the frame-of-reference to be efficiently accounted for as well — a simple
shift in the reference state is the equivalent of shifting all the particles in unison. This
may be of use in models where an observer of a random walk is itself in motion.
Similarly, because the reference is used only in the decoding of position, it is possible
to have multiple references, or to readily compute the distance between particles
without using a reference at all.

Theoretical Assessment

Each walker for the above model requires 2+2(C;+2*(3+C; % 3)) neurons and
2(9*Ci+2*(3+ Ci % 3)) synapses. Only one spike is required per ring, for M total,
when there are no updates, and M+ additional spikes required for an update.

There is a global cost as well, with an additional set of rings for the reference position
(although unless the reference position is also in motion, update neurons would not be
required). Each dimension would consist of its own rings.

This model presents a useful trade-off between a dense code, with lots of rings, and a
sparse code, which is more energy efficient but requires more neurons to cover a
space. The dense code would approach O(D log N) total neurons, with systems with
fewer rings approaching O(DxN) total neurons and with a correspondingly lower
number of spikes. Table 4-1 highlights the complexity of particle walkers in the
formulation described here.

Table 4-1: Theoretical Complexity of Particle Algorithm

Measure Cost (for k locations; 1-D case)
Position memory per walker O(k*(1/N)), where N is # rings of length s , s.t. I (s)>k
Connection memory per walker Z, (9%s +2*(3+s_mod 3))
Total neurons per walker 2+% (s +2%(3+s_mod 3))
Time per physical timestep 2
Position energy per timestep O(N)
Update energy per timestep O(N)

28

4.3.

Table 4-2 provides specific examples of the required neuron and activity costs of three
small random walk configurations using the algorithm described above. For instance,

Table 4-2: Example Scaling of Particle Algorithms

Measure k=1000,1D | k=1000, 2D k=10000, 1D
Modular set {7, 11, 13} {7,11,13} x2 | {17, 23, 29}
Position memory per walker 1001 1002001 11339
Connection memory per walker 293 583 639
Total neurons per walker 59 118 101
Time per physical timestep 2 2 2
Position energy per timestep 3 6 3
Update energy per timestep 3 3 3

Simulation Results

First, we demonstrate the particle method by showing a random walk in free space.
Figure 4-3A illustrates the appropriate random trajectories of the particles over 100
time steps. Figure 4-3B shows a longer time course, with particles moving for 1000
time steps.

One key limitation of the modular method described above is its behavior when a
walker's position exceeds the precision of the neural circuit. Because the modular code
described above has a finite capacity, eventually particles in a free space will drift
beyond the provided spatial resolution, wrapping around the space as if it is a torus.
An example of this is shown in Figure 4-3C, wherein a small modular code (rings of
size 3 and 7) led to a perceived jump of the particle from position -/0 to +10.

Next, we illustrate how more complex walks can be examined, such as non-uniform
probabilities. Figure 4-3D shows a case where random movement is biased heavily in
the negative direction, with the movement of the particles drifting as a population
towards the bottom left.

29

1900000 +

-50 -0 -30 -20 -10 0 10

Figure 4-3: (A) Random walk of 20 particles over 100 time steps in free space
originating at the origin, with a balanced probability of moving in either
dimension equal to 0.25. Each particle used rings of size 5, 7, and 11
neurons. Steps are represented by progressively larger circles, with the solid
dot representing the end location. (B) Random walk of 20 particles over 1000
time steps in free space originating at the origin, with a balanced probability
of moving in either dimension equal to 0.25. Each particle used rings of size
5, 7, and 11 neurons. (C) Random walk of 2 particles over 50 time steps in
free space originating at the origin, with a balanced probability of moving in
either dimension equal to 0.25. Each particle used rings of size 3 and 7. Note
the misencoding of the blue particle due to reaching the capacity of the code.
(D) Random walk of 50 particles over 200 time steps in free space originating
at the origin, with a weighted probability (of 20%) of moving in the negative
direction in each dimension, versus 5% of moving in the positive direction.
Each particle used rings of size 5, 7, and 11 neurons.

Boundary Condition Implications

The particle method described here was designed to be a proof-of-principle
implementation of efficient updating and encoding of walker location in a finite
number of neurons. Real-world applications require two additional features to the
model. For most applications, such as radiation transport or molecular dynamics, the
model will have to account not only for spatial location, but also additional state
variables. For this algorithm, additional state variables are rather trivial — they are just
another set of rings that are either deterministically or stochastically updated according

30

to whatever model is being implemented. The number and sizes of rings required
would be a function of the necessary precision of that state variable, and would not
necessarily need to equal what is used for spatial resolution.

In this current structure, boundary conditions were not an emphasis. Because position
is encoded as the difference between the ring states and that of a reference, a decoder
circuit would be required in this implementation to check for boundary conditions; and

Reference
o 0%e
o o (o) (-) [} (] #
= @ 0 v & .
00 0 %eie> 5 o aten
Walker (1) 0%o 0 cee .
o 0 0 {10) L .
A= (c) (5) o . o,
00 e %00° ’
As,=0 As;=5 As;=5 o
l 15 -
-20 -10 0 10 20 30 40
15
Boundary
if £x;=3 then
walker at 10 =
boundary o9 S
5 esscse .
’Nalker Newe ke
o o o - sre s ..
V 0 (5} Ty G

=
Boundary ANN wHeTSTONE

o0 . () J"’/Probabilities

0 ‘ pEErEt et
.“‘ooo. ’ :'.':':.'5.5'.'
‘ / e eas araa

5 R i

e "_ o 0%o0
Lo g) B | | [iilTiLTal

0 _/ € o Sy S
< ° O R P

o Y o é_) Q 0

-15
-20 -10 0 10 20 30 40

Figure 4-4: Illustration of boundary conditions in particle method.
Transforming the rings to static unless moved enables a new set of
neurons to ""check"” if a boundary has been hit; which in turn biases
probabilities of moving. Right - illustration of particles released in a box
with a single hole to escape. Boundaries represented by a check neuron
to block movement at y=10, y=-11, x=15, x=-15, and a subset of neurons
to undo the block at x=15, y=[-3:0]

31

4.5.

that circuit would presumably have to scale with the complexity of boundaries being
checked.

However, an alternative approach is readily available. An equivalent algorithm to the
constantly evolving rings described here is one that steps forward or backwards along
the rings only if the walker is moved (thus the active neuron does not change on a
static walker). This may introduce complications related to neuron load balancing —
certain neurons will be active more than others — but it does eliminate the need to
check for a reference. In this case, each walker could get a set of neurons that check
for whether the current state of the rings equals a pre-determined boundary check (i.e.,
does the x-position equal a boundary x-position), and if so, then change the behavior
of the particle accordingly. As shown in Figure 4-4, these boundary check neurons
can actually be an artificial neural network trained to represent the boundaries.

SpiNNaker Results

To examine the hardware suitability of the particle algorithm, we implemented it on
the 48-chip SpiNNaker platform housed in the Neural Exploration Research
Laboratory at Sandia. SpiNNaker provided an interesting challenge because although
at its core it is a highly parallel neuron simulator, its programming stack is optimized
for biological neural simulations using a neural simulation description tool known as
PyNN. PyNN, and its associated SpiNNaker interface known as sPyNNaker, presented
a few interesting research challenges that led to rethinking some aspects of the particle
algorithm.

Our initial programming of SpiNNaker was limited because the default synapse types
available on the platform have synaptic decays, but at the close of the project we have
developed a PyNN neuron part that does allow point synapses. Point synapses are
particularly critical in the timing of the particle algorithm, since anything but absolute
resetting of synapses between time-points will cause the network timing to drift. We
were able to avoid much of this on SpiNNaker through two changes to the algorithm.
First, we set all decays between neurons to Sms or 10ms (as opposed to 1 ms or 2 ms),
which slowed down the computation considerably but allowed sufficient decay to
effectively reset the synapses. Second, we added a special population of neurons that
offset the problems associated with stochastic source neurons firing two time-steps in
a row, which, when combined with incomplete decay, would disrupt the bias neurons.
We anticipate that both of these alterations — that reduce the efficiency of SpiNNaker
— to be unnecessary in the future due to our new dynamics-free synapse type.

An additional challenge was that the sSPyNNaker programming process prefers
defining a small subset of neuronal populations with common dynamical parameters,
and then it distributes those populations over the available cores. Because of
SpiNNaker’s configuration, it is generally preferred to have only one neuron type per
core, and no more than 250 neurons per core. Our implementation on SpiNNaker
initially required 3 populations — one population for the stochastic inputs, the
aforementioned population to “separate” the stochastic inputs, and one very large
population of all of the ring and update neurons. This skewed distribution led to a

32

somewhat challenged graph embedding problem. Simply stated, the compiling of
neurons across walkers eliminates the embarrassingly parallel structure of the network
model, but keeping the walker neurons separated underutilizes cores due to the small
number of stochastic neurons per walker.

In theory, if we assume that each walker requires less than 250 neurons; adding the
K+1 walker to the existing K on the board, so long as we are under capacity, should be
trivial, since there is no circuitry between the walkers. However, this is not the case as
shown by Figure 4-5. While loading around 100-200 walkers is quick, any loading
beyond that rapidly becomes slower, reaching prohibitive levels (~1 hour to perform
the network embedding on SpiNNaker) when reaching about 10% of the board’s
capacity.

In addition to these compilation time challenges, we have encountered other
challenges in maximally leveraging SpiNNaker’s capacity, suggesting that a different
approach to structuring the models should be considered in the future.

4500

4000
g 3500
i— 3000
_S 2500 @
T 2000
Q.
£ 1500
o
O 1000 s

500 5
0 amecs®
0 20000 40000 60000 80000 100000
Number of Neurons

Figure 4-5: Scaling of compilation time, in seconds, on Spinnaker due to
the number of neurons. The different colors relate to the number of
neurons per walker, which does not appear to affect the compilation time.

These challenges aside, the SpiNNaker experiment was successful, showing that we
could indeed implement the particle method on the SpiNNaker platform and simulate
for extended periods of time. As shown in Figure 4-6, SpiNNaker’s random walk
simulation performs as expected, with particles diffusing through the expected random
walk process according to the built-in biases on the network. Once compiled onto the
board, the simulations ran in constant time regardless of how many walkers were
being simulated, albeit relatively slowly due to the throttled back speed of SpiNNaker
and the aforementioned extended delays to offset the synapse dynamics.

33

In conclusion, the use of SpiNNaker for prototyping these random walk models is a
reasonable course of action, because it does impose rigorous adherence to the
requirements of a neuromorphic platform, and it provides a relatively straightforward
programming interface. In particular, now that some of the limitations associated with
sPyNNaker’s assumption of biophysically relevant dynamics have been bypassed, it is
likely that SpiNNaker will be more efficient from a testing point of view.

Figure 4-6: lllustration of random walks on SpiNNaker, 250 walkers, 1250
time steps, rings of size 11, 13, and 17 in both dimensions. Top is no bias,
bottom is a significant bias to up and right.

That said, the relatively low neuron densities per chip will probably preclude
application use of SpiNNaker as is today in real-world applications. Each chip has 16
cores committed to neuron simulations, which each handling about 250 neurons. Even
if ignoring the graphical restrictions, at most this would allow about 1 core per walker
for the 2-D simulations shown above. 16 walkers per chip is not a sufficient simulation
paradigm, especially if the chip is running between kHz and MHz speed. Rather, the
use case of SpiNNaker likely requires a significant change in either the architecture or
the network mapping. For instance, if SpiNNaker 2.0, which is underdevelopment,
indeed can provide an order of magnitude more neurons per core as has been
suggested, it is possible that a chip may be able to run several hundred walkers at one
time. Further, if those cores could be structured to take advantage of the fact that all
communication would be local (as opposed to chip-to-chip), then the chip speed could
potentially be increased considerably. Each chip running ~1,000 walkers at MHz
speeds would then potentially be a viable substrate for real-world applications, though
it remains to be seen what future SpiNNaker hardware specifications will be.

34

5.1.

5.1.1.

DENSITY METHOD NEURAL ALGORITHM

One alternative to tracking the particles independently is to keep track of the density
of particles at every location and randomly move walkers. The main advantage of a
particle density approach is that the complexity of the spatial graph, in terms of
number of neurons, is independent of the number of walkers. While a density
representation is the equivalent of the particle method in terms of producing estimated
density distributions at different times, path dependent statistics are not readily
available. Instead, they must be decoded from the timing of the spikes. This can
impact some application, such as estimating the prices of certain path-dependent
financial options. On the other hand, summary statistics, particularly the number of
walkers at a location at a timestep, are inherent in the local activity of network. Hence,
walker information does not need to be collected and synchronized for this data.

Algorithm Description

Circuit-Level Description

As in the particle model, we need to either discretize a continuous space or
equivalently assume that the Markov process exists on a graph. For each node on the
graph, we instantiate a spiking circuit which we call a unit. A schematic of a two-
neighbor unit is pictured in Figure 5-1. Within a component there exists several key
components:

From Other
Units Rasdont To Other Units

I T A A A

] 1
|} |}
] 1
] 1
1]
.]]
Supervisor Walker] :
Generator ' '
Walker : :
Counter | |
; ;
Output
Gates
Supervisor

Probability Gate

Figure 5-1: Diagram of density algorithm.

1. Walker Counter - The walker counter is a simple neuron with threshold 0 and
contains running count of the number of walkers at a given node. Walkers are
passed from unit to unit by spikes with negative weight (inhibitory signal). Hence,

35

a sub-threshold potential of -5 corresponds with 5 walkers being at the
corresponding node.

2. Walker Generator - The walker generator is a self-excitatory neuron that "counts'
out the walkers stored in the walker counter. After being initiated by a separate
supervisory signal, the walker counter sends positively weighted spikes to the
walker counter, until the walker counter hits its threshold. At this point, all walkers
have started their next transition and inhibition from the walker counter halts the
walker generator.

3. Probability Gate and Output Gate - This group of neurons interacts with the
output gates to ensure that each walker is sent to exactly one other unit, weighted
by the specified probabilities. More specifically, a tree of neurons subdivides
(through selective excitation and inhibition) the potential outputs according to
conditional probabilities. In Figure 5-1, the unit only has two neighbors and so
only one neuron is needed for the random draw.

4. Buffer - The buffer is an optional component for synchronized operation. Without
the buffer, the walkers may each take a different number of steps. By incorporating
a buffer, the walkers are first stored in the counter, sent to buffers of neighbor
units, and then flushed from the buffers into the counters. Structurally, the buffer
contains a counter and generator neuron.

5.1.2. Temporal Description

In the density method, rather than tracking each individual walker's position at any
given point in time, we can instead keep track of the nodes on the graph and count
how many walkers are at each node at any given point in time. When we are running
the spiking simulation, we embed a spiking circuit that is located at each node in the
graph. An outline of a frame of the random walk simulation utilizing the density
method is described below.

1. Aninjected current starts initial walkers at a given node in graph by sending
signals to walker generator neurons and walker counter neurons

2. Walkers are distributed throughout the circuit at that node through excitatory
signals from the walker generator neurons

3. When a signal is received by output gate neurons, their potentials are modified

4. 1If the output gate neuron's thresholds are met, the output gate neurons
determine whether or not to spike based on a certain probability (discussed in
next section)

5. [If the neurons spike, a signal is sent from the output gate neurons in the current
circuit to the determined walker generator neurons and walker counter neurons
at the neighboring node's circuit

A simulation using this density model is performed as a series of manually or
automatically triggered tasks. Initially, current injection is used to place walkers at the
desired initial position. Then, walkers are counted and distributed by sending an

36

5.1.3.

5.2.

5.3.

excitatory signal to the walker counter and walker generator. This automatically sends
walkers to neighboring nodes via the probability gate and output gate. We connect a
“walks complete' neuron downstream of the walker counters so that we know when all
the walkers have been distributed. If the units use synchronization buffers, the buffers
are cleared in the same way via an excitatory signal. Likewise, when the buffer is
flushed, we use the resulting excitatory signal to trigger the next simulation timestep
(i.e. the walkers take their next step). Referring to the terminology of the particle
model, the stochastic process occurs within the probability gates, the spatial location is
stored in the potentials of the walker counters, as each unit has a location, and the
action circuit is a combination of the walker generator and the output gates.

Stochastic Neuron Requirements

For this construction, we assume that the underlying neuron model is capable of
stochastic firing. That is, after a threshold potential is exceeded, the neuron spikes
according to the draw of a random number. This stochastic model is representative of
currently available neuromorphic hardware. However, with more advanced neuron
models, such as one that supports stochastic synapses (i.e., spikes are sent to post-
synaptic neurons according to independent random draws) could allow for simplified
circuits.

Additionally, we note that the stochastic spiking mechanism can be induced by a
several other stochastic components. For example, on TrueNorth, we utilize stochastic
positive leak to produce a reliable stochastic signal. This signal is integrated by
downstream neurons whose behavior is effectively a stochastic spike. Similar methods
can be used for stochastic thresholds, delays, and dendrites with implementations
dependent on target hardware.

Theoretical Assessment

This density-based approach allows for the neuron requirement to be tied only to the
size of the underlying space/graph and not to the number of walkers. Overall, the
neuron cost for a n-node graph is O(n) assuming the number of neighbors for any node
is much smaller than the total number of nodes. The runtime is dependent on the
number and distribution of walkers. The time taken to evaluate one simulation
timestep is asymptotically linearly proportional to the largest number of walkers at a
node.

Results

To examine the density model, we first explored a one-dimensional space where nodes
are connected in a cycle, with transitions to adjacent nodes having a 50% probability.
Pictured in Figure 5-2 is the distribution of walkers with units /0 and /3 being
initialized with 30 walkers each. Only the Markov simulation time is shown. The
checkerboarding seen is a result of the fact that each node is connected only to two
neighbor nodes, and any given walker must move to one of these two options.

37

, Distribution of Walkers

I N
l

] [19
Simulation Timestep

Figure 5-2: Walker distribution over time for a one-dimensional
random walk, with 50% probability in both up and down directions.
Walkers begin on units 10 and 13. Units are arranged spatially in a
cycle so that walkers can "wrap around.

The corresponding spike raster for the 1D case is shown in Figure 5-3. As expected,
the walkers tend towards a uniform distribution. Figure 5-3 also illustrates how time

Spike Raster Plot

Neuron

Timestep

Figure 5-3: The spike raster plot for a one-dimensional random walk, with 50%
probability in both up and down directions. Walkers begin on units 10 and 13.
Black dots represent spike events; red dots represent failed probability calls (i.e.,
neuron threshold is met, but the neuron does not spike due to stochasticity).
Neurons are grouped by unit, but are not sorted. Each simulation time step
requires fewer computational time steps as walkers become more diffuse.

38

5.4.

Figure 5-4: Sample walker distributions from two separate two-dimensional
experiments. In the first row, 30 walkers start on units (5,5), (5,15), (10, 10),
(15, 5), (15,15); directions up, down, left, right have probabilities 35%, 35 %,
15%, 15% respectively. In the second row, the simulation has the same setup,
except there are two obstacles (highlighted in blue). The walkers have 0
probability to enter the highlighted areas; the probability to enter a wall is
distributed evenly to the perpendicular directions.

is treated differently the density method. The amount of simulation time required to
model one-time step of the system evolution is non-deterministic, requiring enough
time to potentially move all particles within any given location. Because the system
progresses forward synchronously for spatial locations, the model time required to
advance is dependent on the distribution of walkers. Because we are modeling a
random walk, most simulations will drift towards more diffuse distributions, requiring
progressively less time to simulate the model.

Figure 5-4 illustrates two time-courses of the density model in two dimensions on a
torus. The top half shows an instance where the probabilities are uniform across the
space (though weighted towards the up and left directions). The bottom half explores a
case where walkers are prevented from entering two disjoint obstacles. In Figure 5-5,
we plot the walker density at three different locations.

Boundary Condition Implications

In contrast to the particle method described above, spatial boundary conditions are
readily implemented within the density method. As each neural circuit includes
representations of the probabilities associated with its spatial location, the inclusion of
location dependent behaviors — such as a wall or absorption condition — are
straightforward. For most of these simple boundaries, configuring the graph should be
sufficient.

39

5.5.

Walker Distribution Over Time (Free Space)

— (3,5)
(3,15)
- (5,10)

Number of Walkers

t T T T T t T T —T — T T T — —T —t
0 10 20 30 40

Walker Distribution Over Time (with Obstacles)

— (3,5)
(3,15)
43 — (5,10)

Number of Walkers
- ~ @ o
i

E \ " ' A

— 1
0 10 20 30 40

Simulation Timestep

Figure 5-5: Plotted are the number of walkers over time at three
different locations. The top graph corresponds to the top row of
Figure 5-4, as the bottom graph does with the bottom row. The
evolution of the walker distribution affected by the additional
obstacles.

However, while spatial boundary conditions are straightforward, the implicit
representation of walkers within the activity of neurons in each spatial location makes
carrying additional state variables along with each walker non-trivial. One obvious
technique would be to simply expand the mesh to account for the extra dimensionality
conferred by state variables. In cases where the precision of these parameters is rather
low, this may work; however, in cases where the additional states for each walk are
high an alternative technique may need to be considered. The consideration of higher
dimensional models will be a subject of future study.

TrueNorth Results

IBM's TrueNorth neuromorphic architecture [2] consists of 22° neurons on a single
chip. This 1 million neuron chip subdivides the neurons across 4096 cores with 256
neurons per core. Neuron connectivity is limited and creates a challenging effort to
map unconstrained neural algorithms into this architecture. As a result, when
implementing scalable algorithms there is always a tradeoff between efficient use of
resources and mapping complexity. This complexity is manifested in the Corelet
Programming Environment [4], a MATLAB programming tool set for defining the
neural connectivity for TrueNorth implementations of any given neural algorithm.

Based on the algorithmic description covered in section 5.1, three implementations of
the algorithm were created: a one-dimensional case composed of two directions, a

40

two-dimensional case composed of four directions, and a two-dimensional case
composed of eight directions. The number of walkers placed at each node and the
directional probabilities of each node are completely parametrized allowing full
customization of each node in the defined topology. Each case implemented the buffer

coced PN | A Aed
H "

LS > I eaeanad
. .
. .
. .

B T)

Figure 5-6: A scalable buffer functionality implementation in TrueNorth. Top left of
figure indicates a base implementation of the buffer functionality mapped into a single
TrueNorth core. Color coding of bounding lines indicate how each functional piece
of the buffer is represented in the multi-core scaled implementation.

41

functionality to time-synchronize the walkers; all walker movements complete before
another round of walker movements begins. Due to the limit connectivity nature of the
TrueNorth architecture the buffer functionality must be split across multiple cores
when scaling the algorithm to a very large number of nodes. As a result, the buffer
function of the algorithm inherently has a large amount of wasted resources. See
Figure 5-6 for the structural layout of the buffer functionality on TrueNorth.

For simplicity of scalability, all nodes were confined within the limits of one core,
though multiple cores are used to achieve higher node counts. For the 1D case, 13
neurons per node are used resulting in 19 nodes per core. For the 2D case with 4
directions, 21 neurons per node are used resulting in 12 nodes per core. For the 2D
case with 8 directions, 37 neurons per node are used resulting in 6 nodes per core.
Because the number of directions are tied to a binary tree structure, the number of
directions increase by powers of 2. This scaling equation can be written as the number
of neurons per node is equal to 5 + 4D where D is in the set of all powers of 2 that are
greater than 1.

The 1D case is easy to visualize by looking at the spike raster plot output of the
experiment. The location of spike outputs directly indicates the walkers’ location in
space. When each segment of time is laid out in series, an image is created detailing
the walkers path. The image in Figure 5-7 is somewhat of an illusion since the
movement is occurring over a 1D space. Though, this image is equivalent to a 2D
mesh of nodes in which walkers can move in only two directions, right-up or right-
down.

The 2D case is a good representation of the tree structure expressed in a TrueNorth
Corelet. Figure 5-8 details the functional mapping of a random walker node on to a

150 o+ no PR AERL

4

Figure 5-7: A 1D random walk example. The landscape is composed of 400 nodes
with 50 walkers each starting at nodes 150 and 250. At every node, each walker has
an equal probability of moving left or right. The trial is executed over 10,000 ticks
or neural clock cycles where 1 tick takes Ims to complete. Because all walker
movement is synchronized by a buffer supervisor, this example consists of 378 buffer
synchronization steps.

42

Density Method Node
Configuration on TrueNorth

1 -
(] ey
ol @ ®
o i
[5) 2 3 >
[6) . 2 %
[8) >
(9} *-1-©
B *
(1) . an
) ®
B @
) B
(15}
From ={ .
2 ’ 116
Neighboring ey "
EYS,
Nodes @ .
P19]
»)
[
From [B ; 3
Buffer \1231557391011“5515:713192011
|| LP Output
Stochastic Tree Nodes —» To
Relay Tree Nodes » Buffer
A Stochastic Generators
Directional Output Nodes i ;-;’ _
Command and Control Neurons il
Nodes

i._} Boundary of the Tree Structure

Figure 5-8: Graphical representation of a TrueNorth crossbar configuration
implementing a node supporting the density method. Green circles represent
excitatory connections and yellow circles represent inhibitory connections. All
neuron thresholds are set at a value of 1, except in the case of the Stochastic
Tree Nodes, which have a threshold value of 2. Neuron to axon connectivity
for neuron/axon indexes of 1 — 14 are mapped one to one.

TrueNorth crossbar configuration. The neural connectivity of the tree structure is
confined within the red dashed-line bounding box. All other connections support the
interface with the buffer, neighboring nodes, and the host output.

Utilizing the node structure of Figure 5-8 a 2D mesh was constructed consisting of
22,500 nodes in a 150 by 150 square landscape. Five initial walkers were placed at
every node and unique probabilities defined based on the Sandia logo of the Thunder
Bird shown in Figure 5-9. Probabilities were defined so that walkers had a greater
likely-hood of crossing edge boundaries towards the black regions of the image of
Figure 5-9. Each pixel of the image surrounded by the same color defined equal
probability of moving in all directions. The experiment was run over 10,000
TrueNorth time steps. Eight frames of the time series were extracted to illustrate the
evolution of the walker’s movement in Figure 5-10. This example utilized 2,233

43

TrueNorth cores and produced a total of 22 million (22,005,161) output spikes in 10
seconds of run time. A similar example to this but utilizing an 800 x 800 image, or
640,000 nodes is expected to utilize 63,378 TrueNorth cores and be implemented on
the 16 TrueNorth chip board hosted at Lawrence Livermore National Labs.

In the algorithmic description of the density method it
is defined that a tree structure is utilized to subdivide
the potential outputs according to conditional
probabilities. This structure creates a log(d), where
d is the number of directions, time delay from initial
excitation spike to the node and the output spike of
the walker along a single direction. Additionally, it
requires d — 1 stochastic neurons. Through
Figure 5-9: Sandia implementation of this algorithm onto TrueNorth a
Thunderbird image used to different structure was discovered that is based on the
define unique probabilities ~ binary encoding of directions. This approach
for each node. produces a constant-time time delay of 2 and only
requires log(d) stochastic neurons. However, the
tradeoff is that the probability definitions for each
direction become more coupled and much harder to tune through direct manipulation
of the stochastic neurons.

The binary encoding of direction works by treating each stochastic neuron as a bit in a
binary string. Based on the combination of neural firings of the stochastic neurons a
binary value is produced. Each unique binary value represents a direction. For
example, two stochastic neurons will produce a 2-bit binary value and we can encode
directions as follows: Up (0 0), Down (0 1), Left (1 0), and Right (1 1). The TrueNorth

Frame: 1 Frame: 2 Frame: 3 Frame 4:

. . . l ‘
Py S e o :
by [| i

Frame: 21 Frame: 51 Frame: 101 Frame: 163

Figure 5-10: Evolution of walker movements on a 150 x 150 2D mesh
with node probabilities defined to "encourage' the creation of the
Sandia Thunder Bird logo. Black pixels are an absence of walkers and
white pixels are a presence of 20 or more walkers.

44

crossbar configuration for this structure is defined in Figure 5-11. Notice that in
contrast to the tree structure defined in Figure 5-8, no relay neurons are utilized and
for the same four directions, 16 neurons are used instead of 21.

Binary Encoding of Direction,
TrueNorth Node Configuration

From
Buffer

From ‘
Neighboring
Nodes

A\ Stochastic Tree Nodes
A Stochastic Generators

4. Directional Output Nodes : - To
A Command and Control Neurons | _: Neighboring

Nodes

Figure 5-11: Binary encoding of directions in a TrueNorth crossbar
configuration. Green circles represent excitatory connections and yellow
circles represent inhibitory connections. All neuron thresholds are set at
a value of 1, except in the case of the Stochastic Tree Nodes, which have
a threshold value of 2. Neuron to axon connectivity for neuron/axon
indexes of 1 — 9 are mapped one to one.

45

46

APPLICATION IMPACT

Comparison of Particle and Density Methods

Notably, the two models of random walks shown here are functionally equivalent, but
each offer advantages under particular circumstances. For instance, the number of
neurons required for density method scales with spatial resolution, and the number of
particles being modeled is dynamically accounted for in the time required for the
model to run. This configuration may thus be well-suited for neuromorphic systems
whose neurons are capped at a fixed level whereas the time a simulation can be run is
flexible. Thus, the number of particles can be tuned to achieve the statistical
significance demanded by an application. Alternatively, the particle method models
each walker independently, thus the time for a simulation to run is independent of the
number of walkers so long as there are sufficient neurons to represent the requisite
spatial resolution within each neuron.

There are several reasons beyond scaling that one method may be preferable to the
other. While perhaps not as obvious, the paths taken by individual particles are
preserved within the spike timings of the density method; however, the behavior of
individual paths is directly retrievable from the particle methods. This is of use in
models of certain path-dependent financial options for instance [15]. On the other
hand, for many applications the density of walkers at a given spatial location and time
is the critical output of stochastic process models. The density method by its nature
provides an estimation of the density at all locations of the space at all times, whereas
the particle method would require a subsequent integration of information from all of
the independent circuits.

Finally, the two models here each offer compelling potential advantages on different
neuromorphic platforms, such as the IBM TrueNorth chip [22], Intel's Loihi chip [11],
Sandia's STPU architecture [16], and the Manchester SpiNNaker platform [14]. The
mapping of these algorithms to spiking neuromorphic systems will be a subject of a
future study. However, we anticipate that these algorithms should map well to these
and other platforms, as the highly parallel nature of random walk processes makes
them well suited for neuromorphic architectures. We conclude by highlighting the
point that the efficient implementation of a strictly numerical process such as the
random walk on neuromorphic hardware would represent a major new capability for
systems generally designed to implement tasks such as neural processing and machine
learning.

47

6.2. Consideration towards Radiation Transport and Molecular Dynamics

Simple RW Model:
Uniform space, no internal state

L

b iy
e’ | | e
Realistic RW Model:

Non-uniform space, relevant internal state

L

Figure 6-1: lllustration of additional
model details necessary for random
walk simulation of radiation transport

A significant application area for applying neuromorphic hardware simulations of
random walks would be domains such as radiation transport and molecular dynamics.
In radiation transport, established code bases implement Monte Carlo simulation of
photons traversing through a physical space, with random perturbations based on the
energy of particles and the local parameters (e.g., density) of a spatial location. The
parallel simulation of many non-interacting particles is well-suited for our candidate
stochastic algorithms; however, these algorithms and their associated theoretical
analysis are only partially applicable. As shown in Figure 6-1, the dependency of the
RW on local spatial structure and an internal state of the particle (that changes over
time) is a complexity that requires accounting for in our stochastic models, and
accordingly may impact the theoretical trade-offs associated with our candidate
methods. One reason that radiation transport is of particular interest is that its Monte
Carlo requirements are not particularly well-suited for GPU acceleration, which is
what future HPC platforms are beginning to emphasize. Part of the mismatch between
GPUs and random walk simulations lies in the divergent behavior of independently
simulated particles — GPUs are ideal when the same operations can be performed on a
subset of data, but in the case of divergent random walks, no matter how well balanced
initially, the individual particles will begin to behave differently.

A second application domain worth considering is molecular dynamics. Molecular
dynamics simulations, such as Direct Simulation Monte Carlo (DSMC) typically
leverage a random walk step and then an interaction step. Because potential
interactions scale worse than particle movements, the random walk stage is generally
not seen as the limiting cost in these models. However, the density algorithm in

48

6.3.

6.3.1.

particular would also appear to have advantages in implicitly identifying which
particles may interact (i.e., spatially co-located).

We have done some preliminary scoping of our algorithms against the SPARTA
DSMC code-base benchmarks (http://sparta.sandia.gov/bench.html), in which they
quantify the suitability of different HPC platforms on weak- and strong-scaling of the
diffusion process of DSMC. In these benchmarks, they determined that state-of-the-art
HPC nodes (either Mira at Argonne National Laboratory or Chama at Sandia National
Laboratories) can perform roughly 100 million particle moves per second per node
over a 1M grid cell mesh. Through back-of-envelope calculations, we can determine
that the TrueNorth implementations described above, if scaled to 1M grid cells, would
require about 40 TrueNorth chips and could match the HPC node throughput. While
40 TrueNorth chips is a lot to match a single node (and suggests that not enough
TrueNorth chips exist globally to match a decent HPC system), the overall power of
that theoretical 40 TrueNorth board would be at least an order-of-magnitude lower
than the corresponding HPC node (<5 Watts vs >100 Watts for the HPC node).

Notably this benchmark assessment is preliminary, and our random walk model is not
designed with the same precision and state-variables as the DSMC codes. However,
this result does suggest that there is a viable path forward for such implementations,
particularly since neither TrueNorth nor our algorithms are optimized for this
application.

Density Method - Graphs?

One strength of the density method is that the algorithm makes no assumptions about
the structure of the underlying graph. Hence, the method readily extends to random
walks on arbitrary (di-)graphs. This notion provides many potential application spaces.

Finding the Shortest Path

The task of finding the shortest path between nodes is a classic graph problem with
many real-world applications (e.g. navigation, recommendations). Spiking network
algorithms to compute shortest path are easy to write (maybe a citation?) but rely on
the ability to send arbitrarily many spikes. In practice, on-chip spike routers will likely
get overwhelmed in such a situation, limiting the size of a potential graph search.
Instead, we look to approximate the shortest path using our random walk mechanism.
The process is simple: Assume we want to know the shortest path between nodes 4
and B. Start n walkers at node 4. Run the simulation until a walker appears at node B.
The time it takes for this to occur is an upper bound on the shortest path.

49

e e
Wkermedisey
- Targer nado

Figure 6-2: Shortest path in graph found with density algorithm

6.3.2. Triangle Inclusion

The algorithm in 6.4.1 can be easily extended to detect if a node is located within a
triangle of the graph. We simply look for paths of length 3 starting and end at node A.

-y

Figure 6-3: Triangle counting with density algorithm

Though, we note that this is just an approximation and that the probability of correctly
determining inclusion is dependent on the shape of the graph and the number of initial
walkers n.

50

6.3.3.

6.3.4.

Graph Partitioning

Figure 6-4: Graph partitioning with density algorithm

Additionally, we can use the algorithm 6.4.1 to as a method for graph partitioning. The
goal of graph partitioning is to divide a graph into two (or more) subgraphs. However,
gauging the quality of the partitioning is difficult, with many different accepted
application-specific metrics. Instead of targeting a particular metric, we approach this
generally and note that many different graph partitioning schemes depend on distances
between nodes which we can compute readily. We have implemented a simple
threshold-based partitioning scheme were nodes that are close (estimated shortest path
is below a pre-set threshold) are determined to be in one partition and the remainder is
in the other.

Image Segmentation

Random walks are also an effective method for image segmentation (separating
objects of interest from the background). We devised a simple, density-method
compatible, image segmentation algorithm. For this, the pixels are each represented by
a node on the graph, and the probability of transition is determined by the relative
pixel intensity. Initial walkers are distributed through the graph either randomly or
uniformly. When the simulation is run, the walkers tend towards darker areas of the
image, and we the density of walkers will provide the segmentation. Note, however,
that this is different than a threshold segmentation algorithm due to the local
differencing and the stochastic nature.

51

52

CONCLUSION

In this project, this project has demonstrated that small-scale neural circuits can
efficiently and scalably implement random walk simulations. While this paper does
not examine other aspects of stochastic process models that are critical for many
applications, such as complex boundary conditions and interactions between particles,
the models in this paper are designed to be extended towards such considerations.

The primary results of this report are best described as a “proof-of-principle.” The
algorithms here are designed to illustrate the scalability and feasibility of these
different perspectives on simulating random walks on neuromorphic hardware. They
are not optimized, and the fact they appear to have some scaling advantages over
conventional approaches already is somewhat surprising. Further, as has been
mentioned before, these algorithms are not yet configured to accepted other real-world
considerations, such as boundary conditions or additional state variables.
Nevertheless, the results we see here suggest that these additional considerations
should be feasible, if not straightforward, to implement.

FUGU 6\

Numerical Computing Applications I
I N - — I

)
E g L/
Splklng Neuromorphlc Platforms J
j=—}
Figure 7-1: Conceptual illustration of Fugu programming
stack for neuromorphic hardware. The random walk

algorithms described here would fit into the intermediate levels
of this approach.

Real-world leveraging of these approaches will require more than just more
sophisticated and optimized algorithms. First, a more accessible programming
paradigm by which general computer scientists and physicists can leverage these
approaches is critical. Neural computing is “weird,” and it cannot be expected that an
expert in a given application area will be familiar with encoding their problem as a
dynamic neural graph. For this reason, a more sophisticated software stack will be
required for the community to adopt new techniques such as this. In parallel efforts at
Sandia, some of the authors of this report have begun to develop a software interface
for neuromorphic hardware known as Fugu (Fugu being the Japanese name of
pufferfish, which is both a “spiky” animal as well as the source of tetrodotoxin, a

53

chemical useful in neuroscience studies of neuron spiking dynamics). The random
walk algorithms described here, along with other spiking neural algorithms we have
developed for simple numerical kernels, are an example of the middle-stage of the
Fugu pipeline (Figure 7-1). Ideally, to use these algorithms, a user would only need to
make a simple function call from C++ or Python to produce the appropriate neural
circuit of random walkers, and that then gets compiled on the hardware.

54

10.

11,

12.

13.

14.

15

16.

REFERENCES

Aimone, J.B. Exponential scaling of neural algorithms-a future beyond Moore's Law?
arXiv preprint arXiv:1705.02042.

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P., Imam, N.,
Nakamura, Y., Datta, P. and Nam, G.-J. Truenorth: Design and tool flow of a 65 mw 1
million neuron programmable neurosynaptic chip. I[EEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 34 (10). 1537-1557.

Ambrogio, S., Narayanan, P., Tsai, H., Shelby, R.M., Boybat, 1., Nolfo, C., Sidler, S.,
Giordano, M., Bodini, M. and Farinha, N.C. Equivalent-accuracy accelerated neural-
network training using analogue memory. Nature, 558 (7708). 60.

Amir, A., Datta, P., Risk, W.P., Cassidy, A.S., Kusnitz, J.A., Esser, S.K., Andreopoulos,
A., Wong, T.M., Flickner, M. and Alvarez-Icaza, R., Cognitive computing programming
paradigm: a corelet language for composing networks of neurosynaptic cores. in Neural
Networks (IJCNN), The 2013 International Joint Conference on, (2013), IEEE, 1-10.
Benjamin, B.V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran, A.R., Bussat, J.-
M., Alvarez-Icaza, R., Arthur, J.V., Merolla, P.A. and Boahen, K. Neurogrid: A mixed-
analog-digital multichip system for large-scale neural simulations. Proceedings of the
IEEE, 102 (5). 699-716.

Black, F. and Scholes, M. The pricing of options and corporate liabilities. Journal of
political economy, 81 (3). 637-654.

Buesing, L., Bill, J., Nessler, B. and Maass, W. Neural dynamics as sampling: a model for
stochastic computation in recurrent networks of spiking neurons. PLoS computational
biology, 7 (11). €1002211.

Chuang, T. and Fukuda, M., A parallel multi-agent spatial simulation environment for
cluster systems. in Computational Science and Engineering (CSE), 2013 IEEE 16th
International Conference on, (2013), IEEE, 143-150.

Codling, E.A., Plank, M.J. and Benhamou, S. Random walk models in biology. Journal of
the Royal Society Interface, 5 (25). 813-834.

Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C. Introduction to algorithms second
edition, The MIT Press, 2001.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S.H., Dimou, G., Joshi,
P., Imam, N. and Jain, S. Loihi: A Neuromorphic Manycore Processor with On-Chip
Learning. /[EEE Micro, 38 (1). 82-99.

Dennard, R.H., Gaensslen, F.H., Rideout, V.L., Bassous, E. and LeBlanc, A.R. Design of
ion-implanted MOSFET's with very small physical dimensions. IEEE Journal of Solid-
State Circuits, 9 (5). 256-268.

Edwards, A.H., Barnaby, H.J., Campbell, K.A., Kozicki, M.N., Liu, W. and Marinella,
M.J. Reconfigurable memristive device technologies. Proceedings of the IEEE, 103 (7).
1004-1033.

Furber, S.B., Lester, D.R., Plana, L.A., Garside, J.D., Painkras, E., Temple, S. and Brown,
A.D. Overview of the spinnaker system architecture. [EEE Transactions on Computers, 62
(12). 2454-2467.

Goldman, M.B., Sosin, H.B. and Gatto, M.A. Path dependent options:“Buy at the low, sell
at the high”. The Journal of Finance, 34 (5). 1111-1127.

Hill, A.J., Donaldson, J.W., Rothganger, F.H., Vineyard, C.M., Follett, D.R., Follett, P.L.,
Smith, M.R., Verzi, S.J., Severa, W. and Wang, F., A Spike-Timing Neuromorphic

55

17.

18.

19.
20.

21.
22.

23

24.

235

26.

20

28.

29.

30.

31.

32.

33.
34.

Architecture. in Rebooting Computing (ICRC), 2017 IEEE International Conference on,
(2017), IEEE, 1-8.

Indiveri, G., Linares-Barranco, B., Hamilton, T.J., van Schaik, A., Etienne-Cummings, R.,
Delbruck, T., Liu, S.-C., Dudek, P., Hifliger, P. and Renaud, S. Neuromorphic Silicon
Neuron Circuits. Frontiers in Neuroscience, 5. 73.

James, C.D., Aimone, J.B., Miner, N.E., Vineyard, C.M., Rothganger, F.H., Carlson, K.D.,
Mulder, S.A., Draelos, T.J., Faust, A. and Marinella, M.J. A historical survey of algorithms
and hardware architectures for neural-inspired and neuromorphic computing applications.
Biologically Inspired Cognitive Architectures.

Johnston, D. and Wu, S.M.-S. Foundations of cellular neurophysiology. MIT press, 1994.
Masuda, N., Porter, M.A. and Lambiotte, R. Random walks and diffusion on networks.
Physics Reports.

Mead, C. Neuromorphic electronic systems. Proceedings of the IEEE, 78 (10). 1629-1636.
Merolla, P.A., Arthur, J.V., Alvarez-Icaza, R., Cassidy, A.S., Sawada, J., Akopyan, F.,
Jackson, B.L., Imam, N., Guo, C. and Nakamura, Y. A million spiking-neuron integrated
circuit with a scalable communication network and interface. Science, 345 (6197). 668-
673.

Moore, G.E., Progress in digital integrated electronics. in Electron Devices Meeting,
(1975), 11-13.

Parekh, O., Phillips, C.A., James, C.D. and Aimone, J.B., Constant-Depth and Subcubic-
Size Threshold Circuits for Matrix Multiplication. in Proceedings of the 30th on
Symposium on Parallelism in Algorithms and Architectures, (2018), ACM, 67-76.
Pickett, M.D., Medeiros-Ribeiro, G. and Williams, R.S. A scalable neuristor built with
Mott memristors. Nature materials, 12 (2). 114.

Schemmel, J., Briiderle, D., Griibl, A., Hock, M., Meier, K. and Millner, S., A wafer-scale
neuromorphic hardware system for large-scale neural modeling. in Proceedings of 2010
IEEFE International Symposium on Circuits and Systems, (2010), IEEE, 1947-1950.
Severa, W., Parekh, O., Carlson, K.D., James, C.D. and Aimone, J.B., Spiking network
algorithms for scientific computing. in Rebooting Computing (ICRC), IEEE International
Conference on, (2016), IEEE, 1-8.

Siu, K.-Y., Roychowdhury, V. and Kailath, T. Discrete neural computation: a theoretical
foundation. Prentice-Hall, Inc., 1995.

Sreenivasan, S. and Fiete, 1. Grid cells generate an analog error-correcting code for
singularly precise neural computation. Nature neuroscience, 14 (10). 1330.

van de Burgt, Y., Lubberman, E., Fuller, E.J., Keene, S.T., Faria, G.C., Agarwal, S.,
Marinella, M.J., Talin, A.A. and Salleo, A. A non-volatile organic electrochemical device
as a low-voltage artificial synapse for neuromorphic computing. Nature materials, 16 (4).
414.

Verzi, S.J., Rothganger, F., Parekh, O.D., Quach, T.-T., Miner, N.E., Vineyard, C.M.,
James, C.D. and Aimone, J.B. Computing with spikes: The advantage of fine-grained
timing. Neural computation. 1-31.

Verzi, S.J., Vineyard, C.M., Vugrin, E.D., Galiardi, M., James, C.D. and Aimone, J.B.,
Optimization-based computation with spiking neurons. in Neural Networks (IJCNN), 2017
International Joint Conference on, (2017), IEEE, 2015-2022.

Von Neumann, J. The computer and the brain. Yale University Press, 2012.

Waldrop, M.M. The chips are down for Moore’s law. Nature News, 530 (7589). 144.

56

35. Wilmott, P., Howison, S. and Dewynne, J. The mathematics of financial derivatives: a
student introduction. Cambridge university press, 1995.

57

DISTRIBUTION

1 MS0899 Technical Library 9536 (electronic copy)
1 MS0359 D. Chavez, LDRD Office 1911

1 MSO0161 Legal Technology Transfer Center 11500

58

@ Sandia National Laboratories

