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Z-Backlighter Facility
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200TW 
Target Area Z-Backlighter

Target Area

OSF

Total:
19400ft2 or 1800m2 Only 12 Permanent Staff



From Beamlet to Z-Beamlet

 The Beamlet Laser was conceived by LLNL in the 1990s as the 
prototype laser for the National Ignition Facility (NIF).

 It was operated from 1994-1997 and later shipped to Sandia 
National Laboratories where is was rebuilt and started it’s life 
as Z-Beamlet in 2001. 
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Beamlet Laser at LLNL Z-Beamlet Laser at SNL



Basic Z-Beamlet Architecture
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Backlighting of various HED events
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▪ 36 modules 

▪ 11-27 MA, 22 MJ electrical energy

▪ 100-300 ns pulse lengths

▪ Staff: ≈250

▪ ≈150 shots per year

▪ Large array of diagnostics for power & energy, 

spectroscopy, imaging, shock, neutrons + high-

energy laser



Backlighting of various HED events

 Point-projection was first used to image HED events
 Advantage: Most simple to implement

 Disadvantage: Low resolution, small FOV, detector damage
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Point-Projection to Crystal Imaging

 Early point-projection images lagged resolution and SNR

 As a result, crystal backlighting was developed in 2003.

7Bent crystal x-ray imaging improves monochromaticity, resolution, and field of view



Single Frame Backlighting

8

ICF Implosion Studies

Rad-hydro Jet Studies



Taming the unique Z environment
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Pre-shot photo of target hardware Post-shot photo

spherical crystals laser target + camera

return aperture towards image plate detector



Optics Support Facility

 A steady supply of AR-coated debris shields and vacuum 
windows is needed: 50/year of each

 To this end, the Z-Backlighter facility installed a 90” coating 
chamber into a Class 100 cleanroom area with optical 
metrology capabilities.

10



Optics Support Facility

 Coatings: 
 Materials: HfO2/SiO2, (Al2O3, TiO2, Nb2O5, Ta2O5) also used

 Deposition methods: e-beam, ion-assisted deposition e-beam 

 Single-run size capability: 3 optics at 94 cm, 1 at 1.5 m option

 Metrology: Spectrophotometer, Large-area reflectometer, 
Interferometer

 Independent ns-laser damage testing (SPICA) shows good  
damage thresholds:
 17-25 J/cm2 for AR coatings 

 75-85 J/cm2 for HR coatings

 Newest coating developments:
 Broad bandwidth mirrors for fs-class PW laser pulses (RAL)

 Dual wavelength beam splitter coatings for 527 and 1054 nm
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Two-frame Backlighting

 Pretty soon, experimenters asked for multi-frame backlighting
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Two-frame Backlighting
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Foils

Shielded
Film

Imaging 
Crystals

t=8ns

X-ray sources:
 Si Heα (1.865 keV) and/or 
 Mn Heα (6.151 keV)

Imaging parameters: 
 FOV: 11.7 x 4 mm
 Magnification: 5.8
 Spatial resolution: 12 µm 



Higher Energy Backlighting (7.2keV)

 Now that we have two frames, how about higher energy?

 Development of 7.2 keV backlighting followed.

 Specifications:
 7.242 keV Co He-α resonance

 Ge (335) crystal imager

 Bragg angle close to 1.87 keV

and 6.15 keV systems, 

facilitating two-color 

radiography
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~1 cm
‘Drive’ B-Field from

Z-Machine (azimuthal)

Polyimide Laser
Entrance Hole (‘LEH’)

Beryllium liner

4-12 atm. Deuterium

‘Seeded’ B-Field
(axial)

From Diagnostic to Fusion: MagLIF



 B-Field from Z machine drive 
current starts to compress the 
Be lines and fuel

 Z-Beamlet injects several kJ of 
energy at 527nm into fuel
 Magnetization of fuel

 Minimizes heat conduction losses

 B-Field compression

 Stagnation temperature is 
proportional to initial 
temperature

Magnetized Liner Inertial Fusion



 Fuel compresses to densities 
and temperatures enabling 
thermonuclear fusion

Magnetized Liner Inertial Fusion

0
-1s -1ms -1µs -1ns

B-field
laser
compression



Magnetized Liner Inertial Fusion

S. Slutz et al.: Physics of Plasmas 17, 056303 (2010)

Magnetization
Laser

Heating Compression

 Point Design:
 30 Tesla initial magnetic field

 Laser heating of ~3 mg/cm3 D2

fuel produces ~250 eV plasma

 Thick (AR=6) Be liner with R0=2.7 
mm, peak velocity ~100 km/s for 
a 27 MA peak current drive

 At stagnation the fuel absorbs 
120 kJ, reaches 8 keV and ~0.5 
g/cm3, and is highly magnetized 
at 13500 Tesla

 Yields >100 kJ predicted in 2D



Backlighter Driver: SBS suppression

 High intensity laser beams generate acoustic waves in a large 
aperture medium so that the waves can amplify, leading to 
optical scattering, energy instability, and optical damage.
 Estimated SBS threshold for a desired 4ns FWHM pulse: 5.2kJ

 Adding spectral sidebands is needed for SBS suppression
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Design for PM and Heterodyne

Detector Provides 
Signal for Locking 
Etalon to Sideband

8 GHz 
Detector

Fiber Laser
≥ 80 mW

Phase Modulator 12.8 GHz

Fiber 
Amp
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Phase Modulator 14.8 GHz
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SBS suppression: Results

 Achieved FM->AM compensation in fiber transport and regen 
by installing a grating compressor and a BRF

 Tested PM failsafe system

 Demonstrated 5.6/4.2kJ at 1/2 with 3.6ns pulsewidth
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Adding Boosters for Z-Beamlet

 SBS suppression allows up to 5 booster amplifiers, each 
adding about 500J of stored energy (11+5)*500J=8kJ at 
1054nm
 Maximum extractable energy: 6 kJ at 527nm

 One booster was activated this last year using spare circuits

 Further booster activation would require a modification of 
the PW amplifiers in order to free up pulsed power circuits.



Long Pulse to Short Pulse

 Based on the early success with ZBL, it was decided to build a 
short pulse, PW class system.
 Higher temporal resolution

 Less motion blurring

 Higher x-ray energies possible

 Approach:
 Use the existing Beamlet main amplifiers and put a short pulse front 

end on.
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Petawatt Basic Architecture

 Laser Parameters:
 ZPW: <500 J @ 1053nm, 

0.5-200ps, 41 x 41 cm2

 200TW: <150 J @ 1053nm,

0.5ps, 15 cm round

 Co-injection: <500 J 

527nm, 2ns , 15cm round

 I ≈ 1020 W/cm2 @ 1ω

 Application:
 >8keV Backlighting

 High field physics (TNSA)

 Dynamic Diffraction
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OPCPA front end

 What so see is “not always” what you get…

 OPCPA was delivered running at 11.5 Hz, because repetition 
rate was used in order to control thermal lensing in amps.

 Hence, we had to “invent” a simple variable deformable 
mirror
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retainer

pusher

optic

housing



OPCPA front end: re-design

 Old/New schematic for CPA operation
 Improved spectral bandwidth, energy and pointing stability

 Less laser damage, higher temporal/spectral control
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Debris mitigation in Z environment

 Short pulse requires

ultra-thin debris shields

 Nitrocellulose @ 17inch dia.
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15.7keV Backlighting demonstrated

 Laser parameters:
 70-200 J, 500 fs or 15 ps

 I ≈ 1020 W/cm2

 X-ray spectrometers:
 flat HOPG: ZYA grade, 2nd order

 CRITR: cylindr. α-Quartz 1011 Resolution: 80 m

 Single Photon Counter (SPC)

 X-ray imagers:
 15.7 keV Ge 220 backlighter

 15.7 keV Quartz 3140 imager

 8 keV Quartz 2131 imager

 Total number of Kα photons: (1.1±0.3)×1013

 Laser-to-photon conversion efficiency: (2.8±0.8)×10-4
28



25keV point-projection

 100TW laser focused on a 500x500x100m3 Tin target
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Victims of our own success

 Even though ZPW was able to demonstrate adequate debris 
mitigation and high energy x-ray radiography, it was never 
used as an experimental diagnostic in Z.

 The reasons for that were:
 Complex focusing parabola alignment adds to the tight Z-timeline

 Simulated image contrast was too low because x-ray energy was TOO 
high for many applications

 ZBL worked very reliable and produced consistent great results

 No experimenter wants to “give up” shots to fully develop the new 
capability
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Proton Acceleration via TNSA

 200 TW @ 1020 W/cm2

 Thermal spectrum up 65MeV

 ≈ 1013 protons total

 Beam divergence ±30o
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p+

3D data unfolding



Proton Deflectometry on Z

 Modeling of protons, ions and electrons in Z B-field
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40MeV proton tracking results in a 20Ma Z-pinch implosion



MagLIF saves the day…

 The “standard” MagLIF concept relies on the fact that a 200J 
pre-pulse, 3.5 ns prior to the main pulse (limited by pinhole 
closure in main amps) can disassemble the laser entry 
window.

 Detailed studies show that this concept has strong limitations.
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Laser Plasma Interactions @ window

 One can see how LPI reduces with decreasing laser intensity
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Long Pulse PW for MagLIF

 The temporal pre-pulse limit (3.5ns) could be lifted, if we had 
a second, independent long pulse laser.

 Idea: Modify ZPW to operate in long pulse mode and co-inject 
into the ZBL beamline.

 Modified OPCPA to work

as SLM seeded OPA.
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ZBL – ZPW co-injection

 We co-inject (co-bore) ZPW with ZBL by means of a dichroic 
combiner
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Dichroic mirror reflects
1054 nm, transmits 527.

KDP Crystal converts Z-Petawatt
to 527 nm without affecting
Z-Beamlet.

Rejected residual 1054 nm
from Z-Beamlet



ZBL – ZPW co-injection: Success

 The ability to inject a pre-pulse at around -20ns and -32.5ns 
showed a dramatic improvement in plasma shape and plasma 
penetration depth.
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Dynamic x-ray diffraction

 Dynamic x-ray diffraction for high Z materials is currently 
being developed
 To achieve the needed x-ray penetration depth, one has to use a PW 

class laser system
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Everyone wants PW…

 As a result, the ZPW is now a vital part of ICF and dynamic 
material research. 
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Z-Backlighter Facility Target Area

100TW area

Target Bay

Jemez 
Chamber

Chaco 
Chamber

Conchas
Chamber

Chama 
Chamber

Pecos 
Chamber

ZPW

ZBL

Chama Chamber 
and beam transport

Pecos Chamber



Conclusion

 Your facility will be constantly evolving: Plan for that!

 Your experimenters may want something different from what 
you thought they did when you did the initial planning
 Every “crazy” new request is an opportunity to build “know how” and 

infrastructure capability

 Be adaptable and flexible

 You have an amazing facility: Go, have fun with it!
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