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From Beamlet to Z-Beamlet ) i,

= The Beamlet Laser was conceived by LLNL in the 1990s as the
prototype laser for the National Ignition Facility (NIF).

= |t was operated from 1994-1997 and later shipped to Sandia
National Laboratories where is was rebuilt and started it’s life
as Z-Beamlet in 2001.
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Z-Beamlet Laser at SNL

Beamlet Laser at LLNL




Basic Z-Beamlet Architecture

<6 kJ every 4 hours
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Backlighting of various HED events @&,

= 36 modules
e w—— = 11-27 MA, 22 MJ electrical energy
A “\\\im Em bk ) = 100-300 ns pulse lengths
= RS - S(aff. =250
P +¥_ = =150 shots per year
. Large array of diagnostics for power & energy,
spectroscopy, imaging, shock, neutrons + high-

energy laser
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Backlighting of various HED events

= Point-projection was first used to image HED events
= Advantage: Most simple to implement
= Disadvantage: Low resolution, small FOV, detector damage
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Point-Projection to Crystal Imaging @&

= Early point-projection images lagged resolution and SNR
= As a result, crystal backlighting was developed in 2003.
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Single Frame Backlighting .

Z1526 Preshot




Taming the unique Z environment @&

Pre-shot photo of target hardware Post-shot photo

spherical crystals laser target + camera

return aperture towards image plate detector




Optics Support Facility )

= A steady supply of AR-coated debris shields and vacuum
windows is needed: 50/year of each

= To this end, the Z-Backlighter facility installed a 90” coating
chamber into a Class 100 cleanroom area with optical
metrology capabilities.
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Optics Support Facility )

= Coatings:
= Materials: Hf02/Si02, (Al203, TiO2, Nb205, Ta205) also used
= Deposition methods: e-beam, ion-assisted deposition e-beam
= Single-run size capability: 3 optics at 94 cm, 1 at 1.5 m option

= Metrology: Spectrophotometer, Large-area reflectometer,
Interferometer

= |ndependent ns-laser damage testing (SPICA) shows good
damage thresholds:
= 17-25 J/cm?2 for AR coatings
= 75-85 J/cm2 for HR coatings

= Newest coating developments:

= Broad bandwidth mirrors for fs-class PW laser pulses (RAL)

= Dual wavelength beam splitter coatings for 527 and 1054 nm "




Two-frame Backlighting UL

= Pretty soon, experimenters asked for multi-frame backlighting
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Two-frame Backlighting UL

21726 preshot top

\ X-ray sources:
= SiHe,(1.865 keV) and/or
"= MnHe,(6.151 keV)

Imaging parameters:

= FOV:11.7 x4 mm

=  Magnification: 5.8

=  Spatial resolution: 12 um
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Higher Energy Backlighting (7.2keV) @&

= Now that we have two frames, how about higher energy?
= Development of 7.2 keV backlighting followed.

Frame 1,t= to + 3085.1 ns. Prepulse 120 J, main 1078 J

.- . £ g
= Specifications: = T
© 4 5
= 7.242 keV Co He-a resonance §° 3 %
. T4 5
= Ge (335) crystal imager 5 g
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From Diagnostic to Fusion: MagLIF @&,

Polyimide Laser
ntrance Hole (‘LEH’)

Beryllium liner

A
~1cm
‘Drive’ B-Field from
Z-Machine (azimuthal)
4-12 atm. Deuterium
v

‘Seeded’ B-Field
(axial)



Magnetized Liner Inertial Fusion @&

= B-Field from Z machine drive
current starts to compress the
Be lines and fuel

= Z-Beamlet injects several kJ of
energy at 527nm into fuel
= Magnetization of fuel
= Minimizes heat conduction losses
= B-Field compression

= Stagnation temperature is
proportional to initial
temperature




Magnetized Liner Inertial Fusion ) e,

= Fuel compresses to densities
and temperatures enabling
thermonuclear fusion

B-field
laser
compression
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Magnetized Liner Inertial Fusion )

= Point Design:
= 30 Tesla initial magnetic field

= Laser heating of ¥~3 mg/cm3 D,
fuel produces ~250 eV plasma

= Thick (AR=6) Be liner with R;=2.7
mm, peak velocity ~100 km/s for
a 27 MA peak current drive

Magnetization Heating

4

I DD yicld . = At stagnation the fuel absorbs
AI——dEie 110 120 kJ, reaches 8 keV and ~0.5
3 Electron Temp o g/cm3, and is highly magnetized
22 g at 13500 Tesla
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110" = Yields >100 kJ predicted in 2D
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Backlighter Driver: SBS suppression @&

= High intensity laser beams generate acoustic waves in a large
aperture medium so that the waves can amplify, leading to
optical scattering, energy instability, and optical damage.
= Estimated SBS threshold for a desired 4ns FWHM pulse: 5.2kJ

= Adding spectral sidebands is needed for SBS suppression
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SBS suppression: Results

= Achieved FM->AM compensation in fiber transport and regen
by installing a grating compressor and a BRF

= Tested PM failsafe system
= Demonstrated 5.6/4.2kJ at 1®/2® with 3.6ns pulsewidth
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Adding Boosters for Z-Beamlet ) &,

= SBS suppression allows up to 5 booster amplifiers, each
adding about 500J of stored energy (11+5)*500J=8kJ at
1054nm

= Maximum extractable energy: 6 kJ at 527nm

= One booster was activated this last year using spare circuits

= Further booster activation would require a modification of
the PW amplifiers in order to free up pulsed power circuits.




7| Netora

Long Pulse to Short Pulse

= Based on the early success with ZBL, it was decided to build a
short pulse, PW class system.
= Higher temporal resolution
= Less motion blurring

= Higher x-ray energies possible

= Approach:

= Use the existing Beamlet main amplifiers and put a short pulse front
end on.




Petawatt Basic Architecture

= Laser Parameters: ;a
. fsFront End.

il il |
15w
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Optional ns Front End

{Co-Injection)

" ZPW:<500) @ 1053nm,
0.5-200ps, 41 x 41 cm?

= 200TW: <150 J @ 1053nm, |
0.5ps, 15 cm round ‘ -

= Co-injection: <500 J -

527nm, 2ns, 15cm round
= |=102°W/cm2 @ 1w
= Application:
= >8keV Backlighting
= High field physics (TNSA)
= Dynamic Diffraction
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OPCPA front end ) =

= What so see is “not always” what you get...

= OPCPA was delivered running at 11.5 Hz, because repetition
rate was used in order to control thermal lensing in amps.

= Hence, we had to “invent” a simple variable deformable
mirror

housing




OPCPA front end: re-design .

= Old/New schematic for CPA operation
= |mproved spectral bandwidth, energy and pointing stability

= Less laser damage, higher temporal/spectral control




Debris mitigation in Z environment @&

= Short pulse re parabola 7 incoming
ultra-thin deb &

= Nitrocellulose
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15.7keV Backlighting demonstrated @&

= Laser parameters: W e e TR e &
SR B P o
= 70-200 J, 500 fs or 15 ps gl @sslsicsnessiigmy 0 R
Sl MEEAE HHTh T
= |=10%°W/cm?2 TR REERReRRIRILiniEaRaNtreEy . W 2
= X-ray spectrometers: 1 20 o 30 s &
X (mm)
= flat HOPG: ZYA grade, 2nd order
= CRITR: cylindr. a-Quartz 1011 Resolution: 80 um

= Single Photon Counter (SPC) I __ 8 9 10___

= X-ray imagers: R 11l e
= 15.7 keV Ge 220 backlighter | BN
= 15.7 keV Quartz 3140 imager
= 8 keV Quartz 2131 imager

= Total number of Ka photons: (1.1%0.3) X 1013
= Laser-to-photon conversion efficiency: (2.8%0.8) X 104 -
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25keV point-projection UL

= 100TW laser focused on a 500x500x100um? Tin target

Point Projection Test Object

1/
2

simulated radiograph |
(500 pm X-ray source) measured radiograph
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Victims of our own success ) 2=

= Even though ZPW was able to demonstrate adequate debris
mitigation and high energy x-ray radiography, it was never
used as an experimental diagnostic in Z.

= The reasons for that were:
= Complex focusing parabola alignment adds to the tight Z-timeline

= Simulated image contrast was too low because x-ray energy was TOO
high for many applications
= 7ZBL worked very reliable and produced consistent great results

= No experimenter wants to “give up” shots to fully develop the new
capability




Proton Acceleration via TNSA )=,

= 200 TW @ 10%° W/cm?
= Thermal spectrum up 65MeV

dN/dE (MeV)™

= = 1013 protons total
= Beam divergence *=30°
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Sandia

Proton Deflectometry on Z e

= Modeling of protons, ions and electrons in Z B-field

50 MeV protons 106 MeV Pd'"” 1 GeV electron
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MagLIF saves the day... UL

= The “standard” MagLIF concept relies on the fact that a 200)J
pre-pulse, 3.5 ns prior to the main pulse (limited by pinhole
closure in main amps) can disassemble the laser entry
window.

= Detailed studies show that this concept has strong limitations.

LEH window (1.5um polyimide)}

ZBL x @
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Mirror for
FWD scatter

SBS camera

‘ (not to scale)
Full beam calorimeter Forward scatter * Green filter

(PTFE, > ﬂ5) * ND filters




Laser Plasma Interactions @ window®

= One can see how LPI reduces with decreasing laser intensity

Av. focal intensity:

Pre-pulse:
Main pulse:

Phase plate:

Shadowgraph
immediately after
the main pulse:
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Long Pulse PW for MagLIF ) B,

= The temporal pre-pulse limit (3.5ns) could be lifted, if we had
a second, independent long pulse laser.

= |dea: Modify ZPW to operate in long pulse mode and co-inject
into the ZBL beamline.

= Modified OPCPA to work g
as SLM seeded OPA.




ZBL — ZPW co-injection UL

= We co-inject (co-bore) ZPW with ZBL by means of a dichroic

combiner
Rejected residual 1054 nm
from Z-Beamlet

Dichroic mirror reflects

/ 1054 nm, transmits 527.

KDP Crystal converts Z-Petawatt
e to 527 nm without affecting
’ Z-Beamlet.



ZBL —ZPW co-injection: Success UL

= The ability to inject a pre-pulse at around -20ns and -32.5ns
showed a dramatic improvement in plasma shape and plasma
penetration depth.

" 10- Laser Pulse

01 % co-injection low-foot pulse shape
1 < g Xvaydiode
2- £ standard pulse shape {no co-injection)
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Dynamic x-ray diffraction UL

= Dynamic x-ray diffraction for high Z materials is currently
being developed

= To achieve the needed x-ray penetration depth, one has to use a PW

cl

ZBL: Ag (fcc) sample with 6.2 keV Mn source
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Everyone wants PW... )i,

= Asaresult, the ZPW is now a vital part of ICF and dynamic
material research.
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Conclusion ) 2=

= Your facility will be constantly evolving: Plan for that!

= Your experimenters may want something different from what
you thought they did when you did the initial planning

= Every “crazy” new request is an opportunity to build “know how” and
infrastructure capability

= Be adaptable and flexible

= You have an amazing facility: Go, have fun with it!




