(L

SAND2017-10156C

I11-V dielectric metasurfaces: enhanced nonlinearities and
emission control

Sheng Liu

Sandia National Labs

snliu@sandia.gov

OSA Advanced Photonics Congress, New Orleans

Sandia National Laboratories is a multi mission laboratory managed and operated by National Technology and Engineering Solutions of
Sandia L.L.C., a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA0003525

1

Sandia
National
Laboratories



Sandia
II" National
Laboratories

Outline

e Background

o All-dielectric metasurfaces from llI-V &
semiconductors
GaAs
figais]

e Coupling of emitters embedded in IlI-V
metasurfaces
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e Harmonic generation and other nonlinearities from [#
l1I-V metasurfaces
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Motivation—enhanced light matter interaction

¢ Fundamental motivation/interest for nanophotonics
e Various platforms

o.-..:.::.‘ ..:.t... °
2D Photonic 1D Distributed On-chip microring microdisk resonators
crystal Braaa-reflector resonators

NATURE | VOL 432 | 11 NOVEMBER 2004

« Plasmonic nano-resonators (linear & nonline~>" .  undamental — Second harmonic
r I — _AﬂA ¥ | LIS umo,
< Strong metallic loss at high optical frequencies
M (reduced quantum efficiency).

. : I seung-Woo Kim (2008) Stefan Linden (2006)
Maiken Mikkelsen (2014) Niek F. van Hulst (2010)
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Dielectric Resonators Metamaterials

Electric

Magnetic dipole resonance: tailor u
Electric dipole resonance: tailor ¢

l - Images: A. Miroshnichenko
3. Zur Optik kolloidaler Metallésungen;
von R. Gans und H. Happel.
Annalen der Physik, 1909
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Recent progresses of dielectric metasurfaces

Huygens Magnetic Ultrathin gratings, lenses,
prificiples axicg =/ =
% yg . g
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Ed‘;ﬁ‘r: v M;};nelic

D Mostly silicon (easy to fabricate)
"= . |ndirect bandgap: inefficient light emission and
absorption
« Centrosymmetric: lack of second-order nonlinearity
* Long electron life time: strong free carrier

U absorption
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Optically resonant
dielectric nanostructures
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All-dielectric metamaterials
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iltipolar nonlinear nanophotonics
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Metamaterial-inspired silicon nanophotonics
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Oxidation:
nAs, AlinGaP, etc

Multilayer structures
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IEEE JSTQE, 3, 916 (1997) Liu et al, Adv. Opt. Matt 2016
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GaAs Dielectric Resonators (1 layer)

GaAs disk height ~300nm
Different diameters

— D=360nm
—— D=320nm
——D=280nm/ E, M
2
&
2 |8
2 > E M
5 |@
~ |
<>
* Extremely low loss below lg_
bandgap 5
« Crystalline = M
E

0 1 i ] . ] ; 1 i 1
800 900 1000 1100 1200 1300
Wavelength (nm)
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T2 Multi-layer GaAs Dielectric Metasurfaces

e Epitaxially grown 3X (AlGaAs + GaAs)
e Same fabrication steps as 1 layer
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=» Potential path to 3D dielectric metamaterials Experiment
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Liu et al, Adv. Opt. Matt 2016 8
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=)= . . .
NI Fano Metasurface: Operating principles
incident e weakly coupled
wave " dipole
H, modes
M4, Px
p— orthogonal
dipole
M, modes
Fano system
1.00
External Wave P. .M, (low Q) 0.75
A 50.50
Cavity perturbation &=
04
M 0.25
M, (high Q)
radiative decay is suppressed 0.00

due to local field interactions
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GaAs Fano Resonators: Q ~ 600!

1.0 ; :
SEM of GaAs Fano resonators ATAT Y :
0.9 w"’r "‘IA" I'Al 1“ ‘ -
O 8 I “] [V ) 1 1 ’vv‘,‘!‘l - .
. ' | *M", ""l,‘w¢~k~ | -
2 i
g 00 FWHM=1.6 nm ,
= 0.5 Q~600
& .
04r Scale 1 ]
03l Highest DR Q-factor Scale 2
) Scale 3
reported to date
0.2F -
900 950 1000 105(
Wavelength (nm)

Campione, et al., ACS Photonics 3, 2362 (2016)
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Emitters Coupled to Metasurfaces

o
. . . E 40 | —=— On Top of Gold
Simulation of emitter very close (~A) close & sl —e— On top of OMM
to dielectric optical mirror showed large A -
. 5 | W\
radiative enhancement. g 4l AN
z:. 3l L — Liu et al, Optica 2014
] 2f
2 |
3
=
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0 2 4 6 8 10

Ensembles of colloidal QDs on top of Distance (um)
Si-metasurface: PL reshaping Single photon emitter (dopant in CNT) on top of
Si-metasurface: rotation of PL polarization
pump beam e —

Normalized intensity (a.u.)
o =y

1220 1240 1260 1280 1300
Wavelength (nm)

Ma et al, ACS Nano in press

silicon
nanodisks

Other groups have investigated coupling of emitters to
dielectric nanoresonators/metasurfaces: Hong, Maier,
Bonod, Belov, 1I§rasnok, etc.

Staude et al, ACS Photonics 2015
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Emitters (QDs) Coupled to Fano Metasurfaces:
QDs inside, Emission enhancement

%))
o

PL intensity (a.u.)
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PL Intensity (normalized)
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Outline

e Harmonic generation and other nonlinearities from
l1I-V metasurfaces
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Nonlinear optics in nanostructured materials

e Nonlinear optics is a powerful tool to understand new

materials/structures
e Nanostructured materials: plasmonic, 2D materials, etc
g [tsoeed] [ usopes | [Cranaped | [Acivenm]
L m R (v * Phase matching
il rTe'lﬁed finement
=:= '“ — ‘njj %E@ ’ . Rlegsongr?: e
{ u-l !I w L=
.u!.!lll I ST enhancement of EM
Y. Kivshar et al, Laser Photomcs Review, 9, 195 (2015) f'eld

nature FOCUS | REVIEW ARTICLES

h 1 PUBLISHED ONLINE: 31 OCTOBER 2012 | DOI: 101038/NPHOTON.2012.244 ®
e SHG, THG, optical
Nonlinear plasmonics rectification, etc

Martti Kauranen' and Anatoly V. Zayats?

Plasmonic structure: small modal volume
(usually only use surface nonlinearities)
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1300 1320 1340 1360 1380 1400
Fundamental Wavelength(nm)

Nano Lett. 2015, 15, 7388—7393

I1I-V (AlGaAs, InGaAs, GaAs) semiconductors: TP 3.4pmiv

« large nonlinear susceptibilities
« direct bandgap (active devices)

_E ird-harmonic generation in Si dielectric metasurface .

Sandia

Nano Lett. 2014, 14 (11). pp 6488—5402
DOI: 10.1021/n1503029]

No second-order nonlinear
phenomena observed (silicon:
centrosymmetric)

Record high
efficiencies

SHG

sum-frequency generation
difference-frequency generation
Parametric amplification
Parametric down conversion, etc

GaAs: ~200pm/V

Material deff (pm/V)

MgQ:PPLM 1dpmiy (typical)

BRO 2.5pmiv

LBO 0.85pmi

« "3D” & No flip chip bonding gETH3D 5.
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Second Harmonic Generation

SHG wavelength (nm)

BS 400 450 500 550 600
10000 ¢ 1.0
- Log:
0.8
N 3 1000}

9000 0, ) 5 06 &
< | Linear: ? £ =
&) j 5 2
= 6000 x . =
£ 2 £ 100} 04 2
= ) U F
2 o9 an
£ 3000¢ ;Do 7
< !

2 o | 0.2
0 10t

800 900 1000 1100 : - 0.0
SHG wavelength (nm) 800 900 1000 1100 1200
Pump wavelength (nm)

Liu et al, Nanoletters 2016
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I SHG Power Dependence
250 e o L o R Pump peak intensity (GW/cm®)
1005, L 0.0 08 1.6 24 32 40 48
- / o 2Bsf T e-
Z 10t { 5 o
o £ 50 <
5 S 1Bt 0 _
E 1 . 5 .
=N . 7 o
O @ Experiment ] § e Q _
0.1t Quadratic Fitted | § o?  Max SHG coefficient:
Damaged o ) fo ~2X108 W/W?
[ Unpatterened ] A
0L e o 2 4 6 8 10 12
0.1 1 10 Pump power (mW)
Pump power (mW)

* Quadratic relationship sustained at lower pump power.
* Irreversible damage of resonators > ~1.5 GW/cm?.

* Polarization dependence indicates a strong contribution
from a surface nonlinearity

18



SHG & THG video ) G,

Video just for fun!
Detailed physics needs to be further explored

Please ignore the hairy background, it is the image of a lens

1.0

0.8+

0.6

0.4+

—380nm
——420nm
m—— 460nm

——500nm
0.0

1 1 b |
‘1000 1200 1400 1600 1800
Wavelength (nm)

0.2

Reflectivity (vary diameters)

snliu@sandia.gov
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Twin optical-
parametric
amplifier

Ti:Sapphire amplifier,
800 nm, 35fs, 1kHz, 7 mJ

CCD
camera

Spectrometer
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Single beam harmonic generation (2"¢, 314, 4t harmonic) L

Photon energy (eV)
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Frequency “super” mixing

Photon energy (eV)

325 300 275 250 225 200 175 150 125
; 010} SFG SHG (D1
o ®,+20, 4do,~0, oto, 20,~0,
> ' ! x0.1
g : 20)1-|-(1)2 :
< 0.05F v ,
= THG o, | THG 0, | SHG o,
— . |

A PL

| |

0.00 ' AN i | |
400 500 600 700 800 900 1000

e 11 spectral peaks

Wavelength (nm)

e 7 different nonlinear processes: 2"4, 3, 4th harmonics, sum frequency
generation, 4 wave-mixing, six-wave mixing, PL induced by two-photon

absorption
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Ultrafast Active Tuning of the Magnetic Dipole () &=
Resonance

Modulation 50x of substrate

Resonance tuning by 30 nm

T T T T T T T .R
C =
77777777777777777 © 0 R 1060 | o (4,7)
e l 5
£ 1040 |
-0.2 | 4
1020

3

—— GaAs substrate x20 |
— GaAs metasurface

—————1-0.6 960

0 5 10 15
Pump—probe delay (ps) 0 5 10 15
Pump-probe delay (ps)

* Fastrecovery due to surface
recombination (~2.5 ps from low power
expts)

Reflectance

*  Maximum index modulation is -0.14
due to Drude dispersion
and band filling effects

960 1000 1040
Probe wavelength (nm;

M. R. Shcherbakov et al., Nat. Comm. 2017
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Summary & Acknowledgments
« All-dielectric metasurfaces from llI-V semiconductors
« Coupling of emitters embedded in lll-V metasurfaces

 Harmonic generation and other nonlinearities from IlI-V
metasurfaces
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Slides from MRS
ACS Galveston
Photonics West 2017
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I11-V dielectric metamaterials

e s s — e Racsnnaptiv enhgnced

Enhanced light emission . I|c generation

; |
ig Liu, et al, Nano Letters, 16, 5426,
2)

* Multilayerr* =
MBE/MOCi
Surface enhanced fluorescence

m0n0|ithiC| 1 i Bar}eT%%r.

11 EHRE ; Giuseppe
| D A i6) |
Time [ns] il + Kivshar, Dragomir Neshey,
Stefan Maier Zhaowei Liu bo Letters (2016)
(2017) (2014) |
; i 3 2 ’ 3 ’ 4
* Direct bandgI m ! rmonic
absorption |
1 20 SHG o,
Ultrafast 1 ) ) 1
hi ft' Luminescent hyperbolic IDZ
resonance s = metasurfaces Joseph Smalley, 1
VeQRMNature | UCSD I
Comm. 8, article 14 Embedding emitters inside resonatqrs 860 1000
(201 7) < :nghth (nm)
e e e e s == =

Pump-probe delay (ps)
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Examples of Dielectric Metasurfaces (Linear)

Magnetic mirror

Tailoring scattering

Optica 2015 1o Bl O ) .
Fano resonances ACS Nano 7, 7824 (2013) Nat. Comm. 4, 1527 (2013)
Huygens Metasurfaces /l\ %
' B8
8 ltg e
8a8g
Nature Comm. 2014. Nano Lett. 15, 7388 (2015) Eltt_ "
Rle agnetic
Adv. Optical Mater. 2015 Mdi?)olé

Phase-front manipulation

Phase Retardation (rad/r)

Wavelength (nm)

Science 345, 2015
Nano Lett. 15, 5369 (2015) Nano Lett.15, 6261 (2015) Opt. Express 23, 22611 (2015)
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Resonant Mode Field Profiles

FDTD simulations at the A = 10.8 um resonance

2

z-directed
magnetic dipole

1
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o
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10 T 2
Wavelength [pm]

\OO
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Experimental verification: i

Silicon Fano Resonators

K INE
Thickness = 250 nm
Zi . Side length = 280 nm
S1 Array pitch = 550 nm
X
S10,
1.00} ' FDTD simulation - 1.0F Experiment i
0.8
= z |
2 S 0.6
&3 ‘&—, 0.4-
0.2
0.00 : . ' 0.0 ' ' .
900 950 1000 1050 1100 850 900 950 1000

wavelength (nm) wavelength (nm)

Campione, et al., ACS Photonics 3, 2362 (2016) 30
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High Q: Only a small array is needed

max

[solated resonator

7x7 array

31 Campione, et al., ACS Photonics 3, 2362 (2016)
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Quantum Dots + Symmetrical Metasurfaces

QD PL
QDs still couple to a high Q, vertical dipole mode ,._..50‘
m— =400 nm .

— = [D)=420 nm 0 z
- 10 11 12 13 14
© Wavelength (um)
=
T
§ o0+
=
-
o

0 1 1 1 :

1000 1100 1200 1300 1400

Wavelength (nm)
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