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Two-Dimensional Electronic-Vibrational (2D EV) spectroscopy and Two-Dimensional Vibrational-
Electronic (2D VE) spectroscopy are new coherent four-wave mixing spectroscopies that utilize both
electronically resonant and vibrationally resonant field-matter interactions to elucidate couplings
between electronic and vibrational degrees of freedom. A system Hamiltonian is developed here to
lay a foundation for interpreting the 2D EV and 2D VE signals that arise from a vibronically cou-
pled molecular system in the condensed phase. A molecular system consisting of one anharmonic
vibration and two electronic states is modeled. Equilibrium displacement of the vibrational coordinate
and vibrational frequency shifts upon excitation to the first electronic excited state are included in
our Hamiltonian through linear and quadratic vibronic coupling terms. We explicitly consider the
nuclear dependence of the electronic transition dipole moment and demonstrate that these spectro-
scopies are sensitive to non-Condon effects. A series of simulations of 2D EV and 2D VE spectra
obtained by varying parameters of the system, system-bath, and interaction Hamiltonians demon-
strate that one of the following conditions must be met to observe signals: (1) non-zero linear and/or
quadratic vibronic coupling in the electronic excited state, (2) vibrational-coordinate dependence
of the electronic transition dipole moment, or (3) electronic-state-dependent vibrational dephasing
dynamics. We explore how these vibronic interactions are manifested in the positions, amplitudes,
and line shapes of the peaks in 2D EV and 2D VE spectroscopies. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4991745]

I. INTRODUCTION

The coupled motions of electronic and vibrational degrees
of freedom, generally referred to as vibronic couplings, play
an important role in energy and charge transfer processes.
There is an increasing interest to directly measure and com-
pute these vibronic couplings in complex disordered con-
densed phase systems and eventually harness them to control
chemical and biophysical photo-induced energy conversion
processes.1 In recent years, several two-dimensional elec-
tronic spectroscopy (2D ES) studies have revealed vibronic
coherence in natural and artificial light-harvesting systems.2–10

There has also been theoretical and experimental interest
in understanding the role of vibronic couplings in proton-
coupled electron transfer processes.11–15 Two-dimensional IR
(2D IR) spectroscopy and 2D ES have become established
experimental tools for interrogating vibrational and electronic
dynamics, respectively, in complex systems. Over the last two
decades, experimental and theoretical strategies have been
developed to obtain microscopic information from analyz-
ing the time-dependent positions, amplitudes, and line shapes
of the various peaks in 2D IR and 2D electronic spectra. To
address the issue of experimental measurement of vibronic
phenomena, 2D Electronic-Vibrational (EV) spectroscopy16

and 2D Vibrational-Electronic (VE) spectroscopy17 have been

a)Author to whom correspondence should be addressed: mkhalil@uw.edu

recently developed. These third order nonlinear spectroscopies
employ electronically and vibrationally resonant excitation
and probe fields to directly interrogate inter- and intramolec-
ular vibronic couplings in molecular systems. For example,
using 2D VE spectroscopy, mode-dependent vibronic coupling
strengths have been determined in a transition metal mixed
valence compound, and local vibrations have been used to
track electronic energy flow among various pigments in a light
harvesting complex using 2D EV spectroscopy.17–19 Technical
developments have extended the range of accessible molecular
phenomena by incorporating UV and octave-spanning mid-IR
pulses into the 2D EV experiment.20 As the 2D EV and 2D
VE experimental studies and their interpretation continue to
expand and develop,21–23 it is important to develop an intu-
itive understanding of how molecular vibronic couplings are
encoded in the 2D spectra.

To this end, a system Hamiltonian is introduced in this
paper that describes a single anharmonic vibration in the
ground electronic state that has linear and quadratic vibronic
coupling in the excited electronic state. This Hamiltonian
is used in simulating 2D EV and 2D VE spectra of sys-
tems that have varying degrees of intramolecular vibronic
coupling. This formulation parallels the Herzberg-Teller adi-
abatic approximation24 by including a linear dependence
of nuclear coordinates on the electronic transition dipole
moment. It is shown that the extent of vibronic coupling is
reflected in the peak positions, the nuclear dependence of the
electronic transition contributes to the peak amplitudes, and
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electronic-state-dependent vibrational dephasing affects peak
line shapes in 2D EV and 2D VE spectra. Selection rules for
these 2D spectroscopies are described through systematic sim-
ulations of 2D spectra. This paper is organized as follows:
Sec. II develops the vibronic Hamiltonian and the interaction
Hamiltonian; Sec. III categorizes all contributing 2D EV and
2D VE signals under consideration and characterizes the peak
positions, amplitudes, and line shapes for both techniques;
Sec. IV discusses simulations for cases of systematically var-
ied degrees of vibronic coupling; Sec. V summarizes the
2D EV and 2D VE selection rules elucidated through the sim-
ulations; and Sec. VI discusses additional signals accessible
with different input pulse parameters, polarization-selective
signals, and future directions.

II. VIBRONIC MATERIAL
AND INTERACTION HAMILTONIANS

A theoretical description of a molecular system under
study with nonlinear spectroscopic methods begins with a
quantum mechanical material Hamiltonian to describe the
molecular system and an interaction Hamiltonian to describe
the coupling between the external light fields and the system.
The material Hamiltonian is the sum of individual Hamil-
tonians for the system, the bath, and the system-bath inter-
action. To model the simplest case for 2D EV and 2D VE
spectroscopies of systems with vibronic coupling, we use
a Hamiltonian, Hvibronic, that describes a single local vibra-
tional mode and two electronic states: the ground state, |g〉,
and the first excited state, |e〉. Many treatments of molecular
vibronic couplings exist.25–31 The vibronic system Hamil-
tonian described by Tonks and Page30 models equilibrium
position displacement, frequency shifting, and vibrational
mode mixing (known as the Duschinsky rotation32) upon
electronic excitation. In this formulation, the excited state
Hamiltonian includes the effects of excited state equilibrium
displacement through a linear vibronic coupling term and
the frequency shifting and Duschinsky rotation are included
with quadratic vibronic coupling terms.30,33 More recently,
Vallet et al.34 used this model to derive analytical expres-
sions for simulating doubly resonant IR-visible sum frequency
generation spectra for surface adsorbed molecules with har-
monic potentials. We introduce cubic anharmonicity to this
vibronic Hamiltonian and use it to describe a single anhar-
monic vibration in the ground electronic state that has lin-
ear and quadratic vibronic coupling in the excited electronic
state.

The vibronic Hamiltonian is defined as the sum of the
ground and excited state Hamiltonians, Hvibronic = Hg + He.
The electronic ground state Hamiltonian, Hg, has the following
form:

Hg =
P2

j

2mj
+ Vg(Qj), (1)

Vg(Qj) =
1
2
~ω0

j Q2
j +

1
6
~ω0

j gjjjQ
3
j . (2)

In the above equations, Qj =

√
mjω

0
j

~ qj is the reduced vibra-

tional coordinate for the jth vibrational coordinate (qj), mj

is the reduced mass, ω0
j is the natural oscillator frequency,

and Pj is the momentum operator. The vibrational coordinate
could be either a local mode or a normal mode, depending
on the molecular problem of interest. The ground state poten-
tial [Vg(Qj)] for the jth vibration in Eq. (2) is obtained by
the Taylor expansion of the harmonic potential to include
the cubic terms.35,36 The cubic expansion coefficient, gijk ,
is dimensionless and related to the third order derivative of
Vg(Qj) evaluated at the equilibrium position. In this particu-
lar case, i = j = k because only one vibrational mode is being
considered. The excited electronic state Hamiltonian, He, is
written as Hg raised in energy by the electronic energy gap
and includes vibronic coupling to the first and second order
in the vibrational coordinate of the excited state potential,
V e(Qj),

He =
P2

j

2mj
+ Ve(Qj), (3)

Ve(Qj) = Vg(Qj) + ~ω0
eg + ~ω0

j V(1)
j Qj +

1
2
~ω0

j V(2)
j,j Q2

j . (4)

The electronic transition frequency between the lowest vibra-
tional levels of the harmonic ground and excited electronic
states is given by ω0

eg. The dimensionless vibronic coupling

coefficient, V(1)
j , reflects the linear coupling strength of the jth

vibration to the electronic transition and results in the equilib-
rium position displacement of the vibrational mode upon elec-
tronic excitation. The dimensionless quadratic vibronic cou-
pling coefficient, V(2)

j,j , is responsible for the frequency shifting
of the jth vibrational mode in the electronic excited state.
When a system with two anharmonic vibrations is considered,
both frequency shifting (V(2)

j,j ) and vibrational mode mixing

(V(2)
j,k ) arise from quadratic vibronic coupling. The linear and

quadratic vibronic coupling coefficients are related to the first
and second order derivatives of the excited state potential with
respect to the vibrational coordinate, respectively.

The material Hamiltonian consists of the vibronic sys-
tem described above, a bath, and the system-bath interac-
tions. In the context of a solute-solvent molecular system,
the “bath” can represent the solvent and all the remaining
solute degrees of freedom not described in the system Hamilto-
nian. The system-bath interaction can lead to shifts in vibronic
transition frequencies, electronic and vibrational relaxation
dynamics, and reorientational dynamics. For this work, we
use the approach of Sung and Silbey37 to describe the bath and
system-bath Hamiltonians (HB and HSB). Briefly, the bath con-
sists of harmonic oscillators and the system-bath interaction
is linear in the bath coordinates, qB . The system-bath inter-
action is included by diagonalizing Hvibronic and coupling the
eigenstates to the bath through HSB. Here, HSB is diagonal
in the system eigenstate basis, and it reflects the fluctua-
tions of the vibronic frequencies.37 The pure dephasing effects
of system-bath interactions are considered here and incorpo-
rated through energy gap correlation functions. As shown in
Secs. III A 3, III B 3, and IV, we include electronic dephasing,
vibrational dephasing, and electronic-state-dependent vibra-
tional dephasing of the vibronic states and explore how
these microscopic effects are observed in 2D EV and VE
spectra.
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The interaction between an external radiation field
[E(k,ω,t)] and the vibronic system described earlier is encoded
in the interaction Hamiltonian, H int ,

Hint = −M · E(k,ω, t)

= −
∑

a

∑
b

|a〉 µa,b · E(k,ω, t) 〈b|, (5)

where the system dipole operator is given by M and the transi-
tion dipole matrix elements are denoted by µa,b. In the above
equation, |a〉 and |b〉 correspond to the vibronic system eigen-
states of Hvibronic described above, and they are indexed by their
electronic state and vibrational state. We denote an eigenstate
of the ground electronic manifold (g) with vibrational quanta
(v = 0, 1, . . . , n) as |g, v〉 and an eigenstate of the excited elec-
tronic manifold (e) with vibrational quanta (v′ = 0′, 1′, · · ·, n′)
as |e, v′〉. In general, the transition moment between the
vibronic states |a〉 and |b〉 is defined as

µa,b = 〈a(r, Q)|M |b(r, Q)〉 , (6)

where the vibronic states depend on both the electronic
coordinates, r, and the reduced vibrational coordinates, Q.
The eigenstates are written as Born-Oppenheimer adiabatic
eigenstates38 and expressed as the products of the elec-
tronic wave function, ψ(r,Q), and the nuclear wave function,
χ(Q),

|a(r, Q)〉 = ��ψa(r, Q)
〉 ��χa(Q)

〉
,

|b(r, Q)〉 = ��ψb(r, Q)
〉��χb(Q)

〉
, (7)

where superscripts a and b specify wave functions in |a〉
and |b〉. The vibronic eigenstates defined in Eq. (7) fit
within the “Born representation” defined by Ballhausen and
Hansen.39 They can be considered eigenfunctions of a dynam-
ical Schrödinger equation in a basis set that spans a complete
electronic space for each value of Q.

The transition dipole operator can be written as the sum of
individual operators for the electronic and vibrational coordi-
nates, M =Melec(r)+Mvib(Q).40–42 By rewriting Eq. (6) using
this expression for M and the Born-Oppenheimer adiabatic
wave functions in Eq. (7), the transition dipole moment µa,b

explicitly includes both electronic and vibrational transitions
in the system,40,42

µa,b =
〈
ψa(r, Q)���ψ

b(r, Q)
〉 〈
χa(Q)���Mvib(Q)���χ

b(Q)
〉

+
〈
χa(Q)���χ

b(Q)
〉 〈
ψa(r, Q)���Melec(r)���ψ

b(r, Q)
〉

. (8)

When a vibronic transition between electronic states
occurs (i.e., |g, v〉 → |e, v′〉), the electronic overlap integral
in the first term on the right-hand side of Eq. (8) vanishes
and µa,b reduces to the electronic transition dipole multi-
plied by the appropriate vibrational overlap integral. The
nuclear dependence of the electronic transition dipole moment
is included by letting Melec(r) � Meg(Q) where Meg(Q) is
the electronic transition dipole operator in terms of Q. The
Q dependence is made explicit by Taylor expanding Meg(Q)
over the vibrational coordinate about the equilibrium nuclear

configuration, Q0,

Meg(Q) = µ(0)
eg +

∑
j

µ(1)
eg Qj +

1
2

∑
j,k

µ(2)
eg QjQk + · · · , (9)

with the expansion coefficients given by µ(0)
eg = Meg(Q0),

µ(1)
eg =

(
∂Meg

∂Qj

)
Q0

, and µ(2)
eg =

(
∂2Meg

∂Qj∂Qk

)
Q0

. The Condon approx-

imation breaks down when the linear and higher order terms
in Meg are non-negligible. We include the nuclear depen-
dence of the electronic transition in our approach, allowing
for these non-Condon effects to be considered in the vibronic
systems of interest. Our treatment parallels the Herzberg-
Teller adiabatic approximation,24,39,42–45 which includes a
linear nuclear coordinate dependence of the electronic tran-
sition moment through the first order term in the expan-
sion of the transition dipole moment. The first order terms
are referred to as Herzberg-Teller vibronic coupling terms.
In our formulation of the transition dipole moment, we
include the Herzberg-Teller vibronic coupling phenomeno-
logically through the expansion coefficient µ(1)

eg . As will be
discussed in Sec. III, peak intensity in 2D EV and 2D VE
spectra is proportional to the Franck-Condon factors and
also sensitive to contributions from Herzberg-Teller vibronic
couplings.

When a vibronic transition occurs in which the electronic
state remains unchanged (i.e., |g, v〉 → |g, n〉 for n = v ± 1
or |e, v′〉 → |e, n′〉 for n′ = v′ ± 1), the electronic transition
dipole moment goes to zero and the second term on the right-
hand side of Eq. (8) vanishes, reducing µa,b to the vibrational
transition moment. We let Mvib(Q) ≡ Mvn(Q) to specify the
vibrational transition |g, v〉 → |g, n〉 and Mvib(Q) ≡ Mv′n′(Q)
to denote |e, v′〉 → |e, n′〉. The nonlinear dependence of the
vibrational transition moment is included through the Tay-
lor expansion to account for electrical anharmonicity expe-
rienced by the nuclei during vibration in the system. For
example, the electrical anharmonicity of a vibration in |g〉 is
given by

Mvn(Q) = µ(0)
vn +

∑
j

µ(1)
vn Qj +

1
2

∑
j,k

µ(2)
vn QjQk + · · · , (10)

where µ(0)
vn =Mvn(Q0), µ(1)

vn =

(
∂Mvn
∂Qj

)
Q0

, and µ(2)
vn =

(
∂2Mvn
∂Qj∂Qk

)
Q0

.

This treatment assumes Mvn(Q)= µ(0)
vn + µ(1)

vn Q where µ(1)
vn , 0

which gives the selection rule for linear IR spectroscopy,
∆v = ±1. The terms µ(m)

vn , 0 for m ≥ 2 in Eq. (10) are
related to the electrical anharmonicity of the vibration in
the ground electronic state. Similar considerations applied
to Mv′n′(Q) describe the nonlinearity of the vibration in the
excited electronic state.

This explicit treatment of the electronic and vibrational
transition moments allows the nonlinearity of the respective
dipole moments to provide specific insight into the molec-
ular system. The nonlinearity of the electronic transition
moment (Meg) is relevant during the dynamic rearrangement
of the electronic charge distribution that occurs upon transi-
tioning between electronic states. In comparison, the nonlin-
earity of the vibrational transition moment (Mvn and Mv′n′)
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represents the nonlinearity of the nuclear motion for an instan-
taneous and relatively smaller shift in the electronic charge
distribution that characterizes a single electronic state, |g〉
or |e〉.

Since the transition moment in Eq. (8) is completely gen-
eralized, we can concisely express the specific dipole moments
and operators for each of the relevant transitions in 2D EV and
2D VE spectroscopies(
for ψa ∈ |g〉 ,ψb ∈ |g〉

)
M(Q)→Mvn(Q), µa,b→ µv,n,

(11)

(
for ψa ∈ |e〉 ,ψb ∈ |e〉

)
M(Q)→Mv′n′(Q), µa,b→ µv′,n′,

(12)

(
for ψa ∈ |g〉 ,ψb ∈ |e〉

)
M(Q)→Meg(Q), µa,b → µe,g.

(13)

The notation (eg, vn, and v′n′) in Eqs. (11)–(13) that speci-
fies the transition dipole operators and matrix elements which
reduce from the generalized M will be followed throughout
this discussion.

III. THIRD ORDER NONLINEAR 2D EV
AND 2D VE SPECTROSCOPIES

Much of the established formalism for other third order
nonlinear techniques (e.g., 2D IR and 2D ES) can be applied
to 2D EV and 2D VE spectroscopies.46–50 Both 2D EV spec-
troscopy and 2D VE spectroscopy utilize sequential inter-
actions [Figs. 1(a) and 1(b)] of three pulsed electric fields
to generate the third order nonlinear polarization, P(3), and
measure the resultant electric field.16–20,51 In the 2D EV exper-
iment, the first two pulses, E1 and E2, are resonant with
electronic transitions and the third interaction pulse, E3, is
resonant with vibrational transitions in the ensemble. The
ordering of the resonant field-matter interaction is reversed in
the 2D VE experiment, where E1 and E2 resonantly excite
vibrational transitions and E3 resonantly probes electronic
transitions. In both of these 2D techniques, the correlations
between electronic and nuclear motion are accessed directly
by perturbing one degree of freedom with E1 and E2 while
monitoring the response of the other degree of freedom with
E3.

All of the microscopic molecular information is con-
tained in the signal field that is emitted in the ksig direction
(ksig = ±k1 ∓ k2 + k3). The signal is generated by P(3) which
is a convolution of the third order material response function,
←→
R(3), and the three incident electric fields are shown as follows:

P(3)(ksig, t, τ2, τ1)

=

∫ ∞
0

∫ ∞
0

∫ ∞
0

←→
R(3)(τ′3, τ′2, τ′1)

...E3(k3, t − τ′3)

×E2(k2, t + τ2 − τ
′
3 − τ

′
2)

×E1(k1, t + τ2 + τ1 − τ
′
3 − τ

′
2 − τ

′
1)dτ′1dτ′2dτ′3.

(14)

FIG. 1. 2D EV and 2D VE spectroscopy pulse sequences. Three input pulses
(E1, E2, and E3; blue or green) are controllably delayed to sequentially interact
with a sample and generate the third order nonlinear polarization containing
the 2D signal (Esig, purple). The experimental delay times, τn, relate the time
delay between pulse envelope maxima, tn. The delays between successive
field-matter interactions are specified by τ′n = t′n+1 � t′n. (a) 2D electronic-
vibrational: E1 and E2 are electronically resonant (blue) excitation interactions
and E3 is a vibrationally resonant (green) probe interaction. (b) 2D vibrational-
electronic: E1 and E2 are vibrationally resonant (green) excitation interactions
and E3 is an electronically resonant (blue) probe interaction. Coherence is
induced by E1 at time t1 that exists for a coherence period τ1, and at time
t2, the field E2 interacts with the system and collapses the coherence into
population states that relax during the population time τ2, then E3 probes the
molecular response to the initial perturbation at t3.

The nonlinear response function
←→
R(3) contains the vibronic

signal of interest and is expressed as a four-point correlation
function of dipole moment operators with numbered subscripts
(1-4) denoting the time-ordering of the field-matter interaction,

←→
R(3)(τ′3, τ′2, τ′1) =

(
i
~

)3 〈[ [ [
M4(τ′3 + τ′2 + τ′1),

×M3(τ′2 + τ′1)
]

, M2(τ′1)
]

, M1(0)
]
ρ0

〉
.

(15)

Here, ρ0 is the equilibrium reduced density matrix for the
vibronic system eigenstates with its time evolution monitored
during three separate time intervals (τ′1, τ′2, and τ′3 as described
in Fig. 1) and the angled brackets 〈· · · 〉 denote the trace over the
system and the bath degrees of freedom. Expanding the com-
mutator in Eq. (15) yields eight terms grouped into four pairs of
complex conjugate field-matter interaction pathways (see Sec.
SI.1 of the supplementary material).

←→
R(3) is a fourth-rank tensor

that contains the nonlinear vibronic response Rabcd(τ′3, τ′2, τ′1)
and the orientational response Yabcd

IJKL (τ′3, τ′2, τ′1) of the dipoles
that interact with the various electric fields in all four conjugate

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-049732
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interaction pathways in the system,

←→
R(3)(τ′3, τ′2, τ′1) =

4∑
α=1

∑
IJKL

∑
a,b,c,d

(Yα)abcd
IJKL(τ′3, τ′2, τ′1)

×Rabcd
α (τ′3, τ′2, τ′1). (16)

In the above expression, the vibronic eigenstates are given by
indices (a, b, c, d), where the indices (IJKL) reference a per-
mutation of the electric field polarization over the laboratory
coordinates {X, Y, Z}. This paper solely focuses on the molec-
ular insight contained in the nonlinear vibronic response func-
tion, Rabcd(τ′3, τ′2, τ′1), for various transition pathways where
the indices (a, b, c, d) specify vibronic eigenstates interact-
ing via Mvn [Eq. (11)], Mv′n′ [Eq. (12)], and Meg [Eq. (13)].
The response functions for all 2D EV and 2D VE peaks are
listed in Sec. SI.2 of the supplementary material, and they
are characterized by the combination of involved vibronic
eigenstates in Tables SI.2.1 and SI.2.2 of the supplementary
material.

We consider the system composed of two electronic states
and one IR-active local vibrational mode, as described by
Hvibronic in Sec. II and depicted in Fig. 2. The parameters in
the vibronic Hamiltonian are chosen so that the frequency of
the anharmonic vibration is red-shifted in the excited elec-
tronic state. Using the transition frequencies shown in Fig. 2,
the vibrational frequency difference between electronic states
(∆eg) and the mechanical anharmonicity of the excited elec-
tronic state (∆2′,1′) can be defined as ∆eg = ωe,1′ − ωg,1

and ∆2′,1′ = ωe,1′ − ωe,2′ . These expressions can be evalu-
ated using stationary perturbation theory with second order
energy corrections and are given in Sec. SI.3 of the supple-
mentary material. For simplicity, it is assumed in Secs. III and
IV that the electronically resonant electric fields have center
frequency ωeg and bandwidth 2ωg,1, allowing resonant tran-
sitions between states with energy separation corresponding
to frequencies within ωeg ± ωg,1. The vibrationally resonant
fields are assumed to have a sufficient bandwidth to excite

FIG. 2. An illustration (not drawn to scale) of the anharmonic potential energy
surfaces represented by Hvibronic with linear and quadratic vibronic coupling.
The states |g,v〉 and |e,v′〉 are the vibronic states in either the electronic ground,
g, or excited, e, manifold with vibrational state v or v′, respectively. This model
reflects a system of displaced, frequency shifted, anharmonic oscillators.
The blue (green) arrows indicate transitions between electronic (vibrational)
states. The frequencies ωeg, ωg,v, and ωe,v′ correspond to the energy sepa-
ration between the electronic manifolds, the vibrational levels in |g〉, and the
vibrational levels in |e〉, respectively.

one-quantum transitions only. As the input electric fields have
a finite pulse duration, it is important to distinguish between
the experimentally controlled delay time (τn) and the delay
between field-matter interactions (τ′n). Section VI explores
the effects of varying these electric field characteristics on
the vibronic transition pathways accessible to the molecular
system. Additionally, we assume the lowest vibrational tran-
sition energy in |g〉 to be larger than kBT such that only |g, 0〉
is initially populated in the system and all transition path-
ways originate from this state. Next, we discuss the various
rephasing and non-rephasing pathways contributing to the 2D
EV and 2D VE signals and their manifestations in the peak
positions, amplitudes, and line shapes of the resultant 2D
spectra.

A. Vibronic signal pathways in 2D EV spectroscopy

Using the material and interaction Hamiltonians described
in Sec. II and Fig. 2 and the center frequency and bandwidth
considerations of the input electric fields described above,
we can obtain the expression for the material response func-
tion and the third-order nonlinear polarization. The 2D EV
response tensor,

←→
R(3), is obtained from Eq. (15) when M1

and M2 are electronic transition dipole moments and M3 and
M4 are vibrational transition dipole moments.

←→
R(3)(τ′3, τ′2, τ′1)

includes responses from many possible vibronic transition
pathways that the system can access during time intervals τ′n.
The possible vibronic Liouville pathways that can generate
a 2D EV signal in the simplified system here while τ′2 ≥ τp

are represented in the double-sided Feynman diagrams for the
rephasing (R), ksig = −k1 + k2 + k3, and non-rephasing (NR),
ksig = +k1 − k2 + k3, phase-matched directions [Figs. 3(a)
and 3(b)]. The signals from the R and NR pathways oscillate
at conjugate frequencies during the coherence period. Within
the center frequency and bandwidth considerations described
above, the system can only evolve in a population state
of the density matrix during τ′2 when τ′2 ≥ τp and τp is the
longer FWHM pulse duration between the optical and IR elec-
tric fields. Signals arising from off-diagonal density matrix
elements during τ′2 when τ′2 ≥ τp are phase matched if the
IR probe field bandwidth spans the vibrational frequencies
of the fundamental (ωvib) and first overtone (2ωvib) transi-
tions. When ���τ

′
2

��� < τp, the time-ordering of the k2 and k3
field-matter interactions cannot be rigidly defined, and so the
additional transition pathways in Fig. 3(c) can contribute to
the 2D EV spectrum. These pathways will not yield new
peaks, but they can contribute intensity to peaks I and III
that oscillate at the τ′2 coherence frequency until the third
field-matter interaction occurs. A fully absorptive cartoon
spectrum for the system with linear and quadratic vibronic
coupling is illustrated in Fig. 3(d). The mth peak consists of
signal contributions from the corresponding R (DEV

R,m) and NR

(DEV
NR,m) double-sided Feynman diagrams. The complete set

of vibronic response functions for each of the diagrams is
given in the supplementary material. In general, the response
function consists of (i) oscillating frequencies which deter-
mine the position of the 2D peak in the ω1 and ω3 Fourier
space, (ii) the product of transition dipole factors which gov-
ern the amplitude of the 2D peaks, and (iii) a nonlinear

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-049732
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-049732
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-049732
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-049732
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-049732
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-049732
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FIG. 3. 2D EV vibronic signals overview. All the accessible Liouville transition pathways [(a)–(c)] are given for the case that the excitation fields (k1 and k2)
span frequencies ωeg ± ωg,1 [where ωeg = (Ee,0′ – Eg,0)/~ and ωg,v = (Eg,(v+1) � Eg,v)/~], and the probe field (k3) has a bandwidth sufficient to resonantly
excite single quantum vibrational transitions only. The 2D EV non-rephasing (NR) and rephasing (R) signal pathways represented by the double-sided Feynman
diagrams DEV

NR and DEV
R in (a) and (b), respectively, represent the contributing 2D EV signal pathways when k2 and k3 are beyond temporal overlap (i.e., τ′2 ≥ τp

where τp is the longer pulse FWHM duration) such that field-matter interaction time ordering is unambiguous. Additional pathways in (c) contribute only during
the k2 and k3 temporal overlap ( |τ′2 | < τp). The diagrams have peak labels (I-V) denoting the signal to which that pathway contributes; the R and NR diagrams
for a given peak sum to yield the absorptive 2D EV signal. The diagrams are also specified by transition type: ground state bleach (GSB, positive, solid line),
excited state absorption (ESA, negative, dashed line), and excited state stimulated emission (ESE, positive, solid line). The illustrated absorptive 2D EV spectrum
shown (d) for a system where V(1)

j , 0 and V(2)
j,j , 0 gives peaks I-V at the coordinates ω1 = ωeg, ωeg + ωe,1′ and ω3 = ωg,1, ωe,1′ , and ωe,2′ [where ωe,v′

= (Ee,(v+1)′ � Ee,v′ )/~]; thus, the frequency difference of the vibration in |g〉 and |e〉, ∆eg = ωe,1′ – ωg,1, and the anharmonicity in |e〉, ∆2′1’ = ωe,1′ – ωe,2′ , can be
read off the 2D EV spectrum directly.

dephasing function [Fa,b,c,d(τ′3, τ′2, τ′1)] that dictates the 2D line
shape. Each of these factors is discussed in detail below.

1. 2D EV peak positions

The 2D EV peak positions identify specific vibrational
modes coupled to electronic transitions in the molecular sys-
tem, and they reveal differences between the ground and
excited potential energy surfaces. These positions are dic-
tated by the energy separation of the vibronic eigenstates
in the molecular ensemble. In the vibronic systems mod-
eled by Hvibronic, the eigenstate energies are dependent on the

vibrational anharmonicity, the equilibrium position displace-
ment in the excited state, and the excited state frequency shift.
The peak positions in theωelectronic dimension indicate the res-
onance frequencies of the electronic transition |g, 0〉 → |e, v′〉
that are accessed during the electronic coherence time, τ′1. The
positions in theωvibrational dimension reveal vibrational modes
that are coupled to the electronic transitions. As opposed to
degenerate 2D techniques where peaks can exist in the absence
of molecular coupling (i.e., on-diagonal peaks), every peak in
2D EV spectroscopy is a cross peak and requires the
coupling of electronic and vibrational degrees of freedom to
be observed.



094202-7 J. D. Gaynor and M. Khalil J. Chem. Phys. 147, 094202 (2017)

Peaks I and II [Fig. 3(d)] are centered at ωelectronic = ωeg

because the Liouville pathways that contribute to these sig-
nals evolve in the coherence between |g, 0〉 and |e, 0′〉 during
τ′1. The Liouville pathways that give rise to peaks I and II differ
by the vibronic state population |g, 0〉 〈g, 0| or |e, 0′〉 〈e, 0′ | in
which the system evolves, respectively, during τ′2. Therefore,
the final probe field interaction is resonant with either ωg,1 or
ωe,1′ to yield a ground state bleach [peak I, (ωeg,ωg,1)] or an
excited state absorption [peak II,

(
ωeg,ωe,1′

)
] signal, respec-

tively. Peaks III-V have peak centers ωelectronic = ωeg + ωe,1′

that reflect vibronic transition pathways with electronic coher-
ence between |g, 0〉 and |e, 1′〉 during τ′1, the vibrationally
probed transitions originate from τ′2 populated states of either
|g, 0〉 〈g, 0| or |e, 1′〉 〈e, 1′ |. When higher lying vibrational
states (v′ > 0) in |e〉 are accessed, the excited state stim-
ulated emission (ESE) Liouville pathway (DEV

R,V , DEV
NR,V ) is

possible. Hence, three 2D EV peaks exist for each pathway
with electronic coherence between |g, 0〉 and |e, (v′ > 0)〉 in
τ′1. In the case where both linear and quadratic vibronic cou-
plings are present, peaks III (GSB), IV (ESA), and V (ESE)
may be observed at

(
ωeg + ωe,1′ ,ωg,1

)
,
(
ωeg + ωe,1′ ,ωe,2′

)
, and(

ωeg + ωe,1′ ,ωe,1′
)
, respectively.

In 2D EV spectroscopy, the ESE is the only transition
pathway that can yield positive signals from a vibrational
transition in the electronic excited state, which provides an
important contrast to the negative ESA signals arising from
populated vibronic states in |e〉. The other source of positive
signals is the GSB pathway, which will only result from vibra-
tional transitions in |g〉. Therefore, the GSB and ESE signals
are specific to vibrations in the ground and excited electronic
states, respectively. As we will see later, the intensity contri-
butions from these positive signals will be separable in the
ω3 dimension when the anharmonic vibration is frequency-
shifted in the excited state. A systematic discussion of how
the anharmonicity, excited state equilibrium displacement, and
excited state frequency shifting affect the presence of 2D
EV peaks is accompanied by simulated 2D EV spectra in
Sec. IV.

2. 2D EV peak amplitudes

The 2D EV peak amplitudes are determined by the
population of molecules in |g, 0〉 and the relative strength
of the four interacting dipoles that generate the third order
response, as shown in Eqs. (SI.2.4) and (SI.2.5) of the
supplementary material. Generally, the effects of electrical
anharmonicity in the system arise from the nonlinearity of
the dipole moments with respect to the vibrational coordi-
nate and have been considered in 2D IR spectroscopy. The
explicit treatment of both the electronic and vibrational dipole
moments in 2D EV and 2D VE spectroscopies can pro-
vide insight into the electrical anharmonicity of the molecule
from two perspectives: (1) the nuclear dependence of the
electronic redistribution upon changing electronic states and
(2) the nonlinearity of a vibration in an excited electronic
state.

The dependence of Meg(Q) on the vibrational coordinates
appears when the coefficients µ(1)

eg and µ(2)
eg are nonzero in the

expression for µe,g given by

µe,g = µ(0)
eg

〈
g, v| e, v′

〉
+ µ(1)

eg

∑
j

〈g, v|Qj
��e, v′

〉
+

1
2
µ(2)

eg

∑
j

〈g, v|QjQj
��e, v′

〉
+ · · · , (17)

which is obtained by evaluating Eq. (8) for a vibronic tran-
sition [i.e., subject to Eq. (13)]. The Condon approximation
requires that the electronic transition is independent of the
nuclear coordinates, implying µ(m)

eg = 0 for m ≥ 1. In this case,
µe,g expresses the electronic transition dipole moment for the
system at the equilibrium nuclear configuration with the tran-
sition strength modulated by the overlap integral of the two
involved vibronic states. The zeroth order result implies the
reduction of the Born-Oppenheimer adiabatic wave functions
to crude adiabatic wave functions because of the constraints
imposed by referencing only the equilibrium nuclear con-
figuration;39,43,44 these constraints are corrected when higher
order terms are included. Therefore, to zeroth order, the ampli-
tudes of the 2D EV peaks are directly proportional to |µe,g |2

=
���µ

(0)
eg

���
2
|〈g, v | e, v′〉|2 due to the first two interactions of

Meg(Q) with the density matrix in the nonlinear vibronic
response function [Eq. (15)]. This directly demonstrates that
all 2D EV peak amplitudes are scaled by the Franck-Condon
factors, |〈g, v | e, v′〉|2.

For electronic transitions that are dependent on nuclear
coordinates, the linear and higher order terms in Eq. (9) may
be nonzero, and they account for variations in the vibronic tran-
sition strength due to the nuclear configuration of the system.
This is known as the breakdown of the Condon approxima-
tion.41–43 If the Condon approximation is relaxed, then the
higher order terms that collectively describe the non-Condon
effects (µ(m)

eg , 0 for m ≥ 1) are included in evaluating µe,g, and
the vibronic transition strength deviates from the zeroth order
scaling with the Franck-Condon factor. This demonstrates
that the 2D EV peak amplitudes are sensitive to non-Condon
effects through intensity contributions from the first and higher
order terms in µe,g. The amplitude ratio that compares 2D EV
peaks originating from the vibronic transitions |g, v〉 → |e, v′〉
and |g, v〉 → |e, (v + 1)′〉 [e.g., peaks I and III in Fig. 3(d)]
should be equal to the ratio of the respective Franck-Condon
factors if non-Condon effects are negligible; variations from
this amplitude ratio reflect the presence of non-Condon
effects.

Effects from the system electrical anharmonicity in the
vibration can also be present from the nonlinearity of the vibra-
tional transition dipole moment, in a similar fashion to 2D IR
spectroscopy.47,48,52 The influence of this type of electrical
anharmonicity in 2D EV spectroscopy is observed specifi-
cally for the vibration in the electronic excited state. A linear
dependence of µv′,n′ on the nuclear coordinates yields tran-
sition dipoles for the |e, 0′〉 → |e, 1′〉,

(
µ0′,1′

)
, and for the

|e, 1′〉 → |e, 2′〉,
(
µ1′,2′

)
, transitions that should scale harmon-

ically as µ1′,2′ =
√

2µ0′,1′ . Comparison of oppositely signed
peak amplitudes for an electronically excited state vibration
[e.g., peaks IV and V in Fig. 3(d)] will reflect the electrical

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-049732
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anharmonicity of the vibrational mode in the excited electronic
state specifically.

3. 2D EV line shapes

The influence of the system-bath dynamics are reflected
in the 2D EV line shapes which are described by the non-
linear dephasing function for each vibronic signal pathway.
Following the approach of Sung and Silbey,37 the dephas-
ing functions, Fa,b,c,d(τ′3, τ′2, τ′1), in the nonlinear vibronic
response are composed of line shape functions, ha,b(t) (defined
in Sec. SI.1 of the supplementary material), that describe
the time-dependent transition frequency fluctuation between
vibronic states |a〉 and |b〉 induced by system-bath dynamics.
Assuming that the transition frequency fluctuations [δωa,b(t)]
about an ensemble average frequency (ω̄a,b) obey Gaussian
statistics, the time dependence of a resonant transition fre-
quency is expressed as ωa,b(t) = ω̄a,b + δωa,b(t). The energy
gap correlation function ζa,b correlates the transition fre-
quency fluctuation δωa,i with the fluctuation δωb,i over a
time period t where the subscript “i” is the initial state of
the density matrix. The time scales for these fluctuations are
expressed as auto-correlation and cross correlation, which
describe the correlation of a single vibronic transition (a = b)
or of two different vibronic transitions (a, b), respectively.
The energy gap correlation function can be expressed in
terms of these transition frequency fluctuations by ζa,b(t)
=

〈
δωa,i(t)δωb,i(0)

〉
.

We use a simplified notation to express the correlation
functions in 2D EV and 2D VE spectroscopies. Instead of
specifying the correlated eigenstates, the subscripts specify
the transition frequency between the correlated eigenstates
(i.e., eg= |g, 0〉 → |e, 0′〉, v = |g, 0〉 → |g, 1〉, and v′ = |e, 0′〉
→ |e, 1′〉). The energy gap auto-correlation functions are the
fluctuations in the electronic transition frequency (ζeg,eg), the
ground state vibrational frequency (ζv,v), and the excited state
vibrational frequency (ζv′,v′). The cross correlation functions
(ζeg,v, ζeg,v′ , ζv,v′) relate the frequency fluctuations in elec-
tronic transitions and vibrational transitions. The correlation
functions are defined in Appendix A. Both 2D EV and 2D
VE spectroscopies access all of the auto-correlation func-
tions. The 2D EV experiment only accesses the ζeg,v′ cross
correlation, while the 2D VE line shapes include contribu-
tions from all three cross correlations. However, as shown
below, the line shapes in both techniques can be defined in
terms of the same correlation functions and a proportionality
constant.

Electronic-state-dependent vibrational dephasing is ex-
plored by defining a proportionality constant, λ, that relates
the ratio of the excited electronic state fluctuations to those in
the ground electronic state,

λ =
δωe1′,e0′(t)
δωg1,g0(t)

. (18)

This parameter is analogous to the α0 and α1 parameters used
by Lewis et al.23 Now the 2D line shapes can be written in
terms of only three energy gap correlation functions (ζeg,eg,
ζeg,v, and ζv,v) and λ,

ζv′,v′ = λ
2ζv,v, (19)

ζv,v′ = λζv,v, (20)

ζeg,v′ = λζeg,v. (21)

As shown below, expressing the dephasing functions in terms
of auto-correlation and cross correlation functions demon-
strates that 2D EV and 2D VE spectroscopies are sensitive
to the coupling between electronic and vibrational degrees
of freedom in a molecular ensemble. Additionally, obtain-
ing a proportionality constant relating the nature of the
homogeneous vibrational dephasing in the ground and the
excited electronic manifolds is a notable advantage of these
spectroscopies.

In this work, we assume the homogeneous limit where
the fluctuations δωy,i(t) are much faster than the time scale
of the experimental measurement and that fluctuations in
the mechanical anharmonicity are negligible. In this limit,
the line shape functions become linear with respect to time,
ha,b(t) ≈ Γa,bt, and the dephasing functions (Fa,b,c ,d) reduce
to exponentially decaying functions where the Γa,b terms are
damping constants, or decay times, that reflect the homoge-

nous dephasing time scales defined as Γa,b =
∞

∫
0

dτζa,b(τ). The

absorption line shapes are related by the Fourier transform
of the dephasing functions, which yield 2D Lorentzian line
shapes with spectral widths in ω1 and ω3 defined by the Γa,b

terms for the τ′1 and τ′3 periods, respectively. In future work,
we will explore the effects of correlated spectral broadening
in these 2D spectroscopies. The 2D EV dephasing functions,
Fa,b,c,d

R,I−V , for all five peaks are expressed (R and NR func-
tions have the same form, only R is given) using simplified
notations

Fg0,g1,g0,e0′

R,I (τ′3, τ′2, τ′1) = Γv,vτ
′
3 + Γeg,egτ

′
1, (22)

Fg0,e0′,e1′,e0′

R,II (τ′3, τ′2, τ′1) = (λ2)Γv,vτ
′
3 + Γeg,egτ

′
1, (23)

Fg0,g1,g0,e1′

R,III (τ′3, τ′2, τ′1) = Γv,vτ
′
3

+
[
Γeg,eg + (2λ)Γeg,v + (λ2)Γv,v

]
τ′1,

(24)

Fg0,e1′,e2′,e1′

R,IV (τ′3, τ′2, τ′1) = (λ2)Γv,vτ
′
3

+
[
Γeg,eg + (2λ)Γeg,v + (λ2)Γv,v

]
τ′1,

(25)

Fg0,e1′,e0′,e1′

R,V (τ′3, τ′2, τ′1) = (λ2)Γv,vτ
′
3

+
[
Γeg,eg + (2λ)Γeg,v + (λ2)Γv,v

]
τ′1.

(26)

The sensitivity of 2D EV spectroscopy to electronic-state-
dependent vibrational dephasing is demonstrated by the λ2

dependence of peaks II, IV, and V during the detection period
τ′3. The comparison of these broadened peaks to peaks I and
III in the ωvibrational dimension will directly reveal electronic-
state-dependent vibrational dephasing. There is also a strong,
uniform λ dependence in the ωelectronic dimension for peaks

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-049732


094202-9 J. D. Gaynor and M. Khalil J. Chem. Phys. 147, 094202 (2017)

III, IV, and V, which may reflect deviations from strictly ver-
tical electronic excitation and stronger fluctuations of “hot”
vibrations in |e〉.

B. Vibronic signal pathways in 2D VE spectroscopy

Similar to Sec. III A, we will use the material and interac-
tion Hamiltonians described in Sec. II and Fig. 2 and the center
frequency and bandwidth considerations of the input electric
fields described above to obtain the expression for the material
response function and the third-order nonlinear polarization

for the 2D VE experiment. In contrast to 2D EV experiments,
no vibrational transitions in the excited electronic state are
directly observed in 2D VE spectroscopy. Rather, the reso-
nance frequencies of the electronic transitions that are probed
with the final probe interaction carry this information. The
only vibrationally resonant field-matter interaction in 2D VE
spectroscopy occurs with the first two pulses with frequency
ωg,1. The electronic transitions probed with k3 have energies
equal to the sum of the electronic energy gap and some com-
bination of vibrational quanta [see Fig. 4(d)]. As a result, the
direct comparison of specific peaks that report on vibrational

FIG. 4. 2D VE vibronic signals overview. The relevant Liouville pathways that contribute to the 2D VE signal when the excitation fields (k1 and k2) have a
sufficient bandwidth for resonant single quantum vibrational transitions and the probe field (k3) spans frequencies ωeg ± ωg,1. The non-rephasing (NR) and
rephasing (R) signal pathways represented by the double-sided Feynman diagrams DVE

NR and DVE
R in (a) and (b), respectively, are the only contributing 2D VE

signal pathways when k2 and k3 are beyond temporal overlap (i.e., τ′2 ≥ τp where τp is the longer pulse FWHM duration) such that the field-matter interaction
time ordering is well defined. Additional pathways in (c) contribute only during the k2 and k3 temporal overlap ( |τ′2 | < τp). The peak labels (I-V) specify the
signal to which that pathway contributes; the R and NR diagrams for a given peak sum to yield the absorptive 2D VE signal. The diagrams are also categorized
by signal type: ground state bleach (GSB, positive, solid line) and excited state absorption (ESA, negative, dashed line). The fully absorptive 2D VE spectrum is
depicted (d) for a system where V(1)

j , 0 and V(2)
j,j , 0; peaks I-V share the excitation frequency coordinate ω1 = ωg,1 and they are distinguished by the probed

electronic transition frequencies ω3 = ωeg, ωeg + ∆eg, ωeg + ωe,1′ , ωeg + ωe,1′ + ∆eg – ∆2′1′ , and ωeg – ωg,1 where the frequencies are defined as ωeg = (Ee,0′

– Eg,0)/~, ωg,v = (Eg,(v+1) � Eg,v)/~, ωe,v′ = (Ee,(v+1)′ � Ee,v′ )/~, the frequency difference of the vibration in |g〉 and |e〉, ∆eg = ωe,1′ – ωg,1, and the anharmonicity
in |e〉, ∆2′1′ = ωe,1′ – ωe,2′ .
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features in the ground and excited electronic states is not as
straightforward as in 2D EV. The reader is directed to recent
papers by Courtney et al.17,18 for additional discussion of 2D
VE transitions.

Considering the same electric field parameters described
earlier, the allowed transition pathways in 2D VE only evolve
in population states during τ′2 while τ′2 ≥ τp. The 2D VE
response tensor is obtained from Eq. (15) when M1 and M2

are vibrational transition dipole moments and when M3 and
M4 correspond to electronic transition dipole moments. The
transition pathways available to a molecular system described
by Hvibronic for the vibronic system in the present discussion
are shown as double-sided Feynman diagrams in Figs. 4(a) and
4(b), and a fully absorptive 2D VE spectrum is illustrated in
Fig. 4(d). The complete set of vibronic response functions for
each of the diagrams in Fig. 4 is given in the supplementary
material. In general, the 2D VE response function consists of
(i) oscillating frequencies that determine the position of the 2D
peak in the ω1 and ω3 Fourier space, (ii) product of transition
dipole factors that govern the amplitude of the 2D peaks, and
(iii) nonlinear dephasing function [Fa,b,c,d(τ′3, τ′2, τ′1)] that dic-
tates the 2D line shape. We will discuss each of these factors
in detail below.

1. 2D VE peak positions

The 2D VE peak positions encode the modulation of the
electronic energy gap that is coupled to the nuclear motion of
the ground electronic state molecule. The resonance frequen-
cies for the transitions between the vibronic eigenstates mod-
eled by Hvibronic govern the positions of the 2D VE peaks. Thus,
the 2D VE peak positions are sensitive to the anharmonicity,
the excited state equilibrium displacement, and the excited
state frequency shift of the vibrational mode. The ωvibrational

peak position indicates the resonant vibrational transition that
is initially excited in the ground state molecule during τ′1,
and the peak coordinate along theωelectronic dimension reflects
the energy gap for transitioning into a vibrational state in |e〉
following the initial vibrational perturbation. Given the consid-
ered electric field characteristics, 2D VE transition pathways
are resonantly excited with the same excitation frequencyωg,1

resulting in the vertically stacked series of peaks shown in
Fig. 4(d). Resolution of different peaks in theωvibrational dimen-
sion becomes relevant when more than one vibrational mode
is involved in the vibronically coupled system, which could
include other high frequency vibrational modes or low fre-
quency structural modes. Since the 2D VE transition pathways
never include a vibrationally resonant field-matter interaction
with a vibration in |e〉, there will not be the same peak sepa-
ration along ωvibrational that reflects ∆eg and ∆2′1′ as occurs in
2D EV spectra. Instead, the peak separation in the ωelectronic

dimension is due to the modulation of the electronic energy
gap by ∆eg and ∆2′1′ which are expressed as combinations of
vibrational quanta.

A particularly notable feature of 2D VE spectroscopy is
the absence of ESE pathways to contribute positive inten-
sity to the spectrum. In general, observed peaks will be
broad in the ω3 dimension due to the electronic transitions
that are probed with this technique. The ability to resolve

information about the excited electronic state potential energy
surface depends on the nature and strength of the system’s
vibronic coupling and the extent of overlap between these
inherently broad signals. Peaks I-IV consist of pairs of bleach
and absorption features that have frequency separation on the
order of a fraction of one vibrational quantum (i.e., ∆eg and
∆2′1′). The comparison of the peak separation and the elec-
tronic absorption line width dictates the overlap of oppositely
signed 2D VE signals.

The sign of the peaks in the 2D VE spectrum differ by
the populated state over which the system evolves during τ′2.
The positive GSB features arise from electronic transitions
into |e〉 from |g, 0〉 〈g, 0|, and the negative ESA features result
from electronic transitions originating from |g, 1〉 〈g, 1|. Peak
I (GSB) is centered at ωelectronic = ωeg because k3 induces
the transition |g, 0〉 → |e, 0′〉, while peak II (ESA) is sepa-
rated from peak I in ωelectronic by ∆eg since the k3 interactions
yielding peak II induce the transition |g, 1〉 → |e, 1′〉. For
the red-shifted anharmonic vibration in |e〉 discussed here,
ωe,1′ < ωg,1 and so ∆eg is negative resulting in the separa-
tion of peaks I and II represented in Fig. 4(d); if ωe,1′ = ωg,1,
then ∆eg = 0 and peaks I and II are centered at the same 2D
VE spectral coordinates (ωg,1,ωeg). Therefore, the difference
between the ground and excited electronic state vibrations
is contained in the peak separation of peaks I and II, sim-
ilar to 2D EV. Generally, peaks III (GSB) and IV (ESA)
include electronically resonant field-matter interactions higher
in energy by ∼ ~ωe,1′ than those that contribute to peaks I and
II. The probed electronic transitions in peaks III and IV are
|g, 0〉 → |e, 1′〉 and |g, 1〉 → |e, 2′〉, respectively. Peak IV is
lower in frequency than peak III in ωelectronic by ∆eg and the
excited state mechanical anharmonicity, ∆2′1′ . As a result, the
2D VE spectrum of a red-shifted anharmonic vibrational mode
will have greater ωelectronic separation between peaks III and
IV than between peaks I and II. Thus, when vibronic states
|e, v′〉 for v′ > 1 are resonantly accessed via k3, information
about ∆2′1′ is included in the 2D VE spectral features. Peak
V (ESA) is not paired with an oppositely signed and overlap-
ping peak. The electronically resonant probe transition that
generates peak V utilizes the lower frequency portion of the
available bandwidth in k3 for the transition |g, 1〉 → |e, 0′〉;
therefore, no lower-lying vibrational state in |e〉 exists to pro-
vide the accompanying positive GSB peak that is observed
for peaks I-IV. Peak V is a unique spectral signature in
2D VE as it is inherently less convoluted by other spectral
signatures.

2. 2D VE peak amplitudes

The 2D VE peak amplitudes depend on the initial ground
state population and the strength of the four interacting dipoles
of the vibronic system, as shown by the 2D VE response
function [see Eqs. (SI.2.6) and (SI.2.7) of the supplemen-
tary material]. The nonlinear nuclear coordinate dependence
of the electronic transition dipole as given by Eq. (17) and
the vibrational transition dipoles inherently contribute to the
resonant vibronic transitions in 2D VE spectroscopy. How-
ever, the effects of the nonlinearity of Meg(Q) will overwhelm
any effects of electrical anharmonicity in Mvn(Q) and Mv′n′(Q)

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-049732
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-049732
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-049732
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-049732
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present in 2D VE spectra. The direct observation of the electri-
cal anharmonicity of a vibration in a particular electronic state
requires the comparison of features arising from vibrational
transitions between a zero and one quantum state and between
a one and two quantum state (e.g., µ0′,1′ and µ1′2′). Since 2D
VE transition pathways include only one vibrationally res-
onant field-matter interaction, no such comparison is easily
extracted from the spectra.

An important advantage of 2D VE spectroscopy is that
the experiment samples a larger variety of transitions between
vibronic states in different electronic manifolds as the electron-
ically resonant field-matter interaction is the probe interaction.
The pathways that contribute the negative ESA features evolve
in |g, 1〉 〈g, 1| during τ′2, which allows the electronic transition
to originate from an excited vibrational state in |g〉 and access
higher vibrational states in |e〉 than is possible in the GSB path-
ways. This means that an amplitude comparison between GSB
and ESA peak pairs includes the magnitudes of the involved
dipole moments and the magnitudes of two different vibronic
overlap integrals. For example, to the zeroth order in Meg(Q)
[Eq. (9)], the amplitude comparison of peaks I and II considers
the difference in magnitudes of Franck-Condon factors for the
|g, 0〉 → |e, 0′〉 and |g, 1〉 → |e, 1′〉 transitions. Similar to 2D
EV spectroscopy, the non-Condon effects will manifest them-
selves as amplitude changes in the 2D VE spectra and will be
explored in detail in Sec. IV.

3. 2D VE line shapes

The nonlinear dephasing functions determine the line
shapes observed in 2D VE spectra. As described for 2D EV
line shapes in the homogenous limit above, the formulation
of the 2D VE dephasing functions in terms of autocorrela-
tion and cross correlation functions demonstrates that 2D VE
spectroscopy is sensitive to fluctuations of vibronic frequen-
cies. While the 2D VE dephasing functions are defined by
more cross correlations, the simplification of these expressions
using the λ parameter [Eq. (18)] shows that 2D EV and 2D
VE can be described by the same three correlation functions.
However, the dephasing functions for 2D VE are very differ-
ent from those in 2D EV, which is a result of the different
sequences of field-matter interactions utilized, and they are
expressed for the rephasing contributions to the five peaks as
follows:

Fg0,e0′,g0,g1
R,I (τ′3, τ′2, τ′1) = Γeg,egτ

′
3 + Γv,vτ

′
1, (27)

Fg0,g1,e1′,g1
R,II (τ′3, τ′2, τ′1) =

[
Γeg,eg + 2(λ − 1)Γeg,v

+ (λ − 1)2
Γv,v

]
τ′3 + Γv,vτ

′
1, (28)

Fg0,e1′,g0,g1
R,III (τ′3, τ′2, τ′1) =

[
Γeg,eg + 2(λ)Γeg,v + (λ)2

Γv,v

]
τ′3

+ Γv,vτ
′
1, (29)

Fg0,g1,e2′,g1
R,IV (τ′3, τ′2, τ′1) =

[
Γeg,eg + 2(2λ − 1)Γeg,v

+ (2λ − 1)2
Γv,v

]
τ′3 + Γv,vτ

′
1, (30)

Fg0,g1,e0′,g1
R,V (τ′3, τ′2, τ′1) =

[
Γeg,eg − 2Γeg,v + Γv,v

]
τ′3 + Γv,vτ

′
1.

(31)

The λ dependence is limited to only the ω3 probe dimension
in 2D VE spectra, given the excitation is vibrationally reso-
nant. Peaks II, III, and IV have varying extents of quadratic
λ dependence. Notably, while peak V is the uniquely isolated
peak in 2D VE spectra, it carries no information reflecting
electronic-state-dependent vibrational dephasing. Peak I is the
only peak that does not contain contributions from the cross
correlation, whereas in 2D EV, both GSB peaks (I and III)
did not include cross correlation information. Finally, the non-
trivial cancellation between oppositely signed spectral con-
tributions in 2D VE may complicate spectra since GSB and
ESA peak pairs (e.g., III and IV) will have different amplitude
contributions due to electronic-state-dependent vibrational
dephasing.

IV. 2D EV AND 2D VE SIMULATIONS

The 2D VE and 2D EV spectra are simulated in this
section by calculating the response functions for all the con-
tributing vibronic transition pathways when the electroni-
cally resonant transitions occur within the frequency range
ωelectronic = ωeg ± ωg,1 and the vibrationally resonant tran-
sitions occur for single quantum transitions (∆v, ∆v′ = ±1)
only. We further assume that all the electric fields are much
shorter in time than the dynamics of interest, that τ′2 > 0 such
that only the diagrams in Figs. 3(a), 3(b), 4(a), and 4(b) are
relevant, and that τ′2 is sufficiently short to neglect popula-
tion relaxation during this period. Working in this impulsive
limit allows for the signal field to be proportional to the real
part of the third-order nonlinear response function [Eq. (15)]
and implies that τ′n = τn. Finally, we do not consider the ori-
entational response function (Yabcd

IJKL ) or vibrational electrical
anharmonicity here.

The energies of the vibrational eigenstates in both elec-
tronic states are obtained by diagonalization of Hvibronic. In
general, Hvibronic cannot be block-diagonalized since the lin-
ear, quadratic, and cubic perturbations result in the coupling
of manifolds with differing numbers of quanta. In princi-
ple, the system eigenstates are determined by obtaining the
eigenvalues and eigenvectors of Hvibronic with infinite size.
In practice, this is achieved by choosing a matrix size large
enough to obtain numerical convergence of the lowest five
vibrational states in both electronic manifolds. For these sim-
ulations, Hvibronic was expanded to 50 vibrational quanta. The
transformation between the local mode basis and the eigen-
state basis is defined by H ′vibronic = T−1HvibronicT , where
H ′vibronic is in the eigenstate basis and T is the transforma-
tion matrix whose columns are the eigenvectors that represent
the contributions of the states in the local mode basis to
the eigenstates of the vibronic Hamiltonian. The vibrational
transition dipole moments are transformed similarly using T
to transform an initially harmonic transition dipole moment
matrix.

The Hvibronic parameters used in the simulation are given
in the corresponding figures below. When coefficients are
described as nonzero, their values are as follows: gjjj = 0.25
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yields a 30 cm�1 anharmonicity, V(1)
j = 1 reflects an excited

state displacement equal to the ground state equilibrium bond
length, V(2)

j,j = −0.038 translates to a 40 cm�1 red-shifted
vibrational frequency in |e〉, Herzberg-Teller couplings (non-
Condon effects) are included with µ(1)

eg = 0.15, and λ = 1.5
sets the vibrational dephasing in |e〉 to be 50% faster than in
|g〉. A zeroth-order vibrational frequency ωj

0 = 2100 cm�1

and an unperturbed electronic transition frequency ω0
eg

= 25 000 cm�1 are used in all cases. The correlation func-
tions contribute spectral broadening of Γeg,eg = 200 cm�1, Γeg,v

= 10 cm�1, and Γv ,v = 5 cm�1. In each plot, the linear spec-
trum for the ω1 (ω3) axis is plotted in gray on the top (side)
panel, and the ω3 projection plotted in black on the side panel
is obtained by integrating over ω1 for each ω3. The ωelectronic

axes have been subtracted by theωeg value calculated by diag-
onalizing Hvibronic to more easily relate peak separation to the
vibronic information of interest. To facilitate comparison, the
2D contours in Figs. 5–8 are normalized to the signal of great-
est magnitude throughout the series of cases for 2D spectra
shown. Thus, all 2D EV spectra are normalized to peak II in
Fig. 6(a), and all 2D VE spectra are normalized to peak I in
Fig. 8(f). Similarly, the ω3 projections in 2D EV simulations
are normalized to the greatest magnitude signal of Fig. 8 (b,

side panel), and the 2D VE ω3 projections are normalized to
Fig. 8 (f, side panel).

The simulations discussed in the remainder of this section
demonstrate that 2D EV and 2D VE signals can be observed
when one or more of the following is true for a molecular sys-
tem: (1) there is linear or quadratic vibronic coupling present,
(2) the electronic transition dipole moment has nuclear coordi-
nate dependence, and (3) the system displays electronic-state-
dependent vibrational dephasing. These molecular phenomena
contribute to the 2D signals through the 2D peak positions,
amplitudes, and line shapes. We will demonstrate that when
condition (1) is fulfilled (i.e., at least V(1)

j , 0 or V(2)
j,j , 0), the

2D EV and 2D VE signals are least ambiguous and greatest in
magnitude.

A. Case 1: Undisplaced, anharmonic oscillator

The simplest case to consider is the one in which no
vibronic coupling is present [case 1, Figs. 5(a) and 5(d)].
Here, the potential energy surfaces represented by Hvibronic

take the form of an undisplaced, anharmonic oscillator where
the anharmonicity coefficient is nonzero but the linear and
quadratic vibronic coupling coefficients are zero (gjjj , 0,

FIG. 5. 2D EV and 2D VE spectral simulations, case 1: the undisplaced anharmonic oscillator. The 2D EV [(a)–(c)] and 2D VE [(d)–(f)] simulations above
reflect a system with 30 cm�1 anharmonicity and a 2073 cm�1 fundamental vibrational frequency in both electronic states. Contour plots (a) and (d) show that
there is no signal present in the absence of vibronic coupling (µeg

(1) = 0, λ = 1). Weak or distorted signals from a case 1 system may be observed if non-Condon
effects are present [(b) and (e); µeg

(1) = 0.15, λ = 1] or if the system displays electronic-state-dependent vibrational dephasing [(c) and (f); µeg
(1) = 0, λ = 1.5].

The gray plots (top and side panels) are simulated linear spectra (i.e., UV-Vis or FTIR) for the corresponding frequency axis and the black plot (side panels) is
an integrated projection onto ω3 obtained by summing over ω1. Contours are normalized to the absolute maximum of Fig. 6(a) for 2D EV and Fig. 8(f) for 2D
VE; the contours span �1 to 1 with 5% intervals, bleach and emission signals (positive) are yellow, and absorption signals (negative) are blue. The framed 2D
regions have been scaled by the factors indicated for emphasis. For relative intensities, see Table I.
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FIG. 6. 2D EV and 2D VE spectral simulations, case 2: the undisplaced, frequency-shifted, anharmonic oscillator. The 2D EV [(a)–(c)] and 2D VE [(d)–(f)]
simulations reflect a system with 30 cm�1 anharmonicity and a 40 cm�1 red-shifted excited state vibration (ωg,1 = 2073 cm�1 and ωe,1′ = 2033 cm�1). Contour
plots (a) and (d) show that signal is observed when only quadratic vibronic coupling is present (µeg

(1) = 0, λ = 1). Non-Condon effects are evidenced by small
intensity contributions from peaks III-V [(b) and (e); µeg

(1) = 0.15, λ = 1], and electronic-state-dependent vibrational dephasing effects are observed in the peak
II broadening [(c) and (f); µeg

(1) = 0, λ = 1.5]. The simulated linear spectra (gray plots, top and side panels) are shown for reference. The ω3 projections (black
plots, side panels) are analogous to the pump-probe (or “1D”) equivalent signal and provide a comparison between the 2D and pump-probe signals. Contours are
normalized to the absolute maximum of Fig. 6(a) for 2D EV and Fig. 8(f) for 2D VE; the contours span �1 to 1 with 5% intervals, bleach and emission signals
(positive) are yellow, and absorption signals (negative) are blue. The framed 2D regions have been scaled by the factors indicated for emphasis. For relative
intensities, see Table I,

V(1)
j = 0, V(2)

j,j = 0). Additionally, in Figs. 5(a) and 5(d), the

Condon approximation is valid (µ(1)
eg = 0) and the vibrational

dephasing rates in |e〉 are the same as in |g〉 (λ = 1). As is clearly
seen in Figs. 5(a) and 5(d), no 2D signal is observed when there
is no vibronic coupling present in the system, µ(1)

eg = 0, and λ
= 1. Here, the local vibrational mode has the same frequency
in the ground and the excited electronic states, and the poten-
tial energy surfaces have the same mechanical anharmonicity.
Thus, ωg,1 = ωe,1′ and peaks I and II are both centered at the
coordinates (ωeg,ωg,1) in the 2D EV spectrum and (ωg,1,ωeg)
in the 2D VE spectrum. The signal intensities from peaks I
and II cancel since the positive signal from the GSB path-
ways

(
DEV

R,I , DEV
NR,I ; DVE

R,I , DVE
NR,I

)
and the negative signal from

the ESA pathways
(
DEV

R,II , DEV
NR,II ; DVE

R,II , DVE
NR,II

)
overlap; com-

plete cancellation occurs because the signal amplitudes are
equal in magnitude and the line shapes are the same leav-
ing no signal to be observed. The equivalence of the peak I
and II amplitudes is due to the equivalent magnitudes of the
transition dipole moments involved in the k3 interaction since
both peaks utilize the same transition dipole moment during
excitation. Therefore, the absence of 2D EV signals in Fig.

5(a) conveys that µg0,g1 = µe0′,e1′ in the molecular system,
whereas the 2D VE spectrum in Fig. 5(d) suggests that µg0,e0′

= µg1,e1′ . Additionally, the absence of excited state equilibrium
displacement

(
V(1)

j = 0
)

results in negligible Franck-Condon
factors for the electronic transitions resonant with ωelectronic

= ωeg ± ωe,1′ rendering peaks III, IV, and V unobservable
in 2D EV and 2D VE. In contrast to other multidimensional
spectroscopies such as 2D IR, mechanical anharmonicity in the
system is not a sufficient condition to yield 2D EV or 2D VE
signals.

2D EV and 2D VE signals may still be observed if µ(1)
eg , 0,

as shown in Figs. 5(b) and 5(e). Non-Condon effects manifest
themselves in 2D EV and 2D VE spectra through additional
peak intensity contributions. This is most easily seen for 2D
EV in Fig. 5(b) and for 2D VE in Fig. 5(e) where the framed 2D
spectral regions have been scaled by a factor of 10 to show the
non-Condon intensity contributions, theω3 projections (black
lines in side panels) relate the magnitude of the non-Condon
signal contributions. The 2D EV non-Condon signatures in the
absence of vibronic coupling only allow peaks III, IV, and V to
appear. Interestingly, the only 2D VE non-Condon signature



094202-14 J. D. Gaynor and M. Khalil J. Chem. Phys. 147, 094202 (2017)

FIG. 7. 2D EV and 2D VE spectral simulations, case 3: the displaced anharmonic oscillator. The 2D EV [(a)–(c)] and 2D VE [(d)–(f)] simulations reflect a
system with 30 cm�1 anharmonicity, an excited state geometry displacement equal to the ground state equilibrium distance, and a 2073 cm�1 fundamental
vibrational frequency in both electronic states. Contour plots (a) and (d) show that a signal is observed when only linear vibronic coupling is present (µeg

(1) = 0,
λ = 1). Non-Condon effects are evidenced by small intensity contributions to peaks III-V [(b) and (e); µeg

(1) = 0.15, λ = 1], and electronic-state-dependent
vibrational dephasing effects are observed in broadened 2D EV peaks II, IV, and V and broadened 2D VE peaks II and IV [(c) and (f); µeg

(1) = 0, λ = 1.5]. The
simulated linear spectra (gray plots, top and side panels) are shown for reference. The ω3 projections (black plots, side panels) provide comparison between the
2D and pump-probe signals for the respective techniques. Contours are normalized to the absolute maximum of Fig. 6(a) for 2D EV and Fig. 8(f) for 2D VE; the
contours span �1 to 1 with 5% intervals, bleach and emission signals (positive) are yellow, and absorption signals (negative) are blue. The framed 2D regions
have been scaled by the factors indicated for emphasis. For relative intensities, see Table I.

in this case is peak V because there is no oppositely signed
peak pair to negate the non-Condon intensity contribution.
Generally, the non-Condon intensity contributions are a more
significant addition for transitions with small Franck-Condon
factors (e.g., transitions resonant with ωelectronic = ωeg + ωe,1′

when V(1)
j ≈ 0). Within the Condon approximation (µ(1)

eg = 0),
the peak intensities are scaled only by the appropriate Franck-
Condon factor for the |g, v〉 → |e, v′〉 transition. The ratio of
peak intensities for signals arising from different electronic
transitions should scale with the ratio of the corresponding
Franck-Condon factors. The ratio of peak intensities will devi-
ate from the ratio of Franck-Condon factors in the presence of
non-Condon effects.

It is also possible to observe 2D EV and 2D VE signals
if the line shapes of the positive and negative signals are dif-
ferent, which occur when the vibrational dephasing rates in
the two electronic states are unequal [λ , 1, see Figs. 5(c) and
5(f)]. The magnitudes of these signals will depend on how dif-
ferent the vibrational dephasing rates are; a faster dephasing
rate yields a broadened peak and imperfect cancellation with
an accompanying peak of opposite sign. Lacking any quadratic
vibronic coupling to separate the oppositely signed peaks,

convoluted peak shapes such as those in Figs. 5(c) and 5(f)
may be observed.

B. Case 2: Undisplaced, frequency-shifted,
anharmonic oscillator

We next model a case in which vibronic coupling gives
rise to 2D EV and 2D VE signals by shifting the frequency of
the vibrational mode upon electronic excitation while µ(1)

eg = 0
and λ = 1. This undisplaced, frequency-shifted, anharmonic
oscillator [case 2, Figs. 6(a) and 6(d)] potential is modeled
by Hvibronic with a nonzero anharmonicity coefficient and
quadratic vibronic coupling (gjjj , 0, V(1)

j = 0, V(2)
j,j , 0). In

both techniques, the GSB (peak I) and the ESA (peak II) peaks
still have the same magnitude and sign as in case 1, but the
quadratic vibronic coupling separates the two signals along
ω3 because ωg,1 , ωe,1′ . As in case 1, peaks III, IV, and V are
unobserved since V(1)

j = 0. The two peaks seen in 2D EV for
case 2 [Fig. 6(a)] originate from the first vibrational transition
in two separate electronic manifolds. Thus, the direct compar-
ison of the time-dependent positions, line shapes, and ampli-
tudes of these 2D EV signals highlights the differences in the
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FIG. 8. 2D EV and 2D VE spectral simulations, case 4: the displaced, frequency-shifted, anharmonic oscillator. The 2D EV [(a)–(c)] and 2D VE [(d)–
(f)] simulations reflect a system with 30 cm�1 anharmonicity, an excited state geometry displacement equal to the ground state equilibrium distance, and a
40 cm�1 red-shifted excited state vibrational frequency (ωg,1 = 2073 cm�1 and ωe,1′ = 2033 cm�1). Contour plots (a) and (d) show that a signal is observed
when both linear and quadratic vibronic couplings are present (µeg

(1) = 0 and λ = 1). Non-Condon effects are evidenced by small intensity contributions to
all peaks in varying proportions [(b) and (e); µeg

(1) = 0.15, λ = 1], and electronic-state-dependent vibrational dephasing effects are observed in broadened
2D EV peaks II, IV, and V and broadened 2D VE peaks II and IV [(c) and (f); µeg

(1) = 0, λ = 1.5]. The simulated linear spectra (gray plots, top and side
panels) are shown for reference. The 2D EV ω3 projections (black plots, side panels) in this case highlight the convoluted nature of the 1D (“transient-IR”)
signal by comparison with the 2D EV signal. Contours are normalized to the absolute maximum of Fig. 6(a) for 2D EV and Fig. 8(f) for 2D VE; the contours
span �1 to 1 with 5% intervals, bleach and emission signals (positive) are yellow, and absorption signals (negative) are blue. For relative intensities, see
Table I.

potential energy surfaces of the ground and excited electronic
states. The comparison of signals for the same vibrational tran-
sition in either electronic manifold is a distinct advantage of
2D EV spectroscopy. The 2D VE peaks in this case arise from
a difference in electronic energy gaps for the resonant tran-
sitions |g, 0〉 → |e, 0′〉 and |g, 1〉 → |e, 1′〉. In principle, the
frequency separation of peaks I and II in theω3 dimension for
both techniques is represented by ∆eg = ωe,1′ − ωg,1. How-
ever, the resolution of the true ∆eg from a 2D EV or 2D VE
spectrum depends on the relative magnitudes of ∆eg and the
2D peak linewidths in the ω3 dimension. Generally, 2D EV
spectra provide higher resolution of∆eg since the probed vibra-
tions have narrower linewidths than the electronic transitions
probed in 2D VE. Using second-order stationary perturbation
theory (see Sec. SI.3 of the supplementary material), we can
show that ∆eg directly reports on V(2)

j,j through the following
relation:

∆eg =
ωj

0

2πc

*..
,

V(2)
j,j

2
−

(
V(2)

j,j

)2

8

+//
-

, (32)

where c is the speed of light. For a more complex system
involving two or more coupled vibrational modes that may
have different anharmonicities, ∆eg will include additional
terms from the Hamiltonian. This case shows that quadratic
vibronic coupling is a sufficient condition for the observation
of 2D EV and 2D VE signals.

The intensity contributions from the presence of non-
Condon effects allow for peaks III, IV, and V to be weakly
observed [Figs. 6(b) and 6(e)], in addition to peaks I and II.
These non-Condon signal intensities are an order of magnitude
less than signals present within the Condon approximation.
Notably, the fact that V(2)

j,j , 0 allows for 2D VE peaks III
and IV to be weakly observed through non-Condon inten-
sity contributions in this case, whereas in case 1, these peaks
were still unobservable. Similarly, the positive 2D EV peaks
III and V are separated by ∆eg and they appear as weak shoul-
der features on the tails of peaks I and II, respectively. Hence,
the positive intensity of peak V (an ESE pathway) cancels
the tail of the negative intensity of peak II, as shown in Fig.
6(b). The relative magnitudes of these non-Condon intensity
contributions are shown in the ω3 projections [black lines in

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-049732
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side panels, Figs. 5(b) and 5(e)] and in the simulated lin-
ear electronic absorption spectrum [gray line in top panel,
Fig. 5(b)].

The presence of electronic-state-dependent vibrational
dephasing (λ , 1) is now very clearly observed through the dif-
ference in line shapes between peaks I and II in both 2D EV and
2D VE [Figs. 6(c) and 6(f)]. The broadened ESA peaks reflect
faster vibrational dephasing for a molecule in the excited elec-
tronic state when compared to the ground electronic state
vibrational dephasing rate. In contrast to the previous case,
the quadratic vibronic coupling results in the separation of
these peaks with different line shapes which allows for a
less ambiguous assessment of the electronic-state-dependent
vibrational dephasing.

The ω3 projections in the side panels shown in all of the
simulations are the pump-probe analogs to the 2D EV or 2D VE
technique. These can be considered the corresponding “1D”
signals for either EV (commonly referred to as “transient-IR
absorption”) or VE. In case 2, where quadratic vibronic cou-
pling has shifted the excited state vibrational frequency, the
transient-IR signal and the 2D EV signal both contain sufficient
information to extract∆eg; the new information obtained in 2D
EV comes from analyzing and comparing the time dependent
2D line shapes of peaks I and II. The presence of non-Condon
effects may also be detected in the transient-IR signal, albeit
very weakly. However, since the transient-IR signal lacks ω1

resolution, the assignment of this intensity contribution to a
non-Condon effect is ambiguous because it cannot be corre-
lated with ωelectronic = ωeg + ωe,1′ excitation, while in 2D EV,
the correlation is explicit.

C. Case 3: Displaced, anharmonic oscillator

In case 3, only linear vibronic coupling is present in the
system of anharmonic oscillators (gjjj , 0, V(1)

j , 0, V(2)
j,j = 0)

and initially it is assumed that µ(1)
eg = 0 and λ = 1 [Figs. 7(a)

and 7(d)]. In this case, the vibrational mode oscillates about
a different equilibrium position in the excited state due to
linear vibronic coupling. The Franck-Condon factors for the
vibronic transitions yielding peaks III, IV, and V are non-
negligible and so appreciable intensity from these peaks is
observed. The 2D EV signal observed [Fig. 7(a)] is specif-
ically from the pathways which include resonant excitation
with ωelectronic = ωeg + ωe,1′ . There are no intensity contribu-
tions from vibronic pathways that are excited with a frequency
ωelectronic = ωeg because ωg,1 = ωe,1′ , thus peaks I and II can-
cel. For the same reason, peak III (GSB) and peak V (ESE)
are exactly overlapped in the 2D EV spectrum and only two
features are observed overall. However, peaks III and V have
the same sign and so their amplitudes add together instead of
canceling. The negative ESA signal (peak IV) appears at the
frequency of the second vibrational transition in the excited
electronic state (ωe,2′), and it is separated in the ωvibrational

dimension by the frequency difference between ωe,1′ and
ωe,2′ . This frequency difference, ∆2′,1′ = ωe,1′ − ωe,2′ , reflects
the anharmonicity of the excited state potential energy sur-
face and is expressed in terms of the anharmonic coefficient
gjjj (as shown in Sec. SI.3 of the supplementary material):
∆2′,1′ =

(
ω0

j /2πc
) (

15g2
jjj/2

)
. Interestingly, the positive signal

for a molecular system modeled in case 3 [Fig. 7(a)] contains
contributions from the equivalent vibrational transition in two
different electronic states. Thus, the time-dependent position,
line shape, and amplitude of this positive 2D EV feature result
from the convolution of the structural dynamics on both poten-
tial energy surfaces. In contrast to the 2D EV spectrum, the 2D
VE signal observed in case 3 [Fig. 7(d)] contains contributions
from peaks I and II because the amplitudes of these peaks are
not equal when V(1)

j , 0. However, since V(2)
j,j = 0, there will

never be more than one peak observed at ω3 = ωeg in case
3. The positive signal at ω3 = ωeg in Fig. 7(d) demonstrates
that |〈g, 0| e, 0′〉| > |〈g, 1| e, 1′〉| when V(1)

j = 1, and so the
positive GSB signal dominates. Similarly, the overall negative
signal at ω3 � ωeg + ωe,1′ suggests that the Franck-Condon
factor corresponding to peak IV has a larger magnitude than
the Franck-Condon factor for peak III. More important, how-
ever, is the fact that the frequency separation between peaks
III and IV isωeg +ωe,1′ +∆eg −∆2′,1′ ; thus, peaks III and IV do
have frequency separation because of the mechanical anhar-
monicity of the excited state potential energy surface, ∆2′,1′ ,
even though ∆eg = 0 in this case. This combination of mag-
nitude differences in Franck-Condon factors when V(1)

j , 0
and the excited state anharmonicity facilitates the observa-
tion of an overall 2D VE signal between peaks III and IV.
Overall, case 3 demonstrates that linear vibronic coupling is
also a sufficient condition for the observation of 2D EV and
2D VE signals.

The presence of non-Condon effects in case 3 simply
enhances the peaks that arise due to linear vibronic coupling in
the system. As shown in Fig. 7(b), the intensity of the 2D EV
spectral signatures is greater. The signal magnitude enhance-
ment is also seen by comparing theω3 projections in Figs. 7(a)
and 7(b). While non-Condon intensity contributions to peaks
I and II do occur, both of these transition pathways involve
the same electronic transition and so the nuclear dependence
of this |g, 0〉 → |e, 0′〉 excitation is reflected equally in both
peaks; thus, peaks I and II still completely cancel. Notably,
the 2D VE non-Condon intensity contributions highlight the
difference in the nuclear dependence of the different electronic
transition dipole moments that contribute to each of the 2D VE
peaks. This is demonstrated most clearly by peaks III and IV
in Fig. 7(e). In this case, the non-Condon intensity allows both
peaks III and IV to be observed with their separation given by
∆2′,1′ .

When electronic-state-dependent vibrational dephasing is
present in a molecular system modeled by case 3, we see
different line shapes in Figs. 7(c) and 7(f). In 2D EV, the
direct comparison of vibrational dephasing dynamics in the
two electronic states is convoluted because peaks III and V
are overlapped, as are peaks I and II. However, since peaks
III and V are both positive, identifying dephasing dynam-
ics specific to a vibration in one electronic state is ambigu-
ous. Provided that the excited state anharmonicity is large
enough to spectrally separate peak IV from peaks III and
V, then it is still possible to analyze excited state dephasing
information in isolation. The line shapes in 2D VE will be
less sensitive to excited-state-dependent vibrational dephas-
ing due to the inherently large width of the probed electronic

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-049732
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transitions and the λ-dependence of the 2D VE dephasing
functions.

It is important to highlight the difference in interpreting
the transient-IR signal and the 2D EV signal for this case, in
particular. A usual interpretation of transient-IR signals is in
the context of excited state frequency shifting of a vibrational
mode. However, as is shown in Figure 7 [(a)–(c), contours],
the ω3 frequency separation of the positive and negative sig-
nals is only due to the excited state anharmonicity. There is
no quadratic vibronic coupling in case 3, and the mechanical
anharmonicities are the same in |e〉 and |g〉; therefore, ∆eg = 0.
With only the transient-IR signal to conclude about the dif-
ferences of the molecular system in the ground and excited
electronic states, it would be reasonable—but incorrect—to
conclude that the measured frequency separation between
the positive and negative peaks is the difference in vibra-
tional frequency between the two electronic states. In fact, this
frequency separation would be the excited state mechanical
anharmonicity.

D. Case 4: Displaced, frequency-shifted,
anharmonic oscillator

The final case considers a system in which all the parame-
ters in Hvibronic are nonzero (gjjj , 0, V(1)

j , 0, V(2)
j,j , 0).

Here, the potential energy surfaces take the form of displaced,
frequency-shifted, anharmonic oscillators. For 2D EV spectra
of molecular systems modeled by case 4 [Fig. 8(a)], peaks I-
V are observable, and ∆eg and ∆2′ ,1′ can be obtained directly
from the 2D EV spectrum. The presence of quadratic vibronic
coupling uniformly affects the ωvibrational peak separation of
vibrations in |e〉 (peaks II, IV, and V) and vibrations in |g〉
(peaks I and III). Notably, this results in the separation of the
GSB (III) and the ESE (V) signals that were convolved in
case 3. The 2D VE spectrum for case 4 [Fig. 8(d)] also con-
tains contributions from all vibronic transition pathways, but
only four spectral signatures are observed because the posi-
tive signal in peak I eclipses the negative signal from peak II.
This occurs for the same reasons described above in case 3
[Fig. 7(d)].

The non-Condon intensity contributions in case 4 enhance
all of the peaks, and the magnitude of the contributions reflect
the nuclear dependence of a particular vibronic transition.
For vibronic transitions with relatively large Franck-Condon
factors, a first order non-Condon (µ(1)

eg ) contribution will be
comparably less noticeable than for transitions with smaller
Franck-Condon factors. In 2D EV, the maximum amplitude
comparison between peaks I and III will include the Franck-
Condon factors and any non-Condon effects. If the Franck-
Condon factors for these transitions are obtained using com-
putational methods or measured independently, then a ratio of
the measured amplitudes of 2D EV peaks I and III can be used
to extract the magnitude of the non-Condon intensity contri-
butions. The non-Condon intensity contributions in 2D VE are
most obvious by comparing peaks III and IV, for the same rea-
sons described for case 3 above. However, ∆eg , 0 in case
4, so peaks III and IV are further separated and have greater
observed amplitude.

In 2D EV, the electronic-state-dependent vibrational
dephasing results in the line shapes of the excited state

vibrational signatures (II, IV, and V) having broadened
features along ω3 [Fig. 8(c)]. Since all of these features
are spectrally resolved, information about vibrational-level-
dependent dephasing in the excited electronic state can be
extracted by comparing τ2-dependent line shapes of peaks
IV and V in addition to electronic-state-dependent vibra-
tional dephasing information accessible by comparing peaks I
and II.

In this case, where peaks I-V contribute appreciable inten-
sity to the 2D EV spectrum, the transient-IR signals will be
increasingly complex [Figs. 8(a)–8(c)]. For example, since
peaks II and V are opposite in sign and have the sameω3 coor-
dinate, the negative transient-IR signal that should be used to
extract∆eg will be diminished. In this case, the minimum in the
transient-IR signal corresponds to the intensity contributions
from peak IV at ω3 = ωe,2′ , which is only realized by resolv-
ing the excitation frequency axis in the 2D EV spectrum. The
assessment of ∆eg from the transient-IR signal alone should be
approached with caution.

We briefly discuss how the 2D EV and 2D VE signals in
Figs. 8(a) and 8(d) would be different for the case of the dis-
placed harmonic oscillator (DHO) model,46 commonly used
to simulate 2D ES signals. The DHO model is approximated
by Hvibronic [Eqs. (1)–(4)], when gjjj = 0. If the oscillators in the
DHO model have the same vibrational frequency in both elec-
tronic states and they are harmonic, then ∆eg = 0 and ∆2′,1′ = 0.
In 2D EV, all the oppositely signed signals would emit at the
same frequency. Therefore, 2D EV signals will not be observed
for a DHO system that lacks quadratic vibronic coupling. We
would still observe 2D EV signals if the vibrational dynamics
were dependent on the electronic state. If the vibrational fre-
quency is different in the ground and excited electronic states
for the DHO model (∆eg , 0), 2D EV signals will be observed.
However, peaks IV and V will be overlapped (since ∆2′,1′ = 0)
and their amplitudes will incompletely cancel due to the differ-
ent magnitudes of peaks IV and V. In contrast, 2D VE signals
arising from the DHO model will always be observed because
the displacement of the ground and electronic states results in
different amplitudes of the oppositely signed peaks in the 2D
VE peak pairs (e.g., peaks I and II).

V. SELECTION RULES FOR 2D EV
AND 2D VE SPECTROSCOPIES

The systematic investigation of simulated 2D EV and
2D VE spectra in Sec. IV suggests that these 2D spectro-
scopies are subject to these three general selection rules:
(1) the presence of vibronic coupling in the system repre-
sented by at least one nonzero vibronic coupling coefficient
(V(1)

j , 0 or V(2)
j,j , 0), (2) the electronic transition dipole

moment is dependent on the nuclear coordinates (i.e., the
Herzberg-Teller coupling or higher order non-Condon effects
are appreciable), and (3) the system displays electronic-state-
dependent vibrational dephasing dynamics. These selection
rules relate the propensity for molecular systems to display
signals when studied with 2D EV or 2D VE spectroscopies
through the measured peak positions, amplitudes, and line
shapes. A concise summary of the information presented in the



094202-18 J. D. Gaynor and M. Khalil J. Chem. Phys. 147, 094202 (2017)

TABLE I. This table summarizes some of the information conveyed in the
series of 2D EV and 2D VE simulations shown in Figs. 5–8. The following
is organized by grouping cases 1-4 for three combinations of the µeg

(1) and
λ parameters. The first four rows show cases 1-4 under the Condon approxi-
mation and with no electronic-state-dependent vibrational dephasing (µeg

(1)

= 0, λ = 1); rows 5-8 show the influence of non-Condon effects on all cases
(µeg

(1) = 0.15, λ = 1); rows 8-12 show the effects of electronic-state-dependent
vibrational dephasing for all four cases (µeg

(1) = 0, λ = 1.5); and the last row
(simulation not shown) shows a case 4 system where all simulation parameters
are nonzero (µeg

(1) = 0.5, λ = 1.5). Each row corresponds to a set of conditions
used to simulate 2D EV and 2D VE spectra (excluding the last row); the abso-
lute maximum peak intensities (Imax) for 2D EV and 2D VE simulations are
listed and normalized for comparison. The peak with the greatest magnitude
and the figure in which the simulation is shown are given for referencing the
simulations shown earlier in the text.

V(1)
j V(2)

j,j µ
(1)
eg λ IEV

max [peak, figure] IVE
max [peak, figure]

0 0 0 1 0 [ -, 5(a)] 0 [ -, 5(d)]
0 �0.038 0 1 1.000 [II, 6(a)] 0.273 [I/II, 6(d)]
1 0 0 1 0.535 [IV, 7(a)] 0.969 [I, 7(d)]
1 �0.038 0 1 0.581 [II, 8(a)] 0.986 [I, 8(d)]

0 0 0.15 1 0.040 [II, 5(b)] 0.052 [V, 5(e)]
0 �0.038 0.15 1 0.999 [II, 6(b)] 0.274 [II, 6(e)]
1 0 0.15 1 0.886 [IV, 7(b)] 0.918 [I, 7(e)]
1 �0.038 0.15 1 0.918 [IV, 8(b)] 0.976 [I, 8(e)]

0 0 0 1.5 0.535 [I, 5(c)] 0.113 [I, 5(f)]
0 �0.038 0 1.5 0.955 [I, 6(c)] 0.310 [I, 6(f)]
1 0 0 1.5 0.342 [III/IV, 7(c)] 0.985 [I, 7(f)]
1 �0.038 0 1.5 0.567 [I, 8(c)] 0.998 [I, 8(f)]

1 �0.038 0.15 1.5 0.701 [I, - ] 1.000 [I, - ]

simulations (Figs. 5–8) is given in Table I to highlight gen-
eral trends in 2D EV and 2D VE signals. This information
is also useful to compare the sensitivities of 2D EV and 2D
VE spectroscopies to different types of vibronic molecular
phenomena.

The signals observed in 2D EV spectroscopy are great-
est in magnitude when the system only has quadratic vibronic
coupling (V(2)

j,j , 0, case 2). For the cases where linear vibronic
coupling is present, the signal is still greater when quadratic
vibronic coupling is also present (V(1)

j , 0, V(2)
j,j , 0, case 4).

The simulations show that different spectral signatures char-
acterize the different cases, but the magnitudes of these signals
reflect the sensitivity of the technique to various conditions of
molecular vibronic coupling. Thus, while 2D EV spectroscopy
is sensitive to both linear and quadratic vibronic couplings, it
appears to be more sensitive to quadratic vibronic coupling
effects. Herzberg-Teller coupling effects are more noticeable
in 2D EV spectra when there is already some degree of excited
state displacement present in the system, which is expected
from a system with stronger vibronic coupling. Finally, 2D
EV spectroscopy is particularly sensitive to electronic-state-
dependent vibrational dephasing dynamics, especially when
V(2)

j,j , 0. Since spectral signatures from vibrations in both
electronic states appear in 2D EV, the line shapes that reflect
these dephasing dynamics can be analyzed for each electronic
state for direct comparison.

The signals observed in 2D VE spectroscopy appear to
be less sensitive to quadratic vibronic coupling and more

sensitive to linear vibronic coupling. As seen from Table I, the
signals are overwhelmingly larger when V(1)

j , 0 (cases 3 and

4) than when V(1)
j = 0 (cases 1 and 2). The broad linewidths

of the probed electronic transitions result in extensive over-
lapping features in 2D VE spectra. Therefore, the observed
peak is far more dependent on the relative amplitudes between
competing spectral features of differing sign and line shape
than on peak separation. 2D VE has a unique sensitivity to the
nuclear dependence of different vibronic transitions because
the 2D VE pathways sample more electronic transition dipole
moments within the molecular system than in 2D EV. Thus,
Herzberg-Teller coupling effects result in non-trivial ampli-
tude comparisons of oppositely signed spectrally congested
features.

The propensities for observing 2D EV and 2D VE sig-
nals follow for the case in which all simulation parameters
are non-zero (Table I, last row), which may be a more real-
istic case for a molecular system. In 2D EV, the presence of
Herzberg-Teller coupling effects increases the observed inten-
sities overall with varying proportions, but the presence of
electronic-state-dependent vibrational dephasing disperses the
excited state vibrational spectral intensity of the ESA (peak
IV) leaving the GSB (peak I) feature with the greatest magni-
tude. The feature of the greatest magnitude does not change in
2D VE because Herzberg-Teller effects and the excited state
vibrational dephasing both contribute to enhancing the posi-
tive amplitude of peak I, and so this feature still dominates the
spectrum.

VI. DISCUSSION

In 2D EV and 2D VE spectroscopies, the complexity of the
spectral and dynamical signatures can increase depending on
the accessible transitions during the field-matter interactions.
As spectrally broadened and temporally compressed ultrafast
pulses throughout the UV, visible, and infrared regions are
implemented in spectroscopic experiments, a discussion of
the newly accessible signals in these spectroscopies is war-
ranted.53 For simplicity, we assume τ′2 ≥ τp and briefly con-
sider the new 2D signals that arise when the electronically
resonant field reaches higher vibrational levels in |e〉with cen-
ter frequency ωelectronic = (ωeg + ωe,1′) ± ωg,1 and when the
vibrationally resonant field has the spectral bandwidth to excite
two quantum transitions: ∆v, ∆v′ = ±1, ±2.

If ωelectronic = (ωeg + ωe,1′) ± ωg,1 but ωvibrational does
not have increased bandwidth (∆v,∆v′ =±1), six new 2D EV
Liouville pathways and four new 2D VE Liouville pathways
are allowed when k1 and k2 leave the system in a popula-
tion state during τ′2. These new 2D EV signals result in three
new peaks (a GSB, an ESA, and an ESE), while the new
2D VE signals yield a GSB and an ESA peak pair at the
expense of peak V since it would be outside of the probe
bandwidth. If the bandwidth of ωvibrational is octave-spanning
and ωelectronic = ωeg ± ωg,1, then the only new 2D EV Liou-
ville pathways that evolve in population states during τ′2 emit
at vibrational overtone frequencies. In contrast, since k1 and
k2 are vibrationally resonant in 2D VE, ten new Liouville
pathways are accessible to the system that yield a new set of



094202-19 J. D. Gaynor and M. Khalil J. Chem. Phys. 147, 094202 (2017)

five fully absorptive features at a higher excitation frequency,
ω1 = 2ωg,1. The dynamics during the τ′2 delay become com-
plex when ωvibrational is octave-spanning because the system
can evolve in a new set of allowed coherence states dur-
ing τ′2 in both experiments. Four 2D EV Liouville pathways
arise that evolve in single quantum coherence states (either
|e, 0′〉 〈e, 1′ | or |g, 0〉 〈g, 1|) and require a vibrational overtone
interaction with k3 to be detected; we note that the conjugates
of these pathways emit at overtone frequencies and so would
be exceedingly difficult to detect. There are twelve new 2D
VE Liouville pathways that evolve as single quantum coher-
ence states (|g, 0〉 〈g, 1|+c.c. and |g, 1〉 〈g, 2|+c.c.) during τ′2;
in this case, the conjugate coherence states still emit at funda-
mental vibrational frequencies and will equally contribute to
the observed τ′2 dynamics. The signals from these coherence
states will contribute additional—and oscillatory—intensity
to peaks that already exist from signals that evolve in pop-
ulation states during τ′2. Similarly, still more signals arise
if ωelectronic = (ωeg + ωe,1′) ± ωg,1 and ωelectronic is octave
spanning.

A description of the electronic transition dipole moment
similar to our approach has been used by Turner and co-
workers54 in three-dimensional electronic spectroscopy (3D
ES) to identify Herzberg-Teller signatures through anti-
diagonal nodal features in 3D ES spectra. Other nonlinear
vibrational spectroscopies also have been used to probe cou-
plings between electronic and vibrational motion in molecules
that principally involve Raman-active vibrations, such as 2D
fifth-order Raman spectroscopy,55 femtosecond stimulated
Raman spectroscopy,56 2D resonance Raman spectroscopy,57

and 4D coherent Raman spectroscopy.58,59 The 2D spec-
troscopies discussed in this paper contribute the capability
for probing IR-active vibrations that are coupled to elec-
tronic degrees of freedom. Thus, 2D EV and 2D VE spec-
troscopies provide an important avenue toward understanding
vibronic couplings involving changes in the dipole moment
which complement these nonlinear Raman techniques that
describe vibronic couplings involving changes in polarizabil-
ity. Polarization sensitivity has been used in 2D EV exper-
iments to aid with peak assignments in congested spectra
of light harvesting complexes.19 In principle, a combina-
tion of polarization selective 2D EV and 2D VE experi-
ments should yield a rich description of the vibronic cou-
pling present in a system by revealing relative orientations
of particular IR-active vibrations with respect to the elec-
tronic transition dipole moment. We will explore polariza-
tion effects in 2D VE and 2D EV spectroscopies in future
studies.

A wealth of microscopic information is conveyed by
the dynamic 2D line shapes in multidimensional spec-
troscopy.60–65 Static and dynamic correlations measured in
2D IR and 2D ES experiments reflect the microscopic nature
and time scales of fluctuations in molecular vibrational and
electronic transition energies. There has been recent work
on extracting static and dynamic correlations between vibra-
tional and electronic transition frequencies using 2D EV
spectroscopy.21,23 We anticipate that continued studies of
time-evolving 2D EV and 2D VE line shapes will describe
molecular phenomena such as non-equilibrium solvation,66

transient structural heterogeneity, and non-Gaussian frequency
distributions67 on coupled vibronic states.

In this paper, we have focused our discussion on a single
anharmonic vibrational mode coupled to the ground and the
first excited electronic states. Most physical systems of interest
will include more than one vibration of interest and more than
one excited electronic state. It will be important to extend this
work to include a vibronic system with multiple coupled vibra-
tions on multiple electronic states. The framework presented
here utilizes adiabatic vibronic eigenstates. In future, we will
explore how non-adiabatic effects will manifest themselves in
2D EV and 2D VE spectroscopies.

VII. CONCLUSIONS

A framework for interpreting vibronic coupling signatures
of molecular ensembles in 2D EV and 2D VE spectra has been
outlined in this paper. The simplest case of a molecular system
composed of one anharmonic local vibrational mode and two
electronic states has been treated here. A system Hamiltonian
is described that uses linear, quadratic, and cubic perturbations
to model this simple system of an anharmonic vibration in the
ground electronic state that may be displaced and frequency-
shifted in the excited electronic state. Notably, our treatment
parallels the Herzberg-Teller adiabatic approximation and we
show that the nuclear dependence of the electronic transitions
can be observed in these 2D spectroscopies. We have described
three general selection rules for 2D EV and 2D VE spec-
troscopies: (1) the presence of molecular vibronic coupling,
(2) the nuclear dependence of the electronic transitions, and
(3) the system displays electronic-state-dependent vibrational
dephasing. These effects manifest themselves in the 2D peak
positions, amplitudes, and line shapes. A systematic series of
2D EV and 2D VE spectral simulations generally characterizes
the nature and magnitude of signals in systems with varying
degrees of vibronic coupling.

SUPPLEMENTARY MATERIAL

See supplementary material for Liouville pathways for
a third order nonlinear response tensor, response functions
for 2D EV and 2D VE spectroscopies, and second order
corrections to energies using stationary perturbation theory.
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APPENDIX A: 2D EV AND 2D VE ENERGY GAP
CORRELATION FUNCTIONS

The vibronic transition frequency correlation functions
relevant for 2D EV and 2D VE spectroscopy are defined as
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ζv,v(t) =
〈
δωg1,g0(t)δωg1,g0(0)

〉
,

ζv′,v′(t) =
〈
δωe1′,e0′(t)δωe1′,e0′(0)

〉
,

ζeg,eg(t) =
〈
δωe0′,g0(t)δωe0′,g0(0)

〉
,

ζeg,v′(t) =
〈
δωe0′,g0(t)δωe1′,e0′(0)

〉
,

ζeg,v(t) =
〈
δωg1,g0(t)δωe0′,g0(0)

〉
,

ζv,v′(t) =
〈
δωg1,g0(t)δωe1′,e0′(0)

〉
.

(A1)

Equations (19)–(21) are obtained by simplifying (A1) using λ
[Eq. (18)].

APPENDIX B: NUCLEAR COORDINATE
DEPENDENCE OF Meg

As the Condon approximation is relaxed and the
Herzberg-Teller coupling terms are included (µ(1)

eg , 0) in
Eq. (9), the nuclear dependence of the electronic transition
contributes additional intensity to the 2D EV or 2D VE spec-
trum. In this case, Meg(Q) is expressed for a single vibrational
mode j,

Meg(Q) = µ(0)
eg

〈
g, v| e, v′

〉
+ µ(1)

eg 〈g, v|Qj
��e, v′

〉
. (B1)

The contributions of the Herzberg-Teller coupling terms to the
signal intensity is included phenomenologically through the
linear expansion coefficient µ(1)

eg , which is a weighting coeffi-
cient in a linear combination of vibrational overlap integrals.
This may be understood by writing Qj as a ladder operator
that raises (or lowers) the vibrational quantum number in the
excited electronic state. With this in mind, the expression in
(B1) can be rewritten as

Meg(Q) = µ(0)
eg

〈
g, v| e, v′

〉
+ µ(1)

eg
〈
g, v| e, (v ± 1)′

〉
. (B2)

Since the vibrational eigenstates in each electronic man-
ifold are obtained through diagonalization of Hg and He, the
values of the vibrational overlap integrals are easily obtained.
Thus, the coefficient µ(1)

eg describes the magnitude of the
nuclear coordinate dependence of the electronic transition
by contributing some character of the |g, v〉 → |e, (v′ ± 1)〉
transition(s) to the |g, v〉 → |e, v′〉 transition.
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