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Abstract

Traditional Monte Carlo particle transport codes are expected to run inefficiently on
next-generation architectures as they are memory-intensive and highly divergent. Since
electrons and photons also behave differently, the future for coupled electron-photon
radiation transport looks even worse. This project describes preliminary efforts to improve
the performance of Monte Carlo particle transport codes when using accelerators like the
graphics processing unit (GPU). Two key issues are addressed: how to handle
memory-intensive tallies, and how to reduce divergence. Tallying on the GPU can be done
efficiently by post-processing particle data, or by using a feature called warp shuffle for
summing scores in parallel during the simulation. Reducing divergence is possible by using
an event-based algorithm for particle tracking instead of the traditional history-based one.
Although performance tests presented in this work show that the history-based algorithm
generally outperformed the event-based one for simple problems, this outcome will likely
change as the complexity of the code increases.
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Nomenclature

Acronyms

CPU central processing unit

GPU graphics processing unit

ITS Integrated Tiger Series

KDE kernel density estimator

SIMT single instruction, multiple thread

SM streaming multiprocessor
Abbreviations

GB gigabytes
kB kilobytes (= 1024 bytes)

MB megabytes
GPU Abbreviations

K40 NVIDIA® Tesla® K40 GPU (Kepler™ architecture)
K80 NVIDIA® Tesla® K80 GPU (Kepler™ architecture)
K5200 NVIDIA Quadro® K5200 GPU (Kepler™ architecture)

P100 NVIDIA® Tesla® P100 GPU (Pascal™ architecture)
Symbols

C; number of events processed for the i*" particle history
d;. length of the ¢*® particle track processed from the i*" history

N number of particle histories
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Nyt number of particles that escape a geometric domain

V' volume of a region of interest

w;. particle weight for the ¢ event processed from the " history
x spatial coordinate on the z-axis

mean value for a physical quantity of interest

=>

x;. contribution to the mean value for the i** history and ¢* event
¢ estimate of the particle flux

i linear attenuation coefficient for photon attenuation

NVIDIA®, Tesla®, NVIDIA Quadro®, Kepler™ and Pascal™ are all trademarks and/or registered
trademarks of NVIDIA Corporation.
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Chapter 1

Introduction

Exascale supercomputers will likely consist of heterogeneous architectures, combining multi-
core central processing units (CPUs) with accelerators such as graphics processing units
(GPUs). As of June 2018, three of the top five supercomputers in the world use GPUs based
on the latest NVIDIA Tesla architecture [1]. This includes both Summit and Sierra, the
two newest systems hosted at national laboratories within the Department of Energy. Top
supercomputers like Summit and Sierra rely on GPUs to boost performance because they
offer high compute power at a lower energy cost than equivalent CPU-based systems.

For an application to run effectively on a GPU-based system, it needs to implement
algorithms that can take advantage of the single instruction, multiple thread (SIMT)
architecture. The best algorithms for a GPU are therefore highly data-parallel with few or
no divergent paths in the code. Unfortunately, traditional Monte Carlo particle transport
codes involve algorithms that are inherently memory-intensive and highly divergent. The
divergence problem is exacerbated further in coupled electron-photon radiation transport,
since both electrons and photons are tracked and these two particle types behave
differently. At Sandia National Laboratories, one of the workhorse codes that performs
coupled electron-photon radiation transport for directed nuclear stockpile work is the
Integrated Tiger Series (ITS) [2]. As a legacy code based on traditional Monte Carlo
algorithms, ITS is not expected to work well on next-generation architectures that include
GPUs. To take full advantage of GPU-based systems, application codes like ITS will need
to address both memory usage and divergence issues.

This project describes preliminary efforts to improve the performance of Monte Carlo particle
transport codes on the GPU. Two key issues are addressed: how to handle memory-intensive
data such as tallies, and how to reduce divergence in the core transport algorithm. In this
introductory chapter, first an overview of the NVIDIA GPU architecture is provided in
Section 1.1. Then, the general Monte Carlo particle transport algorithm is described in
Section 1.2. Finally, Section 1.3 presents an outline of the scope of this work. A glossary
containing the GPU computing and Monte Carlo particle transport terms used in this report
can be found on page 57.
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1.1 NVIDIA GPU Architecture

The general NVIDIA GPU architecture is built around a scalable array of multithreaded
streaming multiprocessors (SMs), each designed to execute instructions for hundreds of
threads concurrently [3]. Parallel work to be executed on the SIMT architecture of an
NVIDIA GPU can be written using the CUDA® programming model also developed by
NVIDIA. CUDA includes C/C++ language extensions that can be used to execute
instructions on the GPU, or to transfer data between the CPU and the GPU. Executing
instructions on the GPU is done by launching what is called a CUDA kernel. Each CUDA
kernel that is launched breaks down the work into multiple thread blocks that are then
distributed to all the available SMs. The SMs then process each thread block by creating,
scheduling, and executing groups of 32 threads known collectively as a warp. All threads in
a warp must execute single instructions concurrently, usually on different data sets read
from memory. While individual threads are allowed to branch and execute instructions
independently from the others, this branch divergence forces the code to become serialized
and can have a significant impact on the performance of a CUDA kernel. Therefore, the
SIMT architecture of an NVIDIA GPU is operating at its optimal efficiency when there is
no branch divergence within a warp.

1.1.1 Device Memory Hierarchy

Data used by a thread to execute an instruction on an SM must first be read from one of the
many memory spaces available on an NVIDIA GPU. This memory hierarchy ranges from
register memory assigned to individual threads, up to global memory that is accessible to
the CPU host and all the threads being processed by a CUDA kernel. A general summary
of the different memory spaces is shown in Table 1.1. Each memory space listed in Table 1.1
comes with unique advantages and disadvantages, so some thought must go into choosing
the right type to use for different data accesses.

Register Memory: Since register memory is located on-chip, it provides the fastest access of
all the options that are available. However, register memory is a limited resource that must
be shared by all the threads assigned to an SM.

Local Memory: Local memory is much slower than register memory because it is located
off-chip, so it is important to minimize its usage to obtain optimal performance. There are
two situations to avoid that will cause the compiler to use local memory. The first occurs
when a CUDA kernel requires more registers than are available to an SM, which causes the
excess data to spill over into local memory. The second occurs when an array has been
declared inside a CUDA kernel and needs to be accessed using dynamic indexing. In other
words, the access pattern to the array cannot be determined at compile time.

CUDA® is a registered trademark of NVIDIA Corporation.
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Shared Memory: Like register memory, shared memory is also located on-chip. The primary
advantage of this memory space is that it can be used by all the threads in a single block,
which enables efficient communication between the threads. Disadvantages of shared memory
are that it is limited to 48 kB per thread block, and also that synchronization across all the
threads in the block may be required.

Global Memory: Global memory is the largest of all the options, but is also the slowest
because it is located off-chip. Most of the data that CUDA kernels need to access throughout
the entire duration of the host program will be stored in global memory. A best practice for
achieving optimal performance is to minimize the number of times global memory needs to
be read or written by a CUDA kernel [4].

Constant Memory: Like global memory, constant memory is located off-chip. However,
constant memory differs from global memory in that it is limited to 64 kB and is cached
on-chip for efficient read-only access. The optimal use case for constant memory is when all
threads in a warp read from the same location, which makes it as fast as register memory [4].

Texture Memory: Texture memory is another form of read-only memory located off-chip
that is cached on-chip. As it was designed for graphics applications, texture memory works
best when the access pattern involves spatial locality (i.e., all threads in a warp read from
locations that are close to one another).

Table 1.1: Device memory hierarchy of an NVIDIA GPU [4].

Memory Space | Location | Access Type Scope Lifetime
Register On-chip Read/Write One Thread Thread
Local Off-chip Read/Write One Thread Thread
Shared On-chip Read/Write One Thread Block Block
Global Off-chip Read/Write | All Threads & Host | Host Allocation
Constant Off-chip Read-Only | All Threads & Host | Host Allocation
Texture Off-chip Read-Only | All Threads & Host | Host Allocation

1.1.2 Atomic Functions and Warp Shuflle

Writing data to global or shared memory on the GPU is not as straightforward as writing
data to memory in a serial application that runs on the CPU. Since multiple threads can
access the same memory address at the same time, this causes a race condition that will
produce inconsistent results because the order in which the data is read and updated is not
guaranteed. To avoid race conditions, threads on an NVIDIA GPU can use atomic functions
that perform a read-modify-write operation in either global or shared memory. Atomic
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functions are executed as a serial operation, which means that if one thread is executing an
atomic function, then the other threads in the warp must wait until it is finished before they
can continue executing their instructions. One of the most commonly used atomic functions
is atomicAdd, which will first read a value from memory, then compute the sum of that value
with a new value, and finally write the sum of the old value and the new value into memory
at the same address. An alternative to using atomicAdd for adding up numbers stored on
individual threads in a warp is to use an NVIDIA GPU feature called warp shuffle, which
allows up to 32 threads to simultaneously exchange or broadcast data. Warp shuffle can be
used to implement an efficient parallel reduction across all the threads in a warp [5], which
is shown graphically in Figure 1.1.1

Warp Index: 0 1 2 3

/ value += __shfl_down(value, 2)

/ value += __shfl_down(value, 1)

Figure 1.1: Graphical representation of a parallel reduction using NVIDIA’s warp
shuffle feature to add up individual values stored on four threads.

1.1.3 NVIDIA GPU Options

Even though all NVIDIA GPUs use an SIMT architecture and the same device memory
hierarchy, there can be some significant differences between the various cards that are
available. The different performance studies presented in this report all use at least one of
the following NVIDIA GPUs: Quadro K5200, Tesla K40, Tesla K80, and Tesla P100. The
three Tesla GPUs are dedicated accelerators used for scientific computing applications,
whereas the one Quadro GPU was designed to provide graphics for a desktop workstation.
Table 1.2 summarizes the key differences of these four GPUs.

IFigure 1.1 is based on the warp shuffle syntax in CUDA 8, which requires that all the threads in a warp
participate in the shuffle. In CUDA 9, the syntax and behavior of warp shuffle has changed so that the
programmer can select what threads in the warp will participate.

16



Table 1.2: Comparison of different NVIDIA GPU architectures.

Specification K5200 | K40 K80 P100
# GPUs per Card 1 1 2 1
CUDA Compute Capability 3.5 3.5 3.7 6.0
CUDA Cores 2304 2880 2496 3584
Streaming Multiprocessors 12 15 13 56
GPU Clock Rate (MHz) 771 745 824 1481
Single Precision TeraFLOPS — 5.0 8.7t 10.6
Double Precision TeraFLOPS — 1.7 2.91 5.3
Global Memory (MB) 8125 11,441 11,441 16,281
Memory Bandwidth (GB/s) 192 288 240 732
Device to Host Bandwidth (GB/s) | ~3 ~9 ~9 ~11

1Single & double precision performance for K80 is combined value for both GPUs on the card.

1.2 Monte Carlo Particle Transport

Monte Carlo particle transport is a stochastic method used to model the behavior of particles
in one or more fixed background materials. A finite number of particles are first generated
from a source, then experience a randomly-determined sequence of events that changes their
energy and/or direction until they either get absorbed or leave the system. This sequence
of events that each particle experiences is also known as a history.

1.2.1 History-Based and Event-Based Transport Algorithms

Two vastly different approaches can be used to implement the core transport algorithm of
a Monte Carlo particle transport code. The history-based transport algorithm shown in
Figure 1.2 is the traditional approach, which follows the path of individual particles. Each
history representing one particle is processed until it gets terminated, then the next history
can begin. The simulation ends when all particles have been terminated. In production
codes, the history-based transport algorithm is implemented using the Message Passing
Interface (MPI) standard to distribute groups of particles to different compute nodes for
processing. On today’s high performance computers, this approach is embarrassingly
parallel.  However, for next-generation architectures that rely on SIMT to increase
computational power, the traditional history-based approach can be less effective due to
the possibility of high divergence in the paths of individual particles.
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Figure 1.2: General workflow for a history-based transport algorithm.

An effort to reduce the branch divergence of the history-based transport algorithm was first
proposed for vector processors by Brown and Martin back in 1984 [6]. Designated the event-
based transport algorithm, this alternative approach sorts particles into groups according to
the type of event they are expected to experience next. The general workflow for the event-
based transport algorithm is shown in Figure 1.3. Instead of following individual particles,
the event-based approach splits up the transport algorithm into a series of distinct events,
then processes all particles for one event before moving onto the next one. Defining events
to use varies with the type of Monte Carlo particle transport being implemented, but could

include things such as creation, absorption, scattering, surface crossing, etc.

Transport:

Source:
Create
particles

Determine
next event

Process next
events

Yes

Any
active

particles
?

Figure 1.3: General workflow for an event-based transport algorithm.
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1.2.2 Tallies

During the Monte Carlo particle transport simulation, each history is assigned a score
using a statistical estimator to convert the average particle behavior into a physical
quantity of interest. Scores for each history are accumulated in what is called a tally:

1 N G
B = N;;-Tim (11)

where 7 is the mean value for some physical quantity of interest, /N is the number of histories,
C; is the number of events for the i*" history, and z,. is the contribution for the 7*" history
and ¢ event. Each region of interest defines its own tally using Equation 1.1, which can
also be split up into additional bins to separate contributions for different energies, angles,
or time. Only contributions that occur within the region of interest will be added to its
tally. If the regions of interest are defined as elements on a mesh, then the tallies for all the
elements are collectively known as a mesh tally.

One of the most commonly used tallies in Monte Carlo particle transport is the particle
flux tally, which measures the total length traveled by the particles in a region per unit
volume and time (cm~2s71). Particle flux ¢ can be estimated using either a collision tally,
which counts the number of collisions in a region, or a track length tally:

~ 1
¢ = NV Z Z Wicdic, (1.2)

i=1 e=1

where V' is the volume of the region of interest, w;. is the particle weight, and d,. is the
track length for the ¢ particle track that is processed from the i*" history. The track length
tally generally provides a more accurate result for the particle flux than the collision tally,
especially in regions with few collisions. Note that to get the correct units for particle flux,
Equation 1.2 must also be multiplied by the source strength (i.e., particles per second).

1.3 Scope of Work

Improving the performance of Monte Carlo particle transport codes on next-generation
architectures is a challenging task with many unknowns. The goal of this project was
therefore limited to evaluating two key issues for coupled electron-photon radiation
transport on the GPU, namely how to handle memory-intensive tallies, and how to reduce
divergence.  Reducing divergence in particular may require a paradigm shift from
traditional approaches used by most production Monte Carlo particle transport codes.
Although the original intent was to focus on coupled electron-photon radiation transport,
the following discussion is relevant for all types of Monte Carlo particle transport.
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The structure of this report consists of two main chapters, as well as a concluding chapter
with recommendations for future research needed to improve the performance of coupled
electron-photon radiation transport codes on GPUs. Chapter 2 summarizes efforts to find
effective methods for computing Monte Carlo tallies on the GPU, including multiple options
for simple event counters and mesh tallies. Chapter 3 introduces Savannah, an exploratory
event-based Monte Carlo particle transport mini-app that was developed to explore the
event-based transport algorithm as an alternative to the history-based transport algorithm.
Performance results using both transport algorithms in Savannah are compared for a number
of different test cases and GPU architectures.
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Chapter 2

Monte Carlo Tallies on the GPU

Tallies are one of the most frequently performed tasks across all the different variants of
Monte Carlo particle transport codes. Although the structure of a Monte Carlo tally can vary
significantly, depending on the physical quantity of interest, they generally involve computing
and adding scores to one or more bins discretized by spatial location, energy, angle, and time.
As multiple particles can contribute scores to the same tally bin, race conditions must be
avoided to obtain valid results from a parallel calculation. In previous work, race conditions
were avoided on the GPU by implementing tallies using either atomic functions [7-11] or
tally replication [11-14]. Tally replication is also one of the most commonly used methods
for implementing tallies on CPU-based high performance computing systems. However, tally
replication is less attractive for GPU-based systems because memory is much more limited.
Relying on atomic functions to reduce memory usage is not always the best option either,
since any tally updates that result in a race condition will be serialized, and adding more
serialization to a parallel calculation can significantly impact its overall performance.

In practice, the best approach to use for implementing a specific type of tally on the GPU
depends on multiple factors such as its size, required precision, and its update frequency.
This chapter summarizes efforts to find effective methods for computing different Monte
Carlo tally types on the GPU, with Section 2.1 comparing five options for simple event
counters, Section 2.2 describing an efficient implementation of the kernel density estimator
(KDE) integral-track mesh tally [15], and Section 2.3 describing a different way of thinking
about the conventional mesh tally.

2.1 Event Counters

Event counters are tallies used to count the number of occurrences of a specific event type,
such as the number of particles that escape the problem domain, or the number of scattering
events that occur within that domain. FEach event counter only needs to store a single
integer value in memory, which means that there are a wide variety of options available for
implementing them on the GPU. Five different methods were compared for a simple photon
escape tally and are described in detail in a separate publication [16]. Recommendations for
the ideal use case for each method are summarized in Table 2.1.
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Table 2.1: Different options for implementing event counters on the GPU.

Method Atomics' | Ideal Use Case

Tally Replication | N/A Small tally with high update frequency
Global Atomics 128 Global | Large tally with low update frequency

Shared Atomics 128 Shared | Small tally with low update frequency
1 Global

Warp Shuffle? 4 Global Large integer tally with high update frequency
Block Reduction? | 1 Global Large floating-point tally with high update frequency

'Number of atomic function calls assuming 128 threads per block.

2Method uses NVIDIA’s warp shuffle feature.

The best option to use for implementing event counters depends on the data type, update
frequency, and memory availability. Tally replication will usually be the most performant
option for all data types, especially when the event counters need to be updated frequently.
However, as more memory is needed for other memory-intensive data in the Monte Carlo
particle transport simulation (i.e., geometry and cross sections), then there are several
alternatives that can also perform well on the GPU in certain situations. Using atomic
functions on event counters stored in global memory can be effective when there is a low
update frequency, which means that there will be few race conditions occurring to serialize
the code. If the event counters are small enough, however, then performance can be
improved by storing the tally data in shared memory. Atomic functions are more efficient
when reading and writing to shared memory instead of global memory.

When event counters are too big for shared memory and need to be updated frequently, then
the best option to use depends on the data type. For integers, the most effective alternative
is to use the warp shuffle method. However, this approach still requires one atomic function
call in global memory to update the tally with the contribution from each warp. For floating-
point values it is better to use the block reduction method [16], as it reduces the number of
atomic function calls to one per block instead of one per warp. The block reduction method
does require synchronization across all the threads in the block, but this cost is lower than
the cost of the additional floating-point atomic function calls.

2.2 KDE Integral-Track Mesh Tally

Event counters are simple tallies that do not require much memory unless tally replication is
used. In contrast, mesh tallies can require a lot of memory to store not only the elements of
the mesh, but also the tally structure for each element. As a result, tally replication is not
likely feasible for implementing mesh tallies on the GPU. Furthermore, if GPU threads are
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assigned to particles, then race conditions are likely as multiple particles could contribute
to the same element in the mesh. An alternative approach for the KDE integral-track mesh
tally is described in detail in a separate publication [17]. This alternative approach assigns
GPU threads to nodes in the mesh, which means that no race conditions can occur because
each mesh node only ever needs to access its own tally. In this report, a brief summary of
the implementation and the significance of the results is presented.

GPU and serial CPU versions of the KDE integral-track mesh tally were implemented in a
new tool called Rapid that can be linked to any Monte Carlo particle transport code. Rapid
is currently linked to ITS and is able to process data transferred from ITS in two ways. The
first way is to compute mesh tallies during the Monte Carlo transport simulation as event
data is received from ITS. The second way is to store event data from I'TS in a Hierarchical
Data Format 5 (HDF5) file, then run Rapid by itself after the Monte Carlo particle transport
simulation is complete to post-process mesh tallies directly from that file. Due to the large
cost involved in memory transfers between the GPU and CPU, Rapid splits up the work for
processing all mesh tallies into setup, compute, and finalize stages. The setup stage prepares
the mesh tally, the compute stage updates the tally, and the finalize stage reports final tally
results. This separation of tasks is performed whether Rapid is used for in-situ tallying or
for post-processing tallying.

Results for one of the tests that were performed are shown in Table 2.2, which computed
scores for a mesh with over 10 million nodes. Although the setup and finalize times are
higher for the GPU implementation, this is expected because the GPU implementation of
the KDE integral-track mesh tally needs to perform more work to transfer data between
the CPU and the GPU. During the setup stage, nodal coordinates are copied into global
memory and invariant parameters needed for the KDE integral-track estimator to compute
the scores are copied into constant memory. During the finalize stage, tally results must be
copied back to the CPU and resources allocated on the GPU must also be freed.

Table 2.2: Timing data for computing over 10
million scores for a KDE integral-track mesh tally
on a Quadro K5200.

STAGE CPU (ms) GPU (ms)
Setup 7.81 x 104 7.87 x 10%
Compute 1.46 x 10* 5.80 x 10!
Finalize 0.51 x 104 1.07 x 10*
Total 9.78 x 10% 8.94 x 104

Although computing scores for a KDE integral-track mesh tally does come with an increased
cost with respect to setup and finalize stages, the GPU implementation was able to process
over 10 million scores in the compute stage 250 times faster than the CPU implementation.
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This compute stage is also the only one that is repeated, typically millions or billions of
times in a single simulation. Therefore, the GPU implementation should rapidly start to
outperform the serial CPU implementation as more scores are computed for large meshes.
For example, taking the setup and finalize costs into consideration, tallying over 10 million
scores 1000 times is expected to be about 100 times faster on the GPU than a serial CPU.

2.3 Stratified Sampling Mesh Tally

Being able to efficiently compute KDE mesh tallies on a GPU is useful, but this type of
tally is not widely used in production Monte Carlo particle transport codes for real analysis
work. The more conventional approach is to first define each region of interest as a
histogram bin, and then apportion particle event data into those bins either
deterministically or stochastically. For example, consider a track length mesh tally that
uses Equation 1.2 to define a tally bin for every element in a mesh. The deterministic
approach requires that each mesh element uses the exact length of the track that falls
within it as its d;. value. Alternatively, a stochastic approach called stratified sampling can
be used. Stratified sampling divides the particle track into a fixed number of subtracks, or
strata, with equal lengths. One random point is then chosen within each stratum, and the
mesh element in which that point is located adds the fixed subtrack length to its tally bin
instead of the exact track length.

Unfortunately, the stratified sampling mesh tally is not naturally data-parallel because the
time it takes to locate the mesh element in which each random point is located can differ
substantially. If each GPU thread was responsible for computing a tally score for a different
particle track, this variation in the point-in-element search could introduce a significant
amount of branch divergence. The following sections assess an alternative implementation
of the stratified sampling mesh tally that assigns GPU threads to mesh elements instead of
particle tracks. This implementation improves the data-parallelism of the conventional mesh
tally by making it behave more like the KDE integral-track mesh tally from Section 2.2.

2.3.1 GPU versus CPU Implementation

GPU and serial CPU implementations of a stratified sampling mesh tally were added as new
tally options to Rapid. Using Rapid provided the same common abstract framework that was
used for the KDE integral-track mesh tally implementations. Like the KDE integral-track
mesh tally, the GPU implementation of the stratified sampling mesh tally needs to perform
additional work in the setup and finalize stages. During the setup stage, all the mesh data
(i.e., minimum and maximum points of each element) is copied into global memory, and
the number of strata to use is copied into constant memory. During the finalize stage, tally
results must be copied back to the CPU and resources allocated on the GPU must also be
freed. Although there are some differences in the setup and finalize stages that will impact
overall performance, these two stages are only called once per batch of particles processed.
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In contrast, the compute stage is called multiple times to compute tally scores for each event
until all the particles have been removed from the system.

For the KDE integral-track mesh tally, both the GPU and CPU implementations used the
same algorithm to compute the tally score. For the stratified sampling mesh tally, however,
there is one major difference in how the GPU and CPU algorithms are implemented. Both
implementations iterate over the number of strata points, determine a random point for
each strata, and add a score to the tally for the mesh elements in which those points are
located. The key difference is how the point-in-element search is performed. The CPU
implementation uses a simple linear search that searches mesh elements in order until the
one in which the random point exists is found. The GPU implementation takes a slightly
different approach, since each GPU thread is assigned to a mesh element instead of a particle
track. Each mesh element performs a check in parallel to see if the random point that was
selected exists within their domain. Even though only at most one element will return true,
this check is executed efficiently on the GPU because it is a highly data-parallel algorithm
compared to the linear search approach.! The mesh element that contains the random point,
if any, updates its tally. There are no race conditions when updating the tally, since each
mesh element only needs to update its own tally bin in global memory.

2.3.2 Performance Tests

The performance of the compute stage of the stratified sampling mesh tally was tested using
15 different mesh configurations, which included 8 options for a 1D slab, 4 options for a
2D square, and 3 options for a 3D cuboid geometry. Elements for all mesh configurations
were uniformly distributed over an extent ranging from -100,000 cm to 100,000 cm in each
dimension. Table 2.3 summarizes the number of mesh elements defined for each of these mesh
configurations. All 15 mesh configurations listed in Table 2.3 were tested against different
numbers of strata points and the following five unique particle track cases:

1. All strata points located in the first mesh element.
All strata points located in the last mesh element.
Strata points distributed over multiple mesh elements in the forward direction.

Strata points distributed over multiple mesh elements in the backward direction.

A N S

All strata points located outside the mesh geometry.

Note that first and last mesh element is defined as the first and last element accessed in the
data structure that stores the mesh in memory. This may not always be equivalent to the
spatial location of the first and last mesh element in the physical mesh, especially for 2D
and 3D mesh configurations.

!GPU implementation assumes that no points will fall on the boundaries of a mesh element.
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Table 2.3: Mesh configurations used to test a stratified sampling mesh tally.

T T Number of Mesh Elements

X Y Z Total
1 1 - - 1
2 10 - - 10
3 100 - - 100
4 1000 - - 1000
5 10,000 - - 10,000
6 100,000 - - 100,000
7 1,000,000 - - 1,000,000
8 10,000,000 - - 10,000,000
9 10 10 - 100
10 100 100 - 10,000
11 1000 1000 - 1,000,000
12 3200 3200 - 10,240,000
13 10 10 10 1000
14 100 100 100 1,000,000
15 215 215 215 9,938,375

2.3.3 Results

All performance tests described in Section 2.3.2 were run on a desktop Linux workstation
with Intel® Xeon® E5-2697 v3 (2.60 GHz) CPUs and one NVIDIA Quadro K5200 GPU.
Each test was repeated 10 times on the GPU and CPU to compute average runtimes. Figure
2.1 summarizes the results from all the performance tests as a histogram of the speedup of
the GPU implementation over the serial CPU implementation. Most of the 375 variations
used to create the histogram in Figure 2.1 were computed more efficiently on the GPU than
the CPU. Only 54 (~14%) of these variations were faster on the CPU, which occurred when
there were not enough strata points or mesh elements to offset the overhead of computing
tally scores on the GPU, or when the entire particle track fell inside the first mesh element.

Intel® and Xeon® are registered trademarks of Intel Corporation.
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Figure 2.1: Speedup of GPU over CPU when computing tally scores using
a stratified sampling mesh tally. Histogram compiled from 375 variations,
including 15 uniformly distributed mesh configurations, 5 different numbers of
strata, and 5 unique particle track cases.

Figure 2.2 plots GPU speedup as a function of the number of 1D mesh elements when all
strata points fall inside the first mesh element. The performance of the GPU implementation
relative to the CPU implementation gets worse as more elements are added to the mesh, no
matter how many strata points are used. This behavior is not surprising given the different
implementations of the point-in-element searches. The CPU implementation is not affected
by the increase in mesh elements because it only needs to check the first mesh element for
every strata point. However, the GPU implementation checks every mesh element in parallel
for every strata point, which gets more expensive as more mesh elements are added. One
possibility for improving the GPU implementation for this test case is to check to see if the
entire particle track falls inside one mesh element before processing the strata points. If all
strata points exist inside one mesh element, then no further processing would be needed.

Although the GPU implementation performed poorly when all strata points fell inside the
first mesh element, the situation is reversed when substantial searches through large meshes
are required. There were 54 variations where the GPU implementation was more than 5000
times faster than the CPU implementation, which included 31 cases where all strata points
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Figure 2.2: GPU performance of a stratified sampling mesh tally when all
strata points are inside the first mesh element.

were outside the mesh. Figure 2.3 plots GPU speedup as a function of the number of 1D
mesh elements when all strata points are outside the mesh.

In contrast to Figure 2.2, Figure 2.3 shows that the performance of the GPU implementation
relative to the CPU implementation improves as more elements are added to the mesh. This
behavior can also be explained by the different implementations of the point-in-element
searches. The CPU implementation searches through every mesh element to determine that
each strata point falls outside the mesh, which gets much more expensive as more more
mesh elements are added. The GPU implementation also gets more expensive as more mesh
elements are added, but the runtime is equivalent to the case where all strata points are
inside the first mesh element. In other words, the GPU implementation is invariant to the
value and location of the particle track, whereas the CPU implementation is highly sensitive
to how much of the mesh needs to be searched.

The invariance of the GPU implementation to the particle track can be seen more clearly
in Table 2.4 on page 30, which shows the timing results for a 1D mesh with 107 elements.
When the number of mesh elements and strata points are fixed, the runtime of the GPU
implementation is always approximately the same. When the number of strata points
increases, the runtime also increases linearly. This behavior is caused by the GPU threads
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Figure 2.3: GPU performance of a stratified sampling mesh tally when all
strata points are outside the mesh.

being mapped to mesh elements. Performance could therefore be improved by also
parallelizing the strata points, which could be done by launching secondary CUDA kernels
from the primary CUDA kernel.

For the CPU implementation, Table 2.4 verifies that the pattern in which the mesh
elements are checked has a big impact on its performance. The most efficient case, as was
previously discussed, is clearly the one where all strata points fall inside the first mesh
element. For Cases 4 and 5, which both require multiple searches of most or all of the
mesh, the performance of the CPU implementation is consistently about 10* times worse
than the GPU implementation. Note, however, that the runtimes for the CPU could be
improved by using a more efficient searching algorithm than the linear search.

Whereas the runtime of the GPU implementation always increased linearly with the number
of strata points, this was only true for Cases 1, 4, and 5 with the CPU implementation.
Cases 2 and 3 performed mostly the same for all of the strata points considered, with the
GPU implementation approaching the same runtime at 10* strata points. The reason for this
behavior is that the linear search algorithm on the CPU stores the last mesh element index
that was found. For Case 2, which involves all strata points inside the last mesh element, the
entire mesh therefore only needs to be searched once. Similarly for Case 3, which involves a
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Table 2.4: GPU and CPU timing results using a stratified sampling mesh
tally on a 1D mesh with 107 elements.

GPU Timing Results (ms)

Strata Case 1 Case 2 Case 3 Case 4 Case 5
10° 3.074 x 10° | 3.195 x 10° | 3.147 x 10° | 3.082 x 10° | 3.142 x 10°
101 1.170 x 10! 1.153 x 10' | 1.152 x 10* | 1.171 x 10! | 1.171 x 10*
102 1.131 x 102 1.161 x 10% | 1.110 x 10% | 1.164 x 10% | 1.146 x 102
103 1.010 x 10* | 9.896 x 10? | 1.011 x 10% | 9.943 x 102 | 1.013 x 10?
10 9.692 x 10° | 9.692 x 10% | 9.697 x 10 | 9.694 x 10% | 9.697 x 103

CPU Timing Results (ms)

Strata Case 1 Case 2 Case 3 Case 4 Case 5
10° 6.168 x 1072 | 1.042 x 10* | 1.408 x 10 | 9.036 x 103 | 1.043 x 10*
101 1.488 x 1071 | 1.042 x 10* | 1.039 x 10* | 9.373 x 10* | 1.041 x 10°
102 9.223 x 107! | 1.042 x 10* | 1.036 x 10* | 1.042 x 10% | 1.049 x 10°
103 8.637 x 10° | 1.055 x 10* | 1.048 x 10* | 1.047 x 107 | 1.050 x 107
10* | 8.554 x 101 | 1.055 x 10* | 1.058 x 10* | 1.045 x 10°® | 1.050 x 10®

forward mesh search to locate each strata point, the next search starts at the mesh element
found by the last search. Without this optimization, the performance results for Cases 2

and 3 would likely be similar to the performance of Cases 4 and 5.
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Chapter 3

Event-Based Monte Carlo Particle
Transport

The transport algorithm used by a Monte Carlo particle transport code defines how the
simulation will track particles from a source to produce results of interest to the user. On the
CPU, using a history-based approach has been the method of choice for decades. With the
introduction of scientific computing on the GPU, however, there has been renewed interest
in the event-based transport algorithm first introduced in the 1980s for vector processors [6].
Adopting an event-based transport algorithm on next-generation architectures that include
GPUs would represent a paradigm shift for production Monte Carlo particle transport codes.

Prior research efforts within the medical physics community have experimented with using
the GPU for coupled electron-photon radiation transport [18-20]. Although all these
implementations used a history-based approach, some effort at reducing divergence was
done by the GPU Monte Carlo Dose (GPUMCD) code team by processing electrons and
photons separately [19]. Only one work is known to have attempted using the event-based
approach for coupled electron-photon radiation transport: the Vectorized Dose Planning
Method (V-DPM) code from 2003 [21]. However, V-DPM just vectorized the electron
transport, not the photon transport. In addition, due to hardware limitations of the vector
processors that were used at the time, only groups of four electrons could be processed
concurrently within the vectorized portions of the code.

Since today’s GPUs can process thousands of threads simultaneously, more recent work
has reconsidered the event-based transport algorithm for nuclear engineering applications.
In particular, the WARP code was able to successfully implement event-based transport
for solving neutron eigenvalue problems on the GPU [7]. However, WARP only compared
the performance of their event-based implementation to history-based codes developed for
the CPU, such as MCNP® [22] and Serpent [23]. Other efforts that have compared history-
based and event-based neutron transport on the GPU in the same code have reported varying
results. One of these efforts is the Monte Carlo neutron transport code called Guardyan,
which is developed at the Budapest University of Technology and Economics. The Guardyan
team reported speedups of 1.5 to 2 times for their event-based implementation, but also

MOCNP® is a registered trademark of Los Alamos National Security, LLC, manager and operator of Los
Alamos National Laboratory.
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noted that a light water reactor assembly test case that they ran resulted in a 1.5 times
slowdown [24]. Slowdowns of 3 to 7 were also reported in a research Monte Carlo neutron
transport code developed at Oak Ridge National Laboratory [11]. The most recent work,
also performed at Oak Ridge, reported a 2 times speedup for the event-based implementation
in Shift, which is a production Monte Carlo neutron transport code [25].

This chapter summarizes efforts in comparing the history-based and event-based transport
algorithms implemented in a new research code called Savannah. Since recent work on
GPUs for Monte Carlo particle transport has focused on neutrons, the ultimate goal of
Savannah is to assess the effectiveness of using an event-based transport algorithm for coupled
electron-photon radiation transport on the GPU. Section 3.1 introduces the current version
of Savannah, and Section 3.2 compares the performance of the history-based and event-based
implementations for two types of problems: photon attenuation and isotropic scattering.

3.1 Savannah: Exploratory Event-Based Monte Carlo
Particle Transport

Savannah is a mini-app designed to explore the effectiveness of the event-based transport
algorithm compared to the traditional history-based one. Although the ultimate goal of
Savannah is to study coupled electron-photon radiation transport, the current version only
implements simple photon transport. Photons that are created from a point source are
transported through a 1D slab geometry. These photons can either get absorbed, undergo
isotropic scattering, or escape the problem domain. The following sections describe key
implementation details of Savannah v0.2, which includes the execution model, how particles
are stored, the random number generator, the types of events and tallies that are available,
and a method called particle remapping expected to improve the performance of the event-
based transport algorithm on the GPU.

3.1.1 Execution Model

After processing the input file and extracting the input options, Savannah creates an
execution space that defines where the particle transport simulation will be run. This
abstract concept of an execution space is also used by the Kokkos programming model [26].
Although Savannah includes separate execution spaces for serial CPU and the GPU, this
report focuses on the GPU implementation. When initializing the GPU execution space,
data describing the 1D slab geometry, cross sections, and source definition are all copied
into constant memory. Constant memory is used for this data as it is read-only and, in
general, all the threads in a warp need to access the data at the same time. Once the GPU
execution space has been initialized, the next stage is to run the core transport simulation.
The transport stage is made up of one or more CUDA kernels depending on whether the
algorithm used is history-based (see Figure 1.2) or event-based (see Figure 1.3). For
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history-based transport, there is only one CUDA kernel called the Big Kernel that
processes one photon per GPU thread from its birth until its death. For event-based
transport, the implementation of the Big Kernel is split up into four main CUDA kernels:

Source Kernel: Creates photons from a common point source definition.

e Transport Kernel: Identifies next event for photons and moves them to that event.

Tally Kernel: Updates event counter tallies stored in global memory.

Event Kernel: Processes next events for photons.

The Transport, Tally, and Event Kernels are repeated until all photons created by the Source
Kernel have been terminated through either either absorption or escape. Since these CUDA
kernels must be launched from the CPU, the number of terminated photons needs to be
copied from the GPU back to the CPU after each iteration so that the CPU knows when to
end the transport stage. When all particles have been terminated, both the history-based
and event-based implementations need to copy the tally data from the GPU back to the
CPU to communicate the final results to the user.

3.1.2 Particle Data Storage

Even though history-based and event-based transport algorithms call different CUDA
kernels, they both use common code for creating photons, computing distance to surface
and collision, identifying next event, moving the particle, and processing the next event.
This common interface was achieved by defining a particle reference class that encapsulates
where the particle data is actually stored. For the history-based implementation, the
position, direction, weight, energy, and next event index of each photon is stored in fast
register memory accessible only to the GPU thread associated with that photon. Using
register memory is not possible for the event-based implementation because the photon
data needs to persist between CUDA kernel launches. Therefore, all photon data must be
stored in a particle bank in global memory. This increase in global memory transactions is
one of the costs for switching to an event-based transport algorithm. However, the
history-based transport algorithm may also need to use global memory when the amount of
data stored per particle exceeds the capacity of register memory.

3.1.3 Random Number Generation

One of the core features needed by all Monte Carlo particle transport codes is a high quality
method for generating random numbers. The most commonly used type of random number
generator is the pseudorandom number generator, which produces a sequence of random
numbers based on a fixed seed value. Pseudorandom number generators are essential for

33



reproducibility, which is important for verifying that the code consistently produces valid
results. The quality of different pseudorandom number generators varies substantially, and it
important to use one with a large period. The period determines how many random numbers
can be generated before they start to repeat.

Although random numbers can be generated on the CPU and then copied to the GPU, this
is not as efficient as generating random numbers directly on the GPU as needed. The
pseudorandom number generator implemented in Savannah is a linear congruential
generator defined by the recursion relation:

Zp, = (aTp—1 + ¢) mod m, (3.1)

where z,, is the state at step n, a is the multiplier, ¢ is the increment, and m is the modulus.
The state xg is called the seed value. This is the same random number generator used by
WARP [7] and OpenMC [27] Monte Carlo neutron transport codes, with the former using
single precision, and the latter using double precision. Since Savannah also uses double
precision, the parameters in Equation 3.1 were set to the same values as the default in
OpenMC: a = 2806196910506780709, ¢ = 1, and m = 293 [28]. Using these values provides
a period length of 2% [29], which is good enough for a research code like Savannah, but
generally not sufficient for a production code.

One of the advantages of using Equation 3.1 to generate random numbers is that the state
can be stored separately from the recursion relation. This provides more flexibility for where
to store the state, which means that the same random number generator can be used for both
CPU and GPU execution spaces in Savannah. The GPU execution space stores a separate
state for each particle in global memory, which is seeded directly on the GPU by using the
64-bit Sobol quasirandom number generator from NVIDIA’s cuRAND library [30].

3.1.4 Events and Tallies

In addition to storing its own state for the random number generator, each photon created in
Savannah is also assigned one of the following integer values indicating its next event type:
e 0: Photon was created.
e 1: Surface crossing for an uncollided photon.
e 2: Surface crossing for a photon that has had at least one collision.
3: Isotropic scattering collision interaction.
e 4: Absorption collision interaction.
5

: Photon was terminated and no longer needs to be tracked.
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Of these six event types, there are four that correspond to event counter tallies stored in
global memory: uncollided escape, collided escape, number of scatter events, and number
of absorption events. As these are all 64-bit integer tallies, they were implemented using
the warp shuffle method discussed in Section 2.1 for both history-based and event-based
transport algorithms. The key difference between the two different transport algorithms
is that the history-based implementation tallies all the events for each particle in register
memory before using the warp shuffle method to add the final results to global memory. This
is currently feasible in Savannah due to the Big Kernel not using much register memory. As
the tallies get bigger, however, they will not fit in register memory for the Big Kernel and a
different tallying method will need to be used.

3.1.5 Particle Remapping

As was mentioned in Section 3.1.2, the increase in global memory transactions is one of
the costs for switching to an event-based transport algorithm. Another cost is the concept
of particle remapping, which is a process for sorting particles into event groups that will
collectively execute the same set of instructions on the GPU. Only the particle index values
are sorted, which is less expensive than moving all of the particle data. Particle remapping
was introduced in WARP and implemented using a radix sort algorithm from the CUDPP
library [7]. Although radix sort is an efficient sorting algorithm for integers, it was decided
to implement the counting sort algorithm in Savannah instead. The counting sort algorithm
is O(n+ k), where n is the number of particles and k is the number of event types. However,
the biggest advantage of using counting sort is that the event counter tallies are already
computed as a part of the process used to sort the particle index values. Therefore, the
Tally Kernel only has to add these pre-computed event counts to the appropriate tallies
stored in global memory after the remapping process is complete. This also removes the
need to perform additional work to locate the boundaries between the event groups, such as
is done in WARP [7].

To see how particle remapping works in Savannah, the process is represented graphically in
Figure 3.1. Each photon is represented by a unique particle index number in a data array
called the remap vector. Also associated with each photon is its next event type. After all
the photons have been created in the Source Kernel, the remap vector consists of values that
increase monotonically. In the Transport Kernel each photon is assigned its next event type,
which could be either a surface crossing, scattering collision, or absorption collision. The
remapping process occurs in the Remap Kernel! after the Transport Kernel, but before the
Tally and Event Kernels. Once the Remap Kernel is complete, all the photons crossing a
surface are listed first in the remap vector, all the photons that will scatter are listed next,
and all the photons that will be absorbed are listed last. Now when the Event Kernel is
launched the majority of warps will only include photons that need to execute instructions
for the same event type.

LCounting sort algorithm actually requires four CUDA kernels to enable synchronization across blocks.
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Figure 3.1: Particle remapping process for the event-based transport
algorithm implemented in Savannah.

In addition to reducing branch divergence, the other advantage of particle remapping is that
it moves all of the terminated particles to the end of the remap vector. This reduces the
number of photons that are involved in future Transport and Event Kernel launches, as well
as reducing the time it takes to remap the remaining active particles. Without remapping, the
photons that are terminated are still included even though they do not contribute anything
and all functions calls for terminated particles are null operations.

3.2 GPU Performance Testing

Two types of problems were used to test the performance of the history-based and
event-based transport algorithms implemented in Savannah: photon attenuation and
isotropic scattering. Both problem types were run on the three NVIDIA Tesla GPUs listed
in Table 1.2, which are all available on different compute nodes on the Ride advanced
architecture testbed at Sandia National Laboratories [31]. Unless otherwise stated, all
timing data reported in the following two sections are an average of 10 independent runs of
Savannah v0.2 that was compiled using GCC 5.4.0 and CUDA 8.0.44.
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3.2.1 Photon Attenuation

The first problem type used to test the performance of history-based and event-based
transport algorithms was photon attenuation. Mono-energetic photons were directed into a
1D slab made up of helium, with a linear attenuation coefficient of p = 6.59936 x 103 m1.
The analytical solution for the fraction of photons that escape the problem domain is:

Nou —
Nt — e HT, (3.2)

where Ny, is the number of photons that escape, /N is the initial number of photons, and
x is the thickness of the slab in meters. Expected results for three different test cases are
summarized in Table 3.1.

Table 3.1: Different test cases used for tallying photon escape in a 1D helium slab.

Case Description x (m) Nout/ N
1 All the photons escape 0 1.0
2 Half of the photons escape 100 0.5
3 No photons escape 10,000 0.0

The test cases defined in Table 3.1 are identical to the ones previously used to test the
performance of the different methods for tallying on the GPU [16]. In this work, however,
all tallies use the warp shuffle method to avoid the substantial branch divergence that can
occur when tallying via atomic functions in shared or global memory. Although some branch
divergence is still possible, its impact should be much less noticeable. Table 3.2 shows the
ratio of total runtimes of the event-based transport algorithm to the history-based transport
algorithm for all three test cases. Results are reported with and without particle remapping.

Table 3.2: Ratio of total runtimes using event-based over history-based
transport algorithms to solve a 1D photon attenuation problem with 10%

histories.
Remapping No Remapping
Case K40 K80 P100 K40 K80 P100
1 3.959 4.187 1.963 2.038 2.114 1.171
2 4.090 4.241 2.190 2.082 2.142 1.194
3 4.019 4.258 2.044 2.060 2.136 1.184
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As expected, Table 3.2 shows that there is not much variation in the results across the three
different photon attenuation cases. The event-based transport algorithm with remapping was
always about four times slower than the history-based implementation on the two Kepler
GPUs, and about twice as slow on the P100. Without remapping, the event-based transport
algorithm was only twice as slow on the Kepler GPUs, and about 20% slower on the P100.
Given that photons only interact once, by either getting absorbed or escaping, there is
therefore not enough branch divergence in these problems to offset the cost of remapping.
To help understand where the cost of remapping in the event-based transport algorithm
comes from, Figure 3.2 plots the combined runtimes of the initialize, transport, and finalize
stages on the P100 for the test case where all photons escape.

600
M Initialize ™ Transport M Finalize
500 |

400

300

Time (ms)

200

100 |

History-based Event-based (No Remap) Event-based (Remap)

Figure 3.2: Breakdown of the total runtimes on the P100 for solving a 1D
photon attenuation problem where all 108 photons escape.

Of the three stages plotted in Figure 3.2, only the transport stage shows a substantial
difference between the three transport algorithms. Recall from Section 3.1.1 that the
transport stage is reponsible for creating and processing particles on the GPU until all of
the histories have been terminated. The runtimes for this transport stage are summarized
in Table 3.3, as well as the portion of that runtime spent executing all the CUDA kernel
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calls used by each transport algorithm.? Whereas the Big Kernel of the history-based
transport algorithm only accounts for 50% of the time spent in the transport stage, all the
CUDA kernels in the event-based transport algorithm require 80% when remapping is
enabled. When remapping is disabled, only 40% of the time spent in the transport stage is
used up by CUDA kernel calls. The breakdown of where time is spent in the event-based
transport algorithm with and without remapping is summarized in Table 3.4. This data
was obtained through the use of nvprof, NVIDIA’s command-line profiling tool [32].

Table 3.3: Runtimes on the P100 for the transport stage and the sum of all
its CUDA kernel calls when solving a 1D photon attenuation problem where
all 10® photons escape.

Transport Algorithm Type | Transport Stage (ms) | CUDA Kernels (ms)
History-based 49.7 24.6
Event-based B5.T 40.4

Event-based with remapping 328.4 264.3

Table 3.4: Total runtime spent executing each CUDA kernel in an event-
based transport algorithm when solving a 1D photon attenuation problem
where all 10® photons escape.

Kernel Name Remapping (ms) No Remapping (ms)
Source Kernel 6.26 6.16
Transport Kernel 23.93 11.40
Tally Kernel 0.01 21.32
Event Kernel 13.94 1.49
Remap Kernel 220.16 N/A

Table 3.4 shows that while remapping had a negligible impact on the Source Kernel, it more
than doubled the time spent in the Transport Kernel. This behavior can be explained by
counting how many times the CUDA kernels were called. Without remapping, the Transport,
Tally, and Event Kernels only need to be called once. With remapping, however, these three
CUDA kernels and the Remap Kernel are called twice, even though all photons escape on
the first iteration. This behavior occurs because of how the number of terminated particles
are computed when remapping is enabled. The Transport Kernel assigns each photon with

2Excludes the CUDA kernel used by cuRAND to generate random numbers for all transport algorithms.
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an event index of 1 to indicate that its next event will be a surface crossing. These events
are then tallied in the Remap Kernel as part of the counting sort implementation, which
is why the Tally Kernel is so efficient because it only needs to update the escape tally
stored in global memory. After the remapping process is complete, the number of active
particles remaining is copied from the CPU to the GPU. This value includes all particles
that crossed a surface, which means that none of the photons will be terminated until after
the next iteration. When remapping is disabled, the photons that escaped are included as
part of the terminated particles. One improvement to the remapping implementation could
therefore be to add a new event index for escaped particles to distinguish them from particles
that crossed an inner surface. This distinction will become more important when there are
multiple regions involved instead of a simple 1D slab geometry.

Although the increase in runtime spent in the Transport Kernel can be explained by the
number of times it was called, this was not the case for the Event Kernel. Even accounting
for calling the Event Kernel twice, the runtime with remapping enabled was almost five
times longer than when remapping was disabled. Since all photons escape, there is no
branch divergence in the Event Kernel with or without remapping. The only difference
between the two event-based transport implementations is how the data in the particle bank
is accessed. For optimal GPU performance, it is highly recommended that global memory
read and write transactions are coalesced whenever possible [4]. This can be achieved by
making adjacent threads in a warp access adjacent locations in memory at the same time,
which can be managed as a single transaction instead of multiple transactions.

To measure how effectively a CUDA kernel uses global memory, there are two metrics
available in nvprof called global load and store efficiency that define the ratio of requested
global memory load or store throughput to the required global memory load or store
throughput [32]. A value of 0% means that no memory transactions were coalesced, and a
value of 100% indicates that all memory transactions were coalesced. When remapping is
disabled, most read/write operations to global memory are coalesced in the Event Kernel,
with global load and store efficiency values of 50% and 100% respectively. Values for the
Event Kernel with remapping are much lower, as is shown in Table 3.5. This helps explain
why the Event Kernel performs worse when remapping is enabled, even when identical
code is being executed.

Table 3.5: Global load and store efficiency for the Event Kernel in an event-
based transport algorithm with remapping.

Global Load Efficiency (%) Global Store Efficiency (%)
Minimum Mazimum Average Minimum Maximum Average
30.01 30.02 30.01 0.00 12.52 6.26

In addition to the cost of increasing non-coalesced memory transactions, using remapping
in an event-based transport algorithm also comes with a significant cost for the remapping
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process itself. Accounting for unnecessarily calling the Remap Kernel twice, the cost of
remapping is still about 110 ms. Although this does include all the tallying, it is a non-
trivial amount that effectively doubles the runtime compared to the case where remapping
is not used. Therefore, for remapping to be effective, this cost must be offset by a significant
amount of branch divergence.

3.2.2 Isotropic Scattering

In an effort to increase the amount of branch divergence, the second problem type used to test
the performance of the history-based and event-based transport algorithms in Savannah was
isotropic scattering. Mono-energetic photons were directed into a 1D slab with the artificial
cross sections shown in Table 3.6 for absorption and isotropic scattering events. Artificial
cross sections were used to highlight the impact on performance as the amount of scattering
is increased, which ranges from no scattering and all photons getting absorbed, up to 100%
scattering where photons can only scatter and all will eventually escape. If a photon gets
absorbed, then in the Event Kernel it will have its direction, particle weight, and energy set
to zero, as well as being marked as a terminated particle. If a photon scatters, then a new
direction is computed based on isotropic scattering. The width of the 1D slab for all of these
problems was fixed at 100 cm so that the full scattering case would not be too demanding
on the total runtime.

Table 3.6: Artificial macroscopic cross sections used for tallying
photon scattering and absorption events in a 100 cm slab.

Case Scattering (cm™) Absorption (cm™!)
1 0.0 1.0
2 0.2 0.8
3 0.5 0.5
4 0.8 0.2
) 1.0 0.0

Total runtime for the five test cases defined in Table 3.6 are represented as a line chart in
Figure 3.3 for the K40 and P100. The K80 results were on the same order of magnitude
as the K40 results, which was expected given that they are similar architectures and only
one of the two GPUs on the K80 was used to run the problems. All transport algorithms
running on all GPU architectures take longer to run as the amount of scattering increases.
This is expected as more iterations are needed for all the photons to get absorbed or escape,
with the event-based transport algorithm requiring about 70 iterations when photons have
an 80% chance of scattering, and over 45,000 iterations at 100% scattering.
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Figure 3.3: Impact on total runtime of history-based and event-based
transport algorithms as isotropic scattering is increased for 108 histories.
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Figure 3.3 also shows when remapping becomes important with respect to performance. The
total runtime of the event-based transport algorithm with and without remapping on the K40
is similar when photons have a 20% chance of scattering, and on the P100 when photons
have a 50% chance of scattering. As even more scattering occurs, the cost of disabling
remapping starts to get much higher. This cost is captured in Table 3.7 as the difference in
total runtimes with and without remapping. For low scattering cases, the difference in total
runtime is only a fraction of a second. However, disabling remapping at 100% scattering
costs about 16 minutes on the P100, and almost an hour on the K40 and K&0.

Table 3.7: Cost of disabling remapping in an event-
based transport algorithm to solve an isotropic scattering
problem with 108 histories.

Difference in Total Runtime (s)

Case K40 K&80 P100
1 —0.75 —0.67 —0.25
2 —0.10 0.02 —0.12
3 0.49 0.70 —0.06
4 2.78 3.36 0.45
) 3229.80 3341.18 985.70

The cost of disabling remapping in the event-based transport algorithm is expected to get
worse as more branch divergence occurs in the simulation, which will likely impact the
Transport and Event Kernels the most. Figure 3.4 is a line chart showing the duration of
sequential calls for these two CUDA kernels when photons have a 50% chance of scattering.
Note that the first call for the Transport Kernel has the same duration with and without
remapping, but the Event Kernel takes longer when remapping is enabled. This behavior
occurs because the Transport Kernel is called before the Remap Kernel, but the Event
Kernel is called after the Remap Kernel. Remapping the particle indices changes the global
memory access pattern, as was observed with the photon attenuation problem in Section
3.2.1. Changing the global memory access pattern is also the most likely reason as to why
the duration of the Transport Kernel increases with the second call, since it now is called
after particle indices have been remapped.

Although enabling remapping results in a greater initial cost for the Transport and Event
Kernels, this cost is steadily reduced with subsequent calls. When remapping has been
disabled, however, the duration of both these CUDA kernels approaches a fixed value. The
explanation for this behavior lies in the number of photons that are included in each iteration.
With remapping, all the terminated particles are moved to the end of the remap vector
because they have the highest event index number, which allows them to be ignored in future
iterations. This reduces the number of active particles in not only the Transport and Event
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Figure 3.4: Duration of sequential CUDA kernel calls on the P100 for the
case where each interaction for 10® histories has a 50% chance of scattering.

Kernels, but also the Remap Kernel. The cost of remapping is therefore significantly reduced
as more particles become inactive. In comparison, when remapping has been disabled the
terminated particles are scattered throughout the particle bank and cannot be ignored.
Although these terminated particles do not contribute much to the simulation, there is still
some overhead involved in including them.

Figure 3.5 shows how the percentage of time spent in each CUDA kernel changes as the
amount of scattering is increased. When remapping is enabled, the largest cost with no
scattering is clearly the Remap Kernel, which is consistent with the photon attenuation
results from Section 3.2.1. At 100% scattering the dominant cost becomes the Transport
Kernel as it gets signficantly cheaper to remap when there are fewer active particles to sort. In
contrast, the largest cost when remapping is disabled is always the Tally Kernel. This cost
increases substantially for the 100% scattering case, most likely because the warp shuffle
method used for tallying is being performed by both active and inactive particles. Even
though improving the Tally Kernel could have a substantial impact on the performance, the
cost of the Transport Kernel on its own is higher at 100% scattering than the total runtime
when remapping is enabled.
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Figure 3.5: Percentage of time spent on the P100 in each CUDA kernel of the event-
based transport algorithm for no scattering and 100% scattering cases.

Results for the isotropic scattering test cases with and without remapping have shown that it
is generally better to use remapping, especially for long-running simulations. Referring back
to Figure 3.3, however, note that the history-based transport algorithm always outperformed
the event-based implementation whether or not remapping was enabled. Table 3.8 shows
the ratio of total runtimes using event-based over history-based transport algorithms for
all test cases and GPU architectures considered. The event-based transport algorithm with
remapping enabled was 3.5 to 10 times slower, which is consistent with the factor of 3 to
7 reported in the work done at Oak Ridge National Laboratory [11]. In comparison, the
event-based transport algorithm without remapping ranged from as low as 1.5 times slower
for no scattering, up to 73 times slower for 100% scattering on the P100.

To understand more about how history-based and event-based transport algorithms behave
as scattering increases, Figure 3.6 on page 47 shows a line chart plotting the total time
spent in some of the key CUDA kernels. Not shown are the Source Kernel, which was
always 6.3 ms, and the Tally Kernel, which is negligible due to all the actual tallying being
done in the Remap Kernel. With no scattering, the Transport Kernel of the event-based
transport algorithm takes about the same amount of time as the entire history-based
transport algorithm implemented in the Big Kernel. As more scattering is introduced, the
cost of the Transport Kernel increases faster than the Big Kernel. The most likely
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Table 3.8: Ratio of total runtimes using event-based over history-based
transport algorithms to solve an isotropic scattering problem with 10® histories.

Remapping No Remapping
Case K40 K80 P100 K40 K80 P100
1 6.146 4.944 3.489 2.805 2.336 1.466
2 6.528 5.633 4.370 6.096 5.706 3.459
3 7.558 6.453 6.199 9.357 8.853 5.748
4 9.009 7331 8.860 15.853 14.813 11.370
5 7.554 6.556 10.064 61.818 62.228 72.934

explanation for this behavior is due to the particle data being stored in global memory
instead of registers, even though the same code is used to process each particle. The Big
Kernel performed 25 million global load and store transactions, whereas the Transport
Kernel performed up to 324 million global load transactions, and up to 62 million global
store transactions.

Even though the Transport, Event, and Remap Kernels all took longer to process than
the Big Kernel, the primary reason for considering the event-based transport algorithm
is to reduce branch divergence. Figure 3.7 on page 48 shows the average warp execution
efficiency for the Big Kernel compared to the Transport and Event Kernels for all five test
cases considered. Warp execution efficiency measures the amount of branch divergence in
a CUDA kernel, and is defined as the ratio of the average active threads per warp to the
maximum number of threads per warp supported on an SM. The Big Kernel in the history-
based transport algorithm is highly sensitive to branch divergence, with the warp execution
efficiency dropping to below 10% at 100% scattering. In contrast, the Transport and Event
Kernels in the event-based transport algorithm seem to approach fixed values of around
80% and 90% no matter how much scattering occurs. These results show that the event-
based transport algorithm is achieving the goal it was originally set out to achieve, namely
reducing branch divergence. However, for the event-based transport algorithm to be able to
outperform the history-based implementation, the time spent in each divergent path would
need to be high enough to offset the increased global memory transactions and cost of
remapping particles. In Savannah, the divergent paths only perform at most 10 operations,
which could help explain why the event-based transport algorithm does not perform as well
as the history-based implementation in these tests. In a production Monte Carlo particle
transport code, it is expected that there will be much longer divergent paths, especially for
coupled electron-photon radiation transport.

In addition to observing how the amount of scattering impacts the total runtime of the
history-based and event-based transport algorithms, timing data was also obtained on the
P100 with a varying number of particle histories. The results for a low and high scattering
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Figure 3.6: P100 timing data for key CUDA kernels in the history-based and
event-based (with remapping) transport algorithms as isotropic scattering is
increased for 10® histories.

test case are plotted in the log-log graph shown in Figure 3.8 on page 49. Note that these are
the only results presented in this work that were obtained by running Savannah compiled
with CUDA 9, which was required due to system changes on Ride. Trendlines fitted to
the data in Figure 3.8 show that there is a strong linear relationship between total runtime
and the number of histories. This linear relationship is summarized in Table 3.9. Both
transport algorithms have a fixed cost of approximately 100 ms, but the cost per particle for
the event-based transport algorithm was up to two orders of magnitude higher. Reducing
the number of histories can therefore improve the overall performance of the event-based
transport algorithm compared to the history-based implementation. For example, using 107
histories instead of 10® histories reduces the total runtime from being eight times slower to
only being twice as slow.

The improvement in performance of the event-based transport algorithm compared to the
history-based transport algorithm with fewer particles does not seem to be caused by a

difference in the total runtimes of the CUDA kernels. All CUDA kernels in the history-based
and event-based transport algorithms dependent on the number of histories are reduced by
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Figure 3.7: Average warp execution efficiency on the P100 for key CUDA
kernels in the history-based and event-based (with remapping) transport
algorithms.

a factor of 10 when using 107 histories instead of 10® histories. However, there is a large
difference in how much of the runtime in the transport stage is spent executing these CUDA
kernels. For the high scattering case, the Big Kernel accounts for 87% of the transport stage
with 10® histories, but drops to only 35% with 107 histories. In contrast, the cost of all the
CUDA kernels in the event-based transport algorithm account for 96% and 83% respectively.
These results indicate that the difference is caused by actions performed on the CPU, not the
GPU. Further research is required to identify what instructions on the CPU are responsible
for this behavior.
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Table 3.9: Parameters describing the linear relationship between total
runtime and particle histories for timing data obtained on the P100 for an
isotropic scattering problem with 108 histories.

History-based

Case Cost Per Particle (ms) | Fized Cost (ms) R* Fit
Low Scattering (20%) 3.8x 1077 98.7 0.9984064
High Scattering (80%) 8.7 x 1077 98.6 0.9997208
Event-based with Remapping
Case Cost Per Particle (ms) | Fized Cost (ms) R* Fit
Low Scattering (20%) 4.6 x 1076 103.4 0.9997304
High Scattering (80%) 1.4 x107° 106.7 0.9999878
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Chapter 4

Conclusions and Future Work

Next-generation architectures are trending towards using accelerators like GPUs to boost
compute power, which is problematic for Monte Carlo particle transport codes because of
their high memory usage and divergent algorithms. As a result, codes such as ITS at
Sandia National Laboratories must learn to evolve from methods that have been relied on
for decades. Two key issues were explored in this report, namely how to implement
memory-intensive tallies, and also how to reduce divergence using an event-based transport
algorithm. This concluding chapter summarizes lessons learned, and also discusses future
work that is still needed to improve the performance of production Monte Carlo particle
transport codes on GPUs.

4.1 Monte Carlo Tallies on the GPU

The most commonly used method for processing Monte Carlo tallies in parallel is to use tally
replication. While tally replication is very effective for CPU-based systems, simply copying
the tally structure to every thread is not always feasible for the GPU. Memory resources are
more limited on the GPU than the CPU, and these resources must be shared by not only all
the tallies, but also other memory-intensive data such as the geometry and cross sections.

For integer-based event counters with a high update frequency, the most effective alternative
to tally replication is to use the warp shuffle method. The warp shuffle method allows threads
in a warp to share data so that an efficient parallel reduction can be performed. For event
counters or other tallies that need to use floating-point values, an even better solution is
to use the block reduction method. The block reduction method only requires one atomic
function call per block, which are generally more expensive for floating-point values.

For memory-intensive particle flux mesh tallies, performance results presented in this report
have shown that the KDE integral-track and stratified sampling implementations can both
be efficiently processed on the GPU by assigning threads to mesh nodes or elements instead
of particle tracks. Assigning GPU threads to mesh nodes or elements allows each thread
to only access its own tally structure, which removes the need for using expensive atomic
function calls or tally replication to avoid race conditions.
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Even though the alternative tally implementations discussed in this report may allow tallies
to be processed on the GPU during the Monte Carlo particle transport simulation, future
efforts should be made towards exploring the use of GPUs as tally servers [33]. If GPUs were
used as tally servers, then most of the available memory could be dedicated to the tallies,
which may make tally replication a more feasible option. Tally servers also would make it
easier to allow both in-situ tallying and post-processing tallying within the same framework.

4.2 Event-Based Monte Carlo Particle Transport

A new research code called Savannah was also introduced in this work, which was designed
to explore the effectiveness of using an event-based transport algorithm. Performance
results using Savannah were presented for two types of problems: photon attenuation and
isotropic scattering. The history-based transport algorithm actually outperformed the
event-based implementation for all the test cases considered, with speedups ranging from
20% up to a factor of 10 times faster. This was not expected, given that the event-based
transport algorithm did substantially reduce divergence, and should therefore be better
suited to execution on the GPU.

Although the event-based transport algorithm did not perform as expected, a closer look at
the results was able to highlight the costs that are involved in switching to this alternative
algorithm. The most obvious cost is the time needed to remap particles. For low scattering
problems, remapping was clearly the most time-consuming step performed by the event-
based transport algorithm. For high scattering problems, however, the cost of remapping
had a much lower impact. The reason for this behavior was because remapping can ignore
terminated particles, which makes it faster to process the remaining active particles.

A more subtle cost of the event-based transport algorithm was discovered by comparing
performance results with and without remapping. For both photon attenuation and
isotropic scattering test cases, the results showed that there is a noticeable increase in
runtime caused by the way the algorithm accesses the particle bank stored in global
memory. When remapping was enabled, the number of global memory transactions that
were coalesced was substantially reduced, especially when updating the data in the particle
bank. This increases the total number of global memory transactions that are needed to
produce the same results. For high scattering cases, however, disabling remapping ends up
costing much more than the increase in global memory transactions.

While the event-based transport algorithm did not perform as well as expected, this will
likely change as more complexity is added to the history-based implementation. The
divergent paths implemented in Savannah involved fewer than 10 instructions, which is a
small number compared to how many instructions would be needed to solve real problems
in a coupled electron-photon radiation transport code like ITS. Future work could therefore
study the impact of increasing the time spent in divergent paths, perhaps by including
more complicated physics for electrons and photons.
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Glossary

GPU Computing Terms

accelerator
Specialized hardware such as a GPU that is added to a computing system to help boost
overall performance.

architecture
Defines how a computer or one of its components is designed with respect to both
software and/or hardware.

atomic function
A function that performs a read-modify-write operation on data stored in either shared
memory or global memory. This operation is performed independently of all other
threads to avoid race conditions.

block synchronization
Process of synchronizing all the threads in a block before executing more instructions
that depend on a previous result. This is often required when using shared memory to
allow communication between the threads.

branch divergence
Occurs when threads in the same warp need to execute different instructions, which
increases the total number of instructions executed for the whole warp.

cached memory
Temporary storage of data closer to the processing unit, which allows future access
requests for that data to be more efficient than accessing its original location.

coalesced memory transaction
Occurs when adjacent threads in a warp access adjacent locations in global memory.
Coalesced access to global memory is performed collectively as one transaction, rather
than individually over multiple transactions.

constant memory
Small read-only memory space available to all threads on a GPU that is cached on-chip.
Most efficient when all threads in a warp access a few distinct locations.

cuRAND
A library included in the CUDA toolkit that provides support for pseudorandom and
quasirandom number generation on the GPU.
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CUDA
A parallel computing platform and programming model created by NVIDIA to enable
general purpose computing on their GPUs.

CUDA compute capability
Version number of an NVIDIA GPU (i.e., X.Y), which identifies its core architecture
type and what CUDA features are supported.

CUDA core
Single processing unit on an SM.

CUDA kernel
A function launched from the host that is executed k times in parallel by k different
threads on the device.

CUDA toolkit
A development environment for creating NVIDIA GPU-accelerated applications.

device
Refers to the GPU responsible for accelerating parts of the application.

execution space
An abstraction that determines where an application will be run, either on the CPU
or a GPU.

global load efficiency
Ratio of requested throughput to required throughput for reading data from global
memory. Measures amount of coalesced read transactions in a CUDA kernel.

global memory
Largest memory space available to all threads on a GPU, but also has the slowest
access rates because it is located off-chip.

global store efficiency
Ratio of requested throughput to required throughput for writing data to global
memory. Measures amount of coalesced write transactions in a CUDA kernel.

host
Refers to the CPU responsible for running the application.

Kokkos
A programming model for writing performance portable applications across diverse
manycore processors, which includes multi-core CPUs and GPUs.

local memory
Off-chip memory available to individual threads that is used when a thread requires
more registers than are available to execute a CUDA kernel.
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off-chip
Components not built on the same integrated circuit as the processing unit.

on-chip
Components built on the same integrated circuit as the processing unit.

parallel processing
Multiple instructions and/or data are executed simultaneously. GPUs execute a single
instruction on multiple data, making them well-suited to data-parallel algorithms.

race condition
Two or more threads attempt to change a shared resource (i.e., memory location) at
the same time, causing unexpected results.

reduction
A parallel pattern that is used to combine all values in an array into one value, using
an operator such as addition.

register memory
Fastest on-chip memory available to individual threads, but is also a limited resource
that is distributed among all the threads assigned to an SM.

serial processing
Instructions of a program are executed one at a time in a sequential order.

shared memory
Small on-chip memory space available to all threads in one thread block, which enables
efficient communication between threads.

speedup
Measures the relative performance of two different implementations used to process
the same problem.

streaming multiprocessor (SM)
Component of a GPU with many CUDA cores that manages, schedules, and executes

warps. A GPU has multiple SMs.

texture memory
Read-only memory available to all threads on a GPU that is cached on-chip. Most
efficient when all threads in a warp read from locations that are close to one another.

thread
Smallest programmable unit that executes instructions on a GPU.

thread block
A programming abstraction that represents a group of warps.

vector processor
A CPU that is able to process a single instruction on multiple data. In comparison, a
scalar processor can only process a single instruction on single data.
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warp
Group of threads that execute common instructions in parallel on a GPU.

warp execution efficiency
Percentage of active threads per warp on average being processed by an SM. Measures
branch divergence of a CUDA kernel.

warp shuffle
CUDA feature that allows threads in a warp to simultaneously exchange or broadcast
data without needing to use shared memory.

Monte Carlo Particle Transport Terms

absorption
Collision interaction where the particle and its energy is absorbed by the background
material with which it interacts.

active particle
Particle that is still being tracked by the transport algorithm.

collision interaction
Type of event where the particle interacts with the background material and changes
its direction and/or energy.

cross section
Defines the probability that a particle experiences a given type of collision interaction
(i.e., scattering or absorption). Usually measured in units of area, but can also be
represented in units of per-unit-length if multiplied by the atomic number density of
the background material.

estimator
A mathematical rule that calculates an estimate of a quantity of interest based on
observed data (e.g., average number of collisions in a region).

event
Something that can happen to a particle. Examples include creation, absorption,
scatter, move, surface crossing, and escape.

event-based transport algorithm
An alternative Monte Carlo particle transport algorithm where particles are processed
in groups according to the type of event that they are expected to experience next.

event counter
A simple tally used to count the number of occurrences of a single event type.

history
A sequence of events that one particle experiences until it gets absorbed or otherwise
escapes the system.
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history-based transport algorithm
The traditional Monte Carlo particle transport algorithm where individual particles
are followed from their birth until their death.

inactive particle
Particle that has been terminated due to either getting absorbed or having escaped
the problem domain.

isotropic scattering
Scattering interaction where the new direction of the particle is selected by uniformly
sampling a value from 0 to 360 degrees (i.e., all directions are equally likely to occur).

kernel density estimator (KDE)
Statistical method used to estimate an unknown probability density function based on
a fixed set of observations randomly sampled from that function.

KDE integral-track mesh tally
Particle flux tally that uses the kernel density estimator to approximate particle flux
at all the nodes of a mesh. Alternative to conventional histogram-based tallies that
only compute average particle flux values for each mesh element.

mesh
Discretization of a spatial domain into elements. Mesh elements can be any shape,
including triangle or quadrilateral in 2D, and tetrahedron or hexahedron in 3D.

mesh node
A point (i.e., vertex) on a mesh element where two or more edges meet.

mesh tally
A tally that accumulates scores for a physical quantity of interest on all the elements
or nodes of a mesh.

Monte Carlo particle transport
Algorithm that uses random sampling to determine the movement and interactions of
particles within one or more background materials.

nodal coordinates
The (x, y, z) coordinates of one node on a mesh element.

particle
Refers to one physical particle (e.g., electron, photon, neutron).

particle escape tally
Tally that counts the number of particles that escape a region of interest.

particle flux tally
Tally that measures the total length traveled by all particles in a region of interest per
unit volume and time.
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particle track
Distance a particle travels along its current trajectory.

photon attenuation
Gradual reduction in the intensity of a beam of photons emitted from a source as the
photons travel through a material. Loss is due to collision interactions, not escape.

point-in-element search
Algorithm to locate the mesh element in which a point defined by its (x, y, z)
coordinates is located.

probability density function
A mathematical function f(x) of a continuous random variable X, whose integral from
a to b defines the probability that the value of X falls within a and b.

random number generator
Algorithm used to generate random numbers that determine when and how particles
interact in a Monte Carlo particle transport simulation.

remap vector
Sorted list of particle indices grouped together by next event type. All particles with
event type 0 are listed first, then all particles with event type 1 are listed second, and
so on until all active particles are included.

remapping
Process used in the event-based transport algorithm to sort particles into event groups
without physically moving all their data.

scattering
Collision interaction where the particle is deflected from its original direction. May
also result in a change of energy.

slab geometry
1D geometrical representation defined by a minimum and maximum boundary.

source
Location where particles get created, which determines parameters such as their initial
type, direction, and energy.

strata point
A point on a subtrack defined by its (x, y, z) coordinates that was chosen at random.

stratified sampling mesh tally
Particle flux tally that approximates the average particle flux in each element of a
mesh. Uses a stochastic approach called stratified sampling to choose strata points,
then apportions particle tracks based on where those points are located.
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subtrack
One section of a particle track after that particle track has been divided into k pieces.
The length of each subtrack is equal to the total particle track length divided by k.

surface crossing
Type of event where the particle crosses a geometrical surface, usually without changing
its direction or energy.

tally
Accumulates scores for a physical quantity of interest in one or more regions of interest.
Tallies are often subdivided into different bins for energy, angle, and time.

tally replication
Process of copying the tally bin structure onto multiple compute nodes or GPU threads.
Final results are obtained by accumulating results from all the copies of the tally.

tally score
A value computed for one or more events in a history using an estimator.
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