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Abstract

Measurements of energy balance components (energy intake, energy expenditure,
changes in energy stores) are often plagued with measurement error. Doubly-labeled
water can measure energy intake (EI) with negligible error, but is expensive and
cumbersome. An alternative approach that is gaining popularity is to use the energy
balance principle, by measuring energy expenditure (EE) and change in energy stores
(ES) and then back-calculate EI. Gold standard methods for EE and ES exist and are
known to give accurate measurements, albeit at a high cost. We propose a joint
statistical model to assess the measurement error in cheaper, non-intrusive measures of
EE and ES. We let the unknown true EE and ES for individuals be latent variables, and
model them using a bivariate distribution. We try both a bivariate Normal as well as a
Dirichlet Process Mixture Model, and compare the results via simulation. Our approach,
is the first to account for the dependencies that exist in individuals’ daily EE and ES.
We employ semiparametric regression with free knot splines for measurements with
error, and linear components for error free covariates. We adopt a Bayesian approach to
estimation and inference and use Reversible Jump Markov Chain Monte Carlo to
generate draws from the posterior distribution. Based on the semiparameteric
regression, we develop a calibration equation that adjusts a cheaper, less reliable
estimate, closer to the true value. Along with this calibrated value, our method also
gives credible intervals to assess uncertainty. A simulation study shows our calibration
helps produce a more accurate estimate. Our approach compares favorably in terms of
prediction to other commonly used models.

Introduction

Obesity is perhaps the most serious public health problem of the 21st century, given the
prevalence, global reach, and widespread health, economic, and social consequences.
While the weight gain and lost is most certainly a complex interplay of a large number
of factors across a variety of domains [1], ultimately a chronic energy surplus or deficit
(energy intake versus energy expenditure) determines body weight change [2-6].
However, accurately measuring energy balance in free-living individuals is challenging,
even in small studies. Yet to design effective public health policies and interventions, it
would be valuable to be able to assess energy balance in nationwide surveys such as
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National Health and Nutrition Examination Survey (NHANES). Clearly, instruments
such as doubly labeled water (DLW) and dual-energy X-ray absorptiometry (DXA) are
too costly and burdensome to administer in large groups. Alternatively, consumer
devices designed to measure physical activity and body composition are generally
affordable, easy to use, and popular (an estimated 45 million will be sold in 2017), [7]
but have varying levels of validity and reliability [8-10].

Within the past decade mathematical models have been formulated based on the
principles of the first law of thermodynamics (rate of energy storage= rate of energy
intake — rate of energy expenditure) [11]. Developed with multiple datasets containing
gold-standard measures of energy expenditure, energy intake, and changes in energy
storage (e.g. body composition using a two-compartment model of fat mass and fat-free
mass) during periods of overfeeding [12] or caloric restriction [13], researchers have
developed and refined a model based on the energy balance principle [14-16]. The result
is a simple, easy-to-use equation that offers great promise in the quest for estimating
energy intake using objectively measured methods. We have recently used these energy
balance equations to compare estimates of energy intake obtained through
gold-standard methods (DLW) and arm-based activity monitors (Sensewear Armband,
BodyMedia Inc. Pittsburgh, PA) [17]. We observed very low group error in the
estimates of energy expenditure and equation-derived energy intake using both the
DLW and armband, indicating equivalency between the measures. However, the
individual error for equation-derived energy intake and expenditure was quite large,
likely due to large individual measurement error.

Therefore, a question of interest is whether measurements of energy balance
obtained from self-report instruments or even from objective measuring tools such as
the Sensewear Armband or other consumer devices, which are much less costly to apply,
and can be calibrated to correct for measurement error. We explore the association
between measurements obtained from accurate instruments and those obtained from
noisy instruments which can be administered to large groups. We are interested in
formulating a model for energy balance by using energy expenditure (EE) and changes
in energy stores (AES) while accounting for dependence between the two and
measurement error. Widely accepted gold standard measurements exist for both EE
(DLW) [12,]15,[16,18-21] and AES (DXA) [12,16,20]. Table 1 lists abbreviations used in
this article. Unfortunately, these instruments are expensive and burdensome. There are
alternative approaches [17] to quantify both EE and AES that while less expensive and
easier to administer, are subject to bias and other errors. Our goal is to model energy
balance by using both gold standard and less precise instruments with the end goal of
evaluating the error present in the measurements and ultimately calibrating the less
precise instruments, so in future studies, researchers can calibrate their measurements of
EE and/or AES if they are not using a gold standard.

Measurement error modeling is a well developed field in statistics. Fuller made
popular linear measurement error models through his book that was the first expose on
measurement error [22]. Nonlinear models have since become more popular and widely
used and an overview of these models is given in [23]. Berry et al. [24] proposed
Bayesian measurement error models that used p-splines to model the relationship
between the latent variable and noisy measurements. This was one of the first Bayesian
approaches to a problem like this as it was at the onset of the Markov Chain Monte
Carlo revolution that allowed for Bayesian modeling to be practical. These models were
then extended by [25] and [26] by allowing for a more flexible distribution of the latent
variables than a Gaussian as well as using b-splines instead of p-splines. They used
Dirichlet Process Mixture Models to allow for more flexibility in the structure of the
latent variables, and though simulation and real data anaylsis showed it could have a
major effect if the true underlying distribution was not Gaussian. Additionally, they
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Table 1. List of commonly used abbreviations.
EI Energy Intake
EE Energy Expenditure
AES | Changes in Energy Stores
FM Fat Mass
FFM | Fat Free Mass
DXA | Dual-energy X-ray absorptiometry
DLW | Doubly Labeled Water

allowed for non-constant variances in the error terms for noisy measurements and gold
standard measurements. There is a large body of measurement error research applied to
the field of nutrition. Nusser et al. [27] developed a semiparametric approach to
estimating intake distributions using noisy, 24 hour recalls of nutrient intakes. Sinha et
al. [28] developed Bayesian methods for the analysis of nutritional data that used
b-splines and Dirichlet Process Mixtures to allow for flexibility, that would later be
extended by [25] and [26]. The analysis of semicontinous data with measurement error
was explored in [29], otherwise known as the “NCI method”, and later extended in [30]
and [31]. The strong research in measurement error modeling developed for the field of
nutrition can be used as a starting point for measurement error modeling in the physical
activity realm. Reversible Jump MCMC was designed as a means of model

selection [32]. In the context of b-splines, model selection is determining the number of
knots and the locations of the knots. An early and practical approach to regression
using splines and Reversible Jump MCMC was given in [33], which introduced the idea
of Bayesian free-knot splines. Although the method used Reversible Jump MCMC, it
was not a “fully Bayesian” approach as it did not place priors on the spline regression
coefficients, rather it used OLS to update regression coefficients during each step of the
algorithm. A more fully Bayesian approach was given by [34] which allowed for placing
priors on the regression coefficients. For complex regression problems where such things
as discontinuities in the curve existed, the method of [34] performed better, but with
smooth functions that appear to have continuous second derivatives, the simpler to
implement method of [33] performed comparably. In these papers, the explanatory
variable for which the locations of the knots are being chosen, was assumed to be fixed
and known. In this paper, those values will be treated as latent variables which will add
a layer of complexity to the algorithm.

In this article we adopt a Bayesian semi-parametric approach. We make
distributional assumptions about error terms, but we try to be flexible when modeling
the true relationship between less precise measurements and the truth. We propose
using free knot splines to model the relationship between the less precise measurements
and the truth and we build a Reversible Jump MCMC algorithm to do so. The
remainder of this article is organized as follows: in the Methodology section we describe
the data structure and assumptions about their dependencies; we also briefly review two
commonly used models and introduce a bivariate, Bayesian semi-parametric model that
allows for dependence between EE and AES. In the Simulated Data and Simulation
Study sections, we describe how we simulate complex data and how we constructed the
simulation study to assess the performance of the three models. The Results section
summarizes our findings in the simulation study. In the Calibration section, we show
how calibration could be performed using the proposed model given new data when no
gold standard measurements are available.
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Methodology

In this section, a new way to analyze the relationship between gold standard and less
expensive measurements that accounts for dependence between EE and AES is
presented. First, a more precise definition of AES is given as well as a practical way to
calculate it in practice. Independence assumptions are listed along with justifications
that help simplify the model construction. Two simpler models are described before the
proposed method: a naive model that assumes there is no measurement error in gold
standard measurements, and a linear measurement error model that assumes a linear
relationship between less expensive measurements and the true, latent values of EE and
AES. Finally, the proposed new model using free knot splines to model the relationship
between less expensive measurements and the true, latent values of EE and AES is
described in further detail.

Calculation of AES

In the energy balance equation,
AES = FI — EE, (1)

AES is expressed in kcals, and can be positive or negative. To convert DXA
measurements of fat mass and fat free mass to kcals, we use equation (2). Because we
assume that energy stores are characterized only as either fat mass (FM) or fat free
mass (FFM), this equation provides an exact answer if we know the values of Crjps and
Crpy. We let Cpay = 9500 and Crppr = 1100 like in [20], recognizing that a single
value does not account for biological variation. We divide these by the change in time
(14 days £ 3 days) and multiply by Crpr and Crpps to get AES in keals. For each
individual, we compute

AFM AFFM

+Crrum

AES =Cru—17 AT (2)

Notation

We denote observed average daily EE measured via DLW for subject i over time period
7 by WijE , and observed average daily AES measured via DXA for subject i over time
period j by W3 ES A positive value for AES indicates that more calories were taken in
than expended. We compute daily values of EE for a person by averaging the total EE
for that person obtained by DLW, because DLW gives an estimate of EE over a period
of time, in this instance approximately 14 days.

When collecting data on a large population, it is feasible to administer less expensive

instruments on most of the subjects. However, they result in less accurate measurements.

Although there are several less precise ways to measure EE and AES, we keep the

notation general since in any given situation we will refer only to one specific instrument.

We denote the observed average daily EE obtained with an less precise instrument for
subject ¢ over time period 7, YZJJE E_and the observed average daily change in energy

stores measured by an less precise instrument for subject i over time period j, Y;2£5.

Lastly, the values which we cannot observe are the usual EE and AES for subject i.

We define usual as a long run average (expected value) of the true EE and AES. Let
XEF represent the usual daily EE for subject i and XiAES represent the usual daily
AES for subject i. Note that even if we could observe daily EE and daily AES for each
participant with no error, there is still within-person variability in these two variables
because people change their caloric intake and their physical activity from day to day.
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(In)Dependence Assumptions

The observed data vector for subject i at time j is (W%, W@ES, YFE, Y;?ES, Z;)
where Z; is a vector of covariates measured with no error for subject i. We start by
assuming independence between individuals.

Several of the variables in the model are conditionally independent. Given the value
XFE (usual daily EE for subject i) and XAF9 (usual daily AES for subject 4), and
covariates Z;, we assume that:

1. YZ‘?E and YMAES are independent of each other,
2. YZ;EE and YifES are each independent of both WfE and Wi?‘ES ;
3. WZ';JE and VVﬁE S are independent of each other.

Assumption 1. follows because given the true values X and covariates Z, knowing an
less precise measurement will give us no more information about the less precise
measurement of the other, so long as it is not self-administered. To justify assumption
2., we note that once we know the truth X, having an unbiased measurement of X will
not provide any more information about the less precise, biased measurement of X.
Assumption 3. follows from a reasoning similar to 1.

Naive Model

The first model we consider is what we call the naive model. This model assumes no
measurement error in the gold standard instrument, thus DLW and DXA give error-free
measurements of X and XZ-AE S respectively. We also assume that the less precise
measurements Y are linearly related to the usual values and to error free covariates.
Based on empirical evidence, gender, BMI, and age all had some effect on the less
precise measurement of EE. The naive model is:

ind
(K]EEIWz?E7 Zia G'yEE) 12’ N(ﬁO,ee + ﬁl,eerl;?E + 'YeeZia UEEE) (3)
(YEES\WEES, Z;,0yes) ™' N(Boes + BresWETS + YesZi, 0%rs). (4)

where the ;. terms represents the relationship between less precise measurements
and the usual EE and AES and the 5y terms represent systematic biases. We let
. = (7, V2,-,73,.) and 7. is the coefficient for gender, 7 . is the coefficient for BMI,
and 73 . is the coefficient for age. We take the standard approach and assume that the
errors are normally distributed.

We choose independent priors for all model parameters for all models going forward.

Where appropriate, we select priors that are conjugate or conditionally conjugate for
ease of implementation but also to permit incorporating weak information through the
prior. Prior distributions for all models are listed in the S4 Appendix.

Linear Measurement Error Model (LMEM)

The Linear Measurement Error Model (LMEM) recognizes that WFF and WAFS are
contaminated with additive measurement error, and are unbiased measurements of
truth, rather than equal to truth. Therefore the model becomes hierarchical as it does
not directly model the relationship between Y and W, but rather Y and X under the
assumption that W is an unbiased measurement for X. The relationship between Y and
X is assumed to be linear, and as in the naive model, the model also accounts linearly
for error-free covariates Z. We assume that the measurement errors are normally
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distributed. To allow dependence between EE and AES, we model (XFF, XAP%) with
a bivariate normal distribution. More formally, the model is given by: 183

nd
(Y;']E"E|XiEEaziaeyee l] NﬁO e€+ﬂl ee +'YeeZuO—gEE) )

&

Z

} =N ()

(Y5 P51 X055, Ziy Oyes) ™ N(Boes + B, %XAES + Voo gyzs) (6)

(WEB|XEE, Z;, Opee) ™ N(XFE, 02, ) (7)

(WEPS|XP55, Zi, Oves) ™ N(XAES ) (8)
XEE XAESQ ”’dN<[NEE:|,Z > 9

( 6x) JEE | ©)

The full likelihood for this model and the one in the next section are givein in the S3 1
Appendix. 185
Spline Measurement Error Model (SMEM) 186
We extend the LMEM for EE and AES in the previous section to include both 187
non-linear and non-parametric components. We follow the same construction of the 188
LMEM to model the gold standard measurements as unbiased for usual attributes and 1
subject to normally distributed measurement errors as in ([7-8). 190

We wish to understand both the biases as functions of usual value and demographic 1a
covariates, as well as the measurement error in the instruments themselves. We propose 1
modeling the less precise measurements in a semi-parametric regression framework. 103
Specifically, model the functions m.(-) using free knot cubic B-splines, and model 194
demographic covariates with a linear component. We require monotone functions so we 10
can take inverses for calibration later, but this only requires the spline coefficients to be 1
non-decreasing ie. 81 < 3 < ... < B [35] as used in similar applications [28,36,37]. 107
Our approach has three benefits. First, the spline is flexible and can pick up an 108
unknown relationship between X and the less precise measurement of the same, which 19
is important because we never observe the truth and therefore it is difficult to justify a 200

particular functional form of the relationship. Second, the use of free knot splines 201
eliminates the need for us to specify the number and position of the knots. Previous 202
methods using splines in measurement error models choose a “moderately large” 203
number of knots, typically at least 15 [24,26,28]. We use Reversible Jump MCMC 204
(RIMCMC) to determine the number and position of knots. This means that we treat 20
the number of knots in each regression equation and their knot locations as random 206
variables. Third, the linear component for the covariates allows for an easy 207
interpretation of the parameters and thus the biases in the instrument. We make a 208
working assumption of constant variance for all measurement errors. Based on the 209
above, the model specification is then: 210
(Ysz|XzEEv Zi, Oyee) o N(See(X; 71896) + 'YeeZHUEEE) (10)
(Y’-iJAEleiAES’ Zis Hyes) ! N(SES(XiAE ;IBAES) + YesZi UEAES) (11)
kee+4
See( ; 71666 Z bz ee ﬁz ee — Bee( EE)ﬁee (12)
kes+4
Ses (XiAES§/3Aes) = Z bi,es(XAES)ﬁi,es = Bes(XAES);Besa (13)
i=1
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where Bee() and Bes() are n X (kee +4) and n X (kes + 4) B-spline basis matrices
that can be constructed using the recursion specified in [38]. We let ke, and k.s denote
the number of knots for the EE and AES splines, respectively.

There are many different types of splines, but we picked B-splines because in similar
problems [25,26,28] it has been shown that they are numerically more stable than
P-splines, for example, which can have major effects on outcomes as compared in [25].

We allow more flexibility in the distribution of the latent variables (XF¥, XAES) by
specifying a Dirichlet process mixture prior for them. This allows the data to “speak for
themselves” which is ideal when the model includes latent variables. The density of

(XFE, XAES) can then be modeled as an infinite mixture of normals:

(XPP, XPE9)G =hE N ([”Zi’ﬂ ’Eh> "
ok Cat(H, ) (15)

Vi, ~ Beta(1, @) (16)

Vi =1 (17)

m = Vi [[(1-Va), s}

L<h

where « helps control how many components of the infinite mixture are used. We

choose to set a to 1. The parameter (; takes value for which group observation i came.

Cat(H, ) is a categorical random variable such that P(¢; = h) = mp,, h < H. In any
given problem, we can select H such that Zthl 7, < € for some € > 0 [39], pg. 552.

Although we do not know the true form of the association between the noisy
measurements and the usual values, we do not anticipate it to be highly complex, so we
would like to use as few knots as necessary. We use 7., and r.s to denote the knot
locations. Our discrete uniform prior on these, means that knots can only occur at the
latent values of (XFE, XAFS). This was done largely for computational convenience;
we could have assigned a continuous prior for the knot locations, but we do not believe
this will adversely affect estimation because the latent (XF¥, XAF9) are updated every
MCMC iteration. Notice that we have not placed priors on the spline regression
coefficients Bee and Bes, or the linear regression coefficients vee and ~es; this is
because we will update them using ordinary least squares (OLS). More details can be
found in the S2 Appendix.

Simulated Data

In this section we describe how we simulate data to mimic “real” observations, in order
to perform a simulation study. Our simulated data need to be sufficiently complex and
incorporate dependence in order to faithfully represent the distributions of true EE and
EIL as well as gold standard measurements and less precise measurements. We need to
simulate data for all the components in the model as well as the latent variables
(XEE, XZ.AE ¥). We explore estimation with measurement errors for the gold standard
and less precise measurements under three different scenarios: normal errors, skewed
errors, bimodal errors.

For this simulation, we used three covariates: gender, age, BMI. Using a total sample
size of 300, we sampled 300 Bernoulli(0.5) to determine gender. Age was simulated from
Uniform(20,40). The BMI for an individual was simulated from a Normal(27,5). Let Z
be the matrix of dimension 300x3 that links covariates to individuals.

We simulate (XF#, XF!) from a mixture of 5 bivariate t-distributions. Sixty
observation pairs are simulated from five different bivariate t-distributions. The mean
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and standard deviation of the two-dimensional vector for each of the five t-distributions
are each different. The scale matrix for each of the five t-distributions is constant and
the degrees of freedom is equal to five.

We let the correlation between EE and EI be 0.4376 as calculated from previous
studies’ data. The values used for the vector ve. = (300, 14, —7) and ~.s = (—200, 8, —5)
for gender, BMI and age, respectively. We compute X Z-AES using the energy balance
equation in (). Fig [l shows histograms f or the latent variables in one simulated data
set.

Fig 1. Simulated Data Distribution Distribution of simulated latent variables X
from one simulated data set.

For the gold standard measurements, let

v,

EE _ | EE EFE
i = Uij 105

19)
AES _ , AES | sAES (
Vig o =y 07,

where u”F represents the measurement error in DLW and u®FS represents the

represents the within person deviation in EE
SAES
ij

measurement error in DXA. Above, 55]5
for person i during time period j from the person’s true mean, and similarly
represents the within person deviation in AES for person i during time period j from
the person’s true mean. For the less precise measurements there is a slightly different
setup. The within person variability gets added to each individuals’ usual values of EE
and AES and thus is affected by the functions m.(-). Therefore we add these within

person variation terms d to the usual X values we simulated to get:

XgE = XBE | (SgE
XAES _ xAES | §AES (20)
17 % 17

?

and the functions m.(-) depend on X;,.

The pairs (657, 6579) are simulated jointly but independently across time and
individual. We simulate the within person variability terms ((55E , 52%]3‘9
bivariate normal distribution.

We assume that DLW and DXA are unbiased measurements of EE and AES,
respectively. These measurements are simulated according to (7),(8)) where we further
brake down v as in (19). The u term represents the measurement error components we
still need to specify and § represents the within person component of the error which we
have already discussed. We assume that the u terms are independent within and across
individuals as well as of all § and X.

From these simulated values, we then get simulated gold standard data
WEE W2ES, We generate measurement errors for the gold standard measurements
(and for the less precise measurements) from three different distributions: normal,
skewed normal, and a bimodal mixture of two normals that is centered around 0.
Parameters were chosen such that the means of all error distributions are 0, and the
variances for each distribution is the same within EE errors and within AES errors.

We generate observations for less precise measurements in a similar fashion as in the
last section. We assume that the errors are independent within and across subjects as
well as mutually independent with all §, X and Z terms. We draw these errors from

) from a

densities that are the same to those in the previous section, except with larger variances.

In contrast to the gold standard measurements which we assume are unbiased, we
now add bias to the less precise measurements. The bias is introduced via the functions
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Mee and mes. For these simulated data, we let:

4000
_ EE
Mee(X, Z) = 2X;7% — o o=0002XFF 230" (21)
1
Mes(X, Z) = 000 — 2000 + XPFS. (22)

1 + ¢—0-04XAPS

Fig [2 shows me.(:) on the left and mes(-) on the right both against a y = « line for
comparison.

Fig 2. Nonlinear Functions Plot of nonlinear functions me.() (left) and m.s()
(right), and Y=X is black for reference to unbiased measurement.

We then add Z;4. to the simulated less precise measures of EE and AES.

Estimation

We adopt a Bayesian approach to estimation in this problem, and therefore, our goal is
to estimate the joint posterior distribution of all parameters and latent variables in the
model. In our case, the joint posterior distribution is

p(0, XBE XAES|\WEE WAES yBE yAES 7)) We use Markov Chain Monte Carlo
(MCMC) methods to approximate the posterior distribution. For the naive and LMEM
models, we used Just Another Gibbs Sampler (JAGS) to simulate draws from the

posterior distribution. This was simple to implement and was relatively quick to sample.

In order to fit free knot splines which allow for dimension change, we must use
Reversible Jump MCMC which requires a more complex sampler. We use R and C++
for the RIMCMC sampler. Because the algorithms are technical and not the main
objectives of this paper, we provide the algorithm for the Gibbs sampler in the S1
Appendix and the reversible jump algorithm in the S2 Appendix.

Simulation Study

In this section we describe a simulation study that we carried out, to check the
performance of the models we propose. We are interested in the predictive performance
of the models because our main goal is to develop a calibration tool. We are also
interested in evaluating the robustness of the model to departures of the errors from the
standard normality assumption, which is why we simulate errors from two alternative
error distributions. We present performance measures such as predicted mean squared
error (PMSE) for the regression function in question as well as posterior means and
posterior standard deviations for parameters of interest.

Setup

We simulated 200 data sets each for normal, skewed, and bimodal errors for both 2 and
4 replicate measurements per individual. The number of individuals is 300 in all cases.
Preliminary analysis suggest that the number of replicates per individual has a stronger
impact on performance than the number of individuals.

Although we would like to be as flexible as possible with our distributional
assumptions on the bivariate latent variables, we also want a model that produces
estimates with low prediction mean squared error (PMSE) given the data constraints of
our application. In practice, it is difficult to obtain more than two replicate
measurements on an individual, at least when using the gold standard measurements.
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During the simulation study, we found that the Dirichlet Process prior on the latent
variables produced unstable results in parameter estimates and low acceptance rates of
proposals in the random walk Metropolis-Hastings algorithm when we only had two
replicate observations per person. Results were stable however, when four replicates per
person were available. Because of this issue, we fit a fourth model using a bivariate
normal distribution for the prior of latent variables instead of the Dirichlet Process prior

while still using splines for the regression functions. We refer to this model as SMEMN.

The MCMC has a minor change in the Gibbs step (steps (a)-(c) are eliminated and step
(d) no longer depends on grouping h).

We set the values of the hyperparameters as follows: Mg, . = Mg, ., =0,Cp, . =
Cpy... = 100000, Mp, ., = Mg, ., =1,Cp, .. = Cg, ., = 100000, M,,, = M,,, =
0, C e — ez — 100000, Uyee = Ayes = Gwee = Qwes = byee = byes = byee = byes =
0.1,¢ = Irxo,d = 3, M, = (2400, 0), C,, = diag(100000, 100000), Acc = Aes = 1. We ran
the MCMC for 3 chains of 12,000 iterations, using the first 2000 as burn in, and
convergence for all models was fast as indicated by trace plots and Gelman-Rubin
diagnostics less than 1.04.

Results

Tables 2,84 show results averaged over 200 Monte Carlo samples, for normal, skewed,
and bimodal errors, respectively. The asterisk next to the truth for the measurement
error with respect to the less precise measurements indicates that this is a Monte Carlo
approximation to the truth. Recall that we included within person variation in the
functions m.(-), but in our model we use the working assumption that the additive error
term accounts for both within person variability and measurement error. Because we
cannot directly extract the value from the function, we approximate it by generating
10,000 data sets and removing the mean function from the less precise observations, and
then calculating the standard deviation of the residual. We then averaged those
standard deviation estimates to get the one reported in the table.

Table 2. Summary of Simulation under Normal Errors for naive, LMEM, SMEMN|,
SMEM Models, respectively.

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Naive | oyce Oyes Mee V2,ee V3,ee Mes
Replicates | & 4 2 4 2 4 2 4 2 4 2

Mean Est | 477.65 473.42 | 347.49 354.85 254.67 248.66 | 14.88 14.03 | -4.14 -5.29 | -200.53
Std Err | 17.82 19.24 | 9.43 6.80 43.65  36.10 | 4.33  3.62 | 3.37 3.06 | 28.19
Bias | 72.15  67.92 13.49  20.85 -45.33  -51.34 | 0.88  0.03 | 286 1.71 | -0.53

Truth | 405.50 405.50 | 334.00 334.00 300.00  300.00 | 14.00 14.00 | -7.00 -7.00 | -200.00

LMEM | oyce Tyes Twee Twes V1.ee Y2.ce V3.ee Vies
Replicates | 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2

Mean Est | 444.34 446.63 | 320.41 338.26 | 255.70 255.85 | 69.18 71.81 | 249.50 240.63 | 14.30 13.67 | -4.50 -5.28 | -199.27
Std Err | 16.84  14.22 10.76  7.53 10.74  6.33 227 156 | 4344  37.02 | 425 360 |3.38 3.04 | 2831
Bias | 38.84  41.13 | -13.59 4.26 5.70 5.85 -3.68 -1.05 | -50.50 -59.37 | 0.30 -0.33 | 250 1.72 | 0.73
Truth | 405.50 405.50 | 334.00 334.00 | 250.00 250.00 | 72.86 72.86 | 300.00 300.00 | 14.00 14.00 | -7.00 -7.00 | -200.00

-198.49
22.96
1.51
-200.00

SMEMN | 0yce Oyes Owee Owes Viee V2,ee Y3,ee Yies

Replicates | 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2

4

Mean Est | 393.69 400.55 | 313.47 331.79 | 246.81 248.93 | 67.61 71.04 | 293.16 294.61 | 14.17 14.11 | -6.86 -6.78 | -200.07
Std Err | 11.52  8.29 12.00  8.27 8.78 5.79 232 166 | 36.16 2619 | 3.50 242 | 286 216 | 26.86
Bias | -11.81 -4.95 -20.53  -2.21 -3.19 -1.07 -5.25  -1.82 | -6.84 -5.39 017  0.11 0.14 0.22 | -0.07

Truth | 405.50 405.50 | 334.00 334.00 | 250.00 250.00 | 72.86 72.86 | 300.00 300.00 | 14.00 14.00 | -7.00 -7.00 | -200.00

-200.86
19.44
-0.86
-200.00

Y1es

SMEM Tyee Tyes Twee Twes Mee V2,ee V3,ee
Replicates 4 4

4

Mean Est 400.13 331.38 248.94 70.85 297.62 14.16 -7.11
Std Err 8.25 8.43 6.05 1.62 26.53 2.72 2.08
Bias -5.37 -2.62 -1.06 -2.01 -2.38 0.16 -0.11
Truth 405.50 334.00 250.00 72.86 300.00 14.00 -7.00

-198.04
18.11
1.96
-200.00

Across all models and error types, the linear coefficients are estimated largely
without bias. This is not too surprising since these covariates are measured without
error. This suggestst the regression coefficient estimates will not be affected by
distribution of the errors. Additionally, the regression coefficients can be interpreted as
biases inherent to the device. For example, v1 .. can be thought of as the the additional
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Table 3. Summary of Simulation under Skewed Errors for naive, LMEM, SMEMN,
SMEM Models, respectively.

Naive | 0yee Oyes Yi,ee V2,ee V3,ee Yi,es Y.
Replicates | 2 4 2 4 2 4 2 4 2 4 2 4 2
Mean Est | 473.87 466.80 | 311.66 317.05 255.46  250.72 | 14.08 13.23 | -5.05 -6.04 | -197.98 -200.46 | 7.7

Std Err | 17.36 13.06 9.08 6.64 40.99 32.70 3.99 3.53 3.38  3.02 | 24.90 19.73 24
Bias | 68.37 61.30 -22.34  -16.95 -44.54 -49.28 | 0.08  -0.77 | 1.95 0.96 | 2.02 -0.46 -0.:
Truth | 405.50 405.50 | 334.00 334.00 300.00 300.00 | 14.00 14.00 | -7.00 -7.00 | -200.00 -200.00 | 8.0
LMEM | gyce Oyes Twee Twes Yi,ee V2,ce V3,ee Yi,es Y2,
Replicates | 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2

Mean Est | 432.67 435.88 | 289.34 304.25 | 254.13 255.00 | 69.67 71.68 | 251.72 244.04 | 13.38 12.88 | -5.46 -6.10 | -196.76 -200.05 | 7.8
Std Err | 16.70  12.10 | 9.90 7.05 1199  6.27 2.63 1.80 | 41.34 3301 |395 350 |335 3.00 | 2532 19.53 2.3
Bias | 27.17  30.38 | -44.66 -29.75 | 4.13 5.00 -3.20  -1.18 | -48.28 -55.96 | -0.62 -1.12 | 1.54 0.90 | 3.24 -0.05 -0.
Truth | 405.50 405.50 | 334.00 334.00 | 250.00 250.00 | 72.86 72.86 | 300.00 300.00 | 14.00 14.00 | -7.00 -7.00 | -200.00 -200.00 | 8.0

SMEMN | gycc Oyes Cwee Owes Vi,ee Y2,ee V3,ee Yies
Replicates | 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4

Mean Est | 393.56 402.91 | 282.68 298.37 | 247.00 248.83 | 68.93 71.23 | 306.58 305.65 | 14.27 14.44 | -6.95 -7.14 | -197.44 -198.85 | 7.7
Std Err | 13.33  9.56 10.96  7.47 9.54 6.33 256 1.69 | 36.09 27.06 | 3.35 257 |277 231 | 2441 17.81 24
Bias | -11.94 -2.59 -51.32  -35.63 | -3.00 -1.17 -3.93  -1.63 | 6.58 5.65 027 044 | 0.05 -0.14 | 2.56 1.15 -0.:

Truth | 405.50 405.50 | 334.00 334.00 | 250.00 250.00 | 72.86 72.86 | 300.00 300.00 | 14.00 14.00 | -7.00 -7.00 | -200.00 -200.00 | 8.0
SMEM Oyee Oyes Twee Owes N.ee V2.ee V3.ee Tes
Replicates 4 4 4 4 4 4 4
Mean Est 403.10 298.16 248.70 71.11 313.22 14.13 -7.26 -199.31
Std Err 8.25 7.01 6.67 1.57 27.80 2.37 2.13 17.70
Bias -2.40 -35.84 -1.30 -1.75 13.22 0.13 -0.26 0.69
Truth 405.50 334.00 250.00 72.86 300.00 14.00 -7.00 -200.00

Table 4. Summary of Simulation under Bimodal Errors for naive, LMEM, SMEMN,
SMEM Models, respectively.

Naive | oyce Tyes Nee V2.ee Y3.ee Mes
Replicates | 2 4 2 4 2 4 2 4 2 4 2 4
Mean Est | 342.63  344.52 | 233.52  246.69 227.08 221.48 | 12.15 12.22 | -5.61 -5.52 | -198.19 -199.20
Std Err | 12.61 15.26 6.43 5.24 3241 29.92 3.28 3.21 3.05 294 | 17.40 15.19
Bias | -62.87  -60.98 -100.48 -87.31 -72.92  -78.52 | -1.85 -1.78 | 1.39 1.48 | 1.81 0.80
Truth | 405.50  405.50 | 334.00  334.00 300.00 300.00 | 14.00 14.00 | -7.00 -7.00 | -200.00 -200.00
LMEM | 0yce Oyes Owee Owes Yi,ee V2,ee V3,ee Vi,es
Replicates | 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4
Mean Est | 264.16  265.06 | 220.65 237.60 | 207.41 207.86 | 52.92  56.11 | 216.24 203.84 | 11.50 11.52 | -5.756 -5.38 | -201.48 -201.44
Std Err | 15.07 8.86 7.31 5.56 11.92 8.43 1.85 1.26 32.90 30.36 3.20 3.25 3.07 291 | 1718 15.06
Bias | -141.34 -140.44 | -113.35 -96.40 | -42.59 -42.14 | -19.94 -16.75 | -83.76 -96.16 | -2.50 -2.48 | 1.25 1.62 | -1.48 -1.44
Truth | 405.50  405.50 | 334.00  334.00 | 250.00 250.00 | 72.86 72.86 | 300.00 300.00 | 14.00 14.00 | -7.00 -7.00 | -200.00 -200.00
SMEMN | gyce Oyes Owee Twes Y1,ee V2,ee V3,ee Vies
Replicates | 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4
Mean Est | 257.20  256.24 | 217.62  235.09 | 182.30 189.38 | 51.86  55.39 | 220.14 211.17 | 12.25 11.96 | -5.90 -5.81 | -201.34  -200.20
Std Err | 11.41 10.47 7.51 5.46 8.22 5.74 1.87 1.19 30.56 32.63 3.24 2.84 2.86 247 17.33 13.18
Bias | -148.30 -149.26 | -116.38 -98.91 | -67.70 -60.62 | -21.01 -17.47 | -79.86 -88.83 | -1.75 -2.04 | 1.10 1.19 | -1.34 -0.20
Truth | 40550 405.50 | 334.00  334.00 | 250.00 250.00 | 72.86  72.86 | 300.00 300.00 | 14.00 1400 | -7.00 -7.00 | -200.00 -200.00
SMEM Oyee Oyes Owee Owes Y1,ee Y2,ee V3,ee Yi,es
Replicates 4 4 4 4 4 4 4
Mean Est 251.97 235.27 191.80 55.25 218.08 12.43 -5.67 -202.35
Std Err 12.67 5.58 6.59 1.30 37.21 2.84 2.34 12.93
Bias -153.53 -98.73 -58.20 -17.62 -81.92 -1.57 1.33 -2.35
Truth 405.50 334.00 250.00 72.86 300.00 14.00 -7.00 -200.00
number of calories a device will report for a male compared to a female, all else equal. 354
These results could be informative and useful as a secondary study goal. The biases and s
standard errors are slightly smaller for models SMEMN and SMEM, however. All three ss6
measurement error models perform about the same when assessing the measurement 357
error in the gold standard instruments. When errors are generated from a bimodal 358
distribution, estimated error variances are biased toward zero. This is true for the 359
measurement error in the less precise measurements as well. The SMEMN and SMEM %0
models produce similar results for the estimates of variance measurement error of less  3a
precise measurements. Estimates are good for EE and AES when errors are normal, but s
biased low for AES for both skewed and bimodal errors. Both the naive model and the 3
linear measurement error model result in estimated measurement error standard 364
deviations for the less precise measurement that are too large under normal errors and s
skewed errors for EE. When the departure from normality is significant (bimodal error s
distribution) unbiasedly estimating the measurement error variance can be challenging. s
Fig [ shows boxplots of the log mean PMSE for each simulation for each model 368
under each type of error distribution for EE for 2 and 4 replicates, and Fig 4] shows the 30
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same for AES. There is a consistent decreasing pattern from simpler to most complex in
terms of the models. First, the naive model does much worse than the same model which
accounts for measurement error. The naive model and the linear measurement error
model perform much worse than the models with free knot splines in terms of PMSE.
This is under the case where the true relationship is non-linear, but when looking at the
noisy data the relationship doesn’t appear to be highly non-linear. This suggests the
methods using free knot splines are able to see potential relationships that are difficult
to see with only the noisy data. There is not a large difference between the SMEMN
and SMEM model in terms of PMSE, but the SMEM model generally does better.
There are more parameters in SMEM to help explain the scientific mechanism of the
problem, but that does not necessarily imply better prediction. The question is whether
the small improvement is worth the increase in model complexity. We think that the
answer is no for two reasons: (i) our main focus with this model is calibrating the less
precise measurements and not necessarily conducting inference at the latent variable
level, and (ii) the DP approach is reliable only situations when we have four replicates,
which for gold standard measurements, is unrealistic in practice. Because the main
focus is to calibrate less precise measurements, the simulation results are promising.

Fig 3. PMSE for EE. Log PMSE for EE Regression faceted by measurement error
distribution and number of replicates.

Fig 4. PMSE for AES. Log PMSE for AES Regression faceted by measurement
error distribution and number of replicates.

To see the structure of the nonlinear model with the fitted spline on top of the
simulated data, we provide plots from one of the 200 simulated data sets. We chose a
simulated data set with skewed errors and two replicates per person. Fig [§ shows the
fitted spline between the values of EE and AES and the measurements obtained with
the less precise measurement. The points correspond to the individual simulated data
where the y value is the mean of the two replicates. The bold (red) line is the mean
estimated spline function. We randomly selected 500 MCMC draws for the spline, and
plotted them behind the mean. Fig [ gives the distribution of the number of knots for
the spline for both the EE and AES splines. The splines are not overly complex and
typically use four or fewer knots.

Fig 5. Fitted Spline. Spline function for Model SMEMN with Skewed Errors.

Fig 6. Distribution of k.. and k.s. Distribution of Number of knots for Model
SMEMN with Skewed Errors.

Calibration

The main goal of this work is to develop a calibration approach to “correct” the
measurements of EE AES obtained with less precise, noisy measurements. That is,
given a measurement of EE or AES from an less precise instrument and some
demographic information, we can return a better estimate of the true value as well as a
credible interval that shows the uncertainty in the estimate. Calibration for our models
simply amounts to finding the inverse of the fitted models as a function of Y instead of
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X, and Z. For a given observed value of Y and Z, and an estimate of =, the calibration
for X is:

Xcalibrated = 571(y - 'YIZ) (23)

We cannot find the inverse in (23) in closed form so we find it numerically instead.
To do so, we use optimize in R for the function |s(z) — y*| where s() represents the
regression function and y* is the observed less precise measurement minus the vector of
coefficients v multiplied by the individuals’ covariate values Z. The algorithm for our
calibration for individual 7 is as follows:

Forr=1,..R

1. Calculate y; =y; — 'y('r),Zi, where Z; are the covariate values for individual 3.

2. Use optimize for the function |s;(z) — y| to choose the value of = that will
minimize the criterion, call this ; caribrated. Here, s;(x) is the predicted value of
y; for the given value x using the MCMC draw for the spline coefficients ﬁ.(r),
latent variables (XEE() XAES(™) and knot locations (r", r{?)) from the rth
draw of the chain.

Since our interest lies in correcting less expensive measurements for potentially
non-linear biases and measurement error as determined jointly in the model through the
use of gold standard measurements, this calibration step is of most interest to
practitioners. Although parameters estimates from the model may be interesting,
obesity, nutrition, and physical activity researchers often need reliable data on EI and
EE to understand the effects of treatments in controlled experiments or relationships
found in exploratory analyses from observational data. The calibration method above
along with the estimated posterior distribution for the model gives practitioners a
powerful way to adjust their measurements of EI and/or EE for measurement error.

As an example, suppose that we wish to calibrate three noisy measurements each
from a different individual using Model SMEMN. We randomly select 3 individuals from
the same data set used earlier to give results for model SMEMN. Individual 1 is male,
BMI of 28.6, age 20.5; individual 2 is female, BMI of 21.5, age 30.1 and individual 3 is
male, BMI 38.6 and age 22.8. Observed less precise measurements for these individuals,
their true values, as well as 95% credible intervals for their mean calibrated truth under
skewed normal errors are given in Table 5. Fig [7] shows histograms of 1000 calibrated
draws for each individual for EE and AES measurements under skewed errors. Looking
at the table and figure, one can see that the calibration helps pull the less precise
measurement closer to the truth. In all cases, the calibration helped to improve the
estimate obtained from the less precise measurement. A simple point estimate
correction may be used and an analysis could procede with these corrected
measurements taken as truth; a more comprehensive approach would be to use the point
estimate of EE and AES as well as the uncertainty given by the posterior distribution.
This would allow for an approach that fully accounts for biases and measurement error
uncertainty present in the data as to avoid making erroneous conclusions based on bad
data. Running this on many of the simulated individuals had similar results.

Fig 7. Calibration. Posteriors of calibrated observations. Solid vertical line shows
observed value from less precise measurement and dashed vertical line shows truth.
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Table 5. 95% credible interval for calibration estimate for less precise measurements
for Skewed Errors

Person Lower Median Upper | Observed True Value
1 EE | 2574.18 2666.00 2736.39 | 3028.89 2199.25
2 3452.51 3525.18 3619.08 | 4119.26 3588.12
3 2571.99 2665.46 2744.65 | 2555.86 2643.14
1 AES 25.15 42.35 60.57 142.30 64.17
2 -104.21  -82.93 -63.90 -405.74 -21.08
3 -8.41 3.91 17.83 96.06 -0.48
Discussion

In this chapter we presented a semi-parametric approach to model energy balance via
its components EE and AES. We assume that we have gold standards for both
quantities that are unbiased, as well as less precise instruments that result in biased
measurements of the truth. We propose a model where the form of the association
between the unbiased and the biased measurements of EE (or of AES) is left
unspecified and uses splines to estimate that function. This allows a flexible relationship
between an less precise measurement and its unobserved truth. We assumed that the
gold standard measurements and less precise measurements are conditionally
independent given the latent vector (XFF XAF9). We modeled the latent vector
(XEE XAES) using a bivariate normal distribution and a Dirichlet process. Although
the Dirichlet process is more flexible and based on a weaker assumption, it required
more replicate observations (mainly on gold standard measurements) than is feasible in
practice in order to give stable results. The normality assumption was robust and
resulted in stable and surprisingly reasonable results given the true structure of the
latent variables. Because this model produced accurate estimates even with only two
replicates of gold standard measurements per person, we believe that it is a plausibly
useful model for this specific application unless more than two replicates per person are
available. The resulting estimates and PMSE show the approach what we propose
outperforms a simpler linear measurement error model and a naive model that does not
take measurement error into consideration.

The intended use of the model presented in this paper is for device calibration. In
order to do meaningful research in the fields of physical activity, nutrition, and health,
one needs accurate, reliable data. The issue of obesity was highlighted in the
introduction, and understanding energy consumed versus energy expended is crucial to
understanding the obesity crisis, but collecting data on these quantities is difficult.
Because measurements of EE and AES from less expensive devices can often include
considerable error and bias, these data can lead to erroneous results later in a study.
Although gold standard measurements exits for EE and AES, they are expensive and it
is unreasonable in a large study to administer gold standard measurements to everything
in the study. The method presented in this paper provides a statistical approach that
allows for flexibility in the relationship between less expensive measurement and truth
in order to calibrate less expensive measurements. This way, large studies can
administer both gold standard and less expensive measurements to a small subsample,
and use the methods presented in this paper to calibrate the less expensive
measurements for those who didn’t receive gold standard measurements. This can save

time and money for researchers without having to compromise the integrity of the data.

One of the uses would be to obtain a corrected estimate of EI, by getting corrected
estimates of EE and AES and then using the energy balance equation. Although only a
simulation study is presented, given a study with the same data structure, estimates of
the parameters in the model could be used for future device calibration.
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The main motivation for constructing this model was to account for the error and
bias in easy to administer measurements in order to calibrate less precise observations.
We presented a simple way to do this calibration given an less precise measurement for
EE and AES and values of gender, BMI, and age. Using a Bayesian approach we are
easily able to get a posterior distribution for the mean calibrated estimate which also
provides a measure of uncertainty. Our example shows that the calibrated estimate is
often an improvement compared to the observed less precise measurement.
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