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Abstract

Measurements of energy balance components (energy intake, energy expenditure,
changes in energy stores) are often plagued with measurement error. Doubly-labeled
water can measure energy intake (EI) with negligible error, but is expensive and
cumbersome. An alternative approach that is gaining popularity is to use the energy
balance principle, by measuring energy expenditure (EE) and change in energy stores
(ES) and then back-calculate EI. Gold standard methods for EE and ES exist and are
known to give accurate measurements, albeit at a high cost. We propose a joint
statistical model to assess the measurement error in cheaper, non-intrusive measures of
EE and ES. We let the unknown true EE and ES for individuals be latent variables, and
model them using a bivariate distribution. We try both a bivariate Normal as well as a
Dirichlet Process Mixture Model, and compare the results via simulation. Our approach,
is the first to account for the dependencies that exist in individuals' daily EE and ES.
We employ semiparametric regression with free knot splines for measurements with
error, and linear components for error free covariates. We adopt a Bayesian approach to
estimation and inference and use Reversible Jump Markov Chain Monte Carlo to
generate draws from the posterior distribution. Based on the semiparameteric
regression, we develop a calibration equation that adjusts a cheaper, less reliable
estimate, closer to the true value. Along with this calibrated value, our method also
gives credible intervals to assess uncertainty. A simulation study shows our calibration
helps produce a more accurate estimate. Our approach compares favorably in terms of
prediction to other commonly used models.

Introduction 1

Obesity is perhaps the most serious public health problem of the 21st century, given the 2

prevalence, global reach, and widespread health, economic, and social consequences. 3

While the weight gain and lost is most certainly a complex interplay of a large number 4

of factors across a variety of domains [], ultimately a chronic energy surplus or deficit 5

(energy intake versus energy expenditure) determines body weight change 2 6 . 6

However, accurately measuring energy balance in free-living individuals is challenging, 7

even in small studies. Yet to design effective public health policies and interventions, it 8

would be valuable to be able to assess energy balance in nationwide surveys such as 9
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National Health and Nutrition Examination Survey (NHANES). Clearly, instruments 10
such as doubly labeled water (DLW) and dual-energy X-ray absorptiometry (DXA) are 11
too costly and burdensome to administer in large groups. Alternatively, consumer 12
devices designed to measure physical activity and body composition are generally 13
affordable, easy to use, and popular (an estimated 45 million will be sold in 2017), M 14
but have varying levels of validity and reliability [8-10]. 15

Within the past decade mathematical models have been formulated based on the 16
principles of the first law of thermodynamics (rate of energy storage= rate of energy 17
intake — rate of energy expenditure) 11  . Developed with multiple datasets containing 18
gold-standard measures of energy expenditure, energy intake, and changes in energy 19
storage (e.g. body composition using a two-compartment model of fat mass and fat-free 20
mass) during periods of overfeeding [12] or caloric restriction [13], researchers have 21
developed and refined a model based on the energy balance principle [14  —16]. The result 22
is a simple, easy-to-use equation that offers great promise in the quest for estimating 23
energy intake using objectively measured methods. We have recently used these energy 24
balance equations to compare estimates of energy intake obtained through 25
gold-standard methods (DLW) and arm-based activity monitors (Sensewear Armband, 26
BodyMedia Inc. Pittsburgh, PA) [17]. We observed very low group error in the 27
estimates of energy expenditure and equation-derived energy intake using both the 28
DLW and armband, indicating equivalency between the measures. However, the 29
individual error for equation-derived energy intake and expenditure was quite large, 30
likely due to large individual measurement error. 31

Therefore, a question of interest is whether measurements of energy balance 32
obtained from self-report instruments or even from objective measuring tools such as 33
the Sensewear Armband or other consumer devices, which are much less costly to apply, 34
and can be calibrated to correct for measurement error. We explore the association 35
between measurements obtained from accurate instruments and those obtained from 36
noisy instruments which can be administered to large groups. We are interested in 37
formulating a model for energy balance by using energy expenditure (EE) and changes 38
in energy stores (AES) while accounting for dependence between the two and 39
measurement error. Widely accepted gold standard measurements exist for both EE 40
(DLW) [12,15,16,01 Ell and AES (DXA) [12,16,20]. Table 1 lists abbreviations used in 41
this article. Unfortunately, these instruments are expensive and burdensome. There are 42
alternative approaches [17] to quantify both EE and AES that while less expensive and 43
easier to administer, are subject to bias and other errors. Our goal is to model energy 44
balance by using both gold standard and less precise instruments with the end goal of 45
evaluating the error present in the measurements and ultimately calibrating the less 46
precise instruments, so in future studies, researchers can calibrate their measurements of 47
EE and/or AES if they are not using a gold standard. 48

Measurement error modeling is a well developed field in statistics. Fuller made 49
popular linear measurement error models through his book that was the first expose on 50
measurement error 22  . Nonlinear models have since become more popular and widely 51
used and an overview of these models is given in [23]. Berry et al. [24] proposed 52
Bayesian measurement error models that used p-splines to model the relationship 53
between the latent variable and noisy measurements. This was one of the first Bayesian 54
approaches to a problem like this as it was at the onset of the Markov Chain Monte 55
Carlo revolution that allowed for Bayesian modeling to be practical. These models were 56
then extended by [25] and [26] by allowing for a more flexible distribution of the latent 57
variables than a Gaussian as well as using b-splines instead of p-splines. They used 58
Dirichlet Process Mixture Models to allow for more flexibility in the structure of the 59
latent variables, and though simulation and real data anaylsis showed it could have a 60
major effect if the true underlying distribution was not Gaussian. Additionally, they 61
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Table 1. List of commonly used abbreviations.

EI
EE
AES
FM
FFM
DXA
DLW

Energy Intake
Energy Expenditure
Changes in Energy Stores
Fat Mass
Fat Free Mass
Dual-energy X-ray absorptiometry
Doubly Labeled Water

allowed for non-constant variances in the error terms for noisy measurements and gold 62

standard measurements. There is a large body of measurement error research applied to 63

the field of nutrition. Nusser et al. 27 developed a semiparametric approach to 64

estimating intake distributions using noisy, 24 hour recalls of nutrient intakes. Sinha et 65

al. 28 developed Bayesian methods for the analysis of nutritional data that used 66

b-splines and Dirichlet Process Mixtures to allow for flexibility, that would later be 67

extended by p25p  and Pq. The analysis of semicontinous data with measurement error 68

was explored in P9L otherwise known as the "NCI metho& , and later extended in 30 69

and 31  . The strong research in measurement error modeling developed for the field of 70

nutrition can be used as a starting point for measurement error modeling in the physical 71

activity realm. Reversible Jump MCMC was designed as a means of model 72

selection P4. In the context of b-splines, model selection is determining the number of 73

knots and the locations of the knots. An early and practical approach to regression 74

using splines and Reversible Jump MCMC was given in [331, which introduced the idea 75

of Bayesian free-knot splines. Although the method used Reversible Jump MCMC, it 76

was not a "fully Bayesian" approach as it did not place priors on the spline regression 77

coefficients, rather it used OLS to update regression coefficients during each step of the 78

algorithm. A more fully Bayesian approach was given by P4] which allowed for placing 79

priors on the regression coefficients. For complex regression problems where such things 80

as discontinuities in the curve existed, the method of 34 performed better, but with 81

smooth functions that appear to have continuous second derivatives, the simpler to 82

implement method of 0330 performed comparably. In these papers, the explanatory 83

variable for which the locations of the knots are being chosen, was assumed to be fixed 84

and known. In this paper, those values will be treated as latent variables which will add 85

a layer of complexity to the algorithm. 86

In this article we adopt a Bayesian semi-parametric approach. We make 87

distributional assumptions about error terms, but we try to be flexible when modeling 88

the true relationship between less precise measurements and the truth. We propose 89

using free knot splines to model the relationship between the less precise measurements 90

and the truth and we build a Reversible Jump MCMC algorithm to do so. The 91
remainder of this article is organized as follows: in the Methodology section we describe 92

the data structure and assumptions about their dependencies; we also briefly review two 93

commonly used models and introduce a bivariate, Bayesian semi-parametric model that 94

allows for dependence between EE and AES. In the Simulated Data and Simulation 95

Study sections, we describe how we simulate complex data and how we constructed the 96

simulation study to assess the performance of the three models. The Results section 97

summarizes our findings in the simulation study. In the Calibration section, we show 98

how calibration could be performed using the proposed model given new data when no 99

gold standard measurements are available. 100
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Methodology 101

In this section, a new way to analyze the relationship between gold standard and less 102

expensive measurements that accounts for dependence between EE and AES is 103

presented. First, a more precise definition of AES is given as well as a practical way to 104

calculate it in practice. Independence assumptions are listed along with justifications 105

that help simplify the model construction. Two simpler models are described before the 106

proposed method: a naïve model that assumes there is no measurement error in gold 107

standard measurements, and a linear measurement error model that assumes a linear 108

relationship between less expensive measurements and the true, latent values of EE and 109
AES. Finally, the proposed new model using free knot splines to model the relationship 110

between less expensive measurements and the true, latent values of EE and AES is 111

described in further detail. 112

Calculation of AES 113

In the energy balance equation,

AES = EI — EE, (1)

AES is expressed in kcals, and can be positive or negative. To convert DXA 114

measurements of fat mass and fat free mass to kcals, we use equation (2). Because we 115

assume that energy stores are characterized only as either fat mass (FM) or fat free 116

mass (FFM), this equation provides an exact answer if we know the values of CFM and 117

CFFm . We let CFM = 9500 and CFFM = 1100 like in [2(A, recognizing that a single 118

value does not account for biological variation. We divide these by the change in time 119
(14 days ± 3 days) and multiply by CFM and CFFM to get AES in kcals. For each 120

individual, we compute 121

AFM AFFM 
AES =CFM

AT AT
(2)

Notation 122

We denote observed average daily EE measured via DLW for subject i over time period 123

j by Wir, and observed average daily AES measured via DXA for subject i over time 124

period j by . A positive value for AES indicates that more calories were taken in 125

than expended. We compute daily values of EE for a person by averaging the total EE 126

for that person obtained by DLW, because DLW gives an estimate of EE over a period 127

of time, in this instance approximately 14 days. 128

When collecting data on a large population, it is feasible to administer less expensive 129

instruments on most of the subjects. However, they result in less accurate measurements. 130

Although there are several less precise ways to measure EE and AES, we keep the 131

notation general since in any given situation we will refer only to one specific instrument. 132

We denote the observed average daily EE obtained with an less precise instrument for 133

subject i over time period j, YZEE, and the observed average daily change in energy 134

istores measured by an less precise instrument for subject i over time period j, yES 135

Lastly, the values which we cannot observe are the usual EE and AES for subject i. 136

We define usual as a long run average (expected value) of the true EE and AES. Let 137

XTE represent the usual daily EE for subject i and X,PES represent the usual daily 138

AES for subject i. Note that even if we could observe daily EE and daily AES for each 139

participant with no error, there is still within-person variability in these two variables 140

because people change their caloric intake and their physical activity from day to day. 141
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(In)Dependence Assumptions 142

The observed data vector for subject i at time j is zi) 
143

where Zi is a vector of covariates measured with no error for subject i. We start by 144

assuming independence between individuals. 145

Several of the variables in the model are conditionally independent. Given the value 146x-rE (usual daily EE for subject i) and X°E's (usual daily AES for subject i), and 147

covariates Zi, we assume that: 148

1. Yir and yir are independent of each other, 149

2. Yir and Yir are each independent of both W1E and Wil'ES, 150

3. Wir and Wi ES are independent of each other. 151

Assumption 1. follows because given the true values X and covariates Z, knowing an 152

less precise measurement will give us no more information about the less precise 153

measurement of the other, so long as it is not self-administered. To justify assumption 154

2., we note that once we know the truth X, having an unbiased measurement of X will 155

not provide any more information about the less precise, biased measurement of X. 156

Assumption 3. follows from a reasoning similar to 1. 157

Naive Model 158

The first model we consider is what we call the naive model. This model assumes no 159

measurement error in the gold standard instrument, thus DLW and DXA give error-free 160

measurements of XE'E and X°Es, respectively. We also assume that the less precise 161

measurements Y are linearly related to the usual values and to error free covariates. 162

Based on empirical evidence, gender, BMI, and age all had some effect on the less 163

precise measurement of EE. The naive model is: 164

ind
E NeZi,(7,EE)Oyee) N U30,ee 131,eeWi

(yES zi, ye; ,yesz,c7,2AES).
N (00,es I31,esW

(3)

(4)

where the /31,. terms represents the relationship between less precise measurements 165

and the usual EE and AES and the /30 terms represent systematic biases. We let 166

y. =(ryl,., -Y2,.,73,.) and 1,1,. is the coefficient for gender, 72,. is the coefficient for BMI, 167

and 73,. is the coefficient for age. We take the standard approach and assume that the 168

errors are normally distributed. 169

We choose independent priors for all model parameters for all models going forward. 170

Where appropriate, we select priors that are conjugate or conditionally conjugate for 171

ease of implementation but also to permit incorporating weak information through the 172

prior. Prior distributions for all models are listed in the S4 Appendix. 173

Linear Measurement Error Model (LMEM) 174

The Linear Measurement Error Model (LMEM) recognizes that WEE and WAES are 175

contaminated with additive measurement error, and are unbiased measurements of 176

truth, rather than equal to truth. Therefore the model becomes hierarchical as it does 177

not directly model the relationship between Y and W, but rather Y and X under the 178

assumption that W is an unbiased measurement for X. The relationship between Y and 179

X is assumed to be linear, and as in the naïve model, the model also accounts linearly 180

for error-free covariates Z. We assume that the measurement errors are normally 181
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a bivariate normal distribution. More formally, the model is given by:

(Yir X~E zil °Yee) i7;td N(I30,ee 01,ee,CrE NeZi, OIEE) (5)
(yirs pcp:ES •-• yes\

U )
f.ES + „yesZ. aLES

Mikes /31,esX (6)

(wijEljciEE Owee) N(x-EE, avEE)
(7)

ir,tdOwes)  Tt vp,ES „r2 (8)

(ATE x) N ([PEE], Ex)
(9)

PAES

distributed. To allow dependence between EE and AES, we model (XFE,x-f.Es) witv,u 182

183

The full likelihood for this model and the one in the next section are givein in the S3 184

Appendix.

Spline Measurement Error Model (SMEM)

We extend the LMEM for EE and AES in the previous section to include both
non-linear and non-parametric components. We follow the same construction of the
LMEM to model the gold standard measurements as unbiased for usual attributes and
subject to normally distributed measurement errors as in (7-8).

We wish to understand both the biases as functions of usual value and demographic
covariates, as well as the measurement error in the instruments themselves. We propose
modeling the less precise measurements in a semi-parametric regression framework.
Specifically, model the functions m.0 using free knot cubic B-splines, and model
demographic covariates with a linear component. We require monotone functions so we
can take inverses for calibration later, but this only requires the spline coefficients to be
non-decreasing ie. 31 < /32 < < /3k 35 as used in similar applications 128,36,37].
Our approach has three benefits. First, the spline is flexible and can pick up an
unknown relationship between X* and the less precise measurement of the same, which
is important because we never observe the truth and therefore it is difficult to justify a
particular functional form of the relationship. Second, the use of free knot splines
eliminates the need for us to specify the number and position of the knots. Previous
methods using splines in measurement error models choose a "moderately large"
number of knots, typically at least 15 , 26, 281. We use Reversible Jump MCMC
(RJMCMC) to determine the number and position of knots. This means that we treat
the number of knots in each regression equation and their knot locations as random
variables. Third, the linear component for the covariates allows for an easy
interpretation of the parameters and thus the biases in the instrument. We make a
working assumption of constant variance for all measurement errors. Based on the
above, the model specification is then:

(yEEir 1XrE oyee)

(yr'sl)cf,ES Zi Oyes)

See(X E ßee)

8es(XPLES ;13Aes)

1124

N(see(xTE; oee) „yeezi, 0.6EE)

iNd N(ses WES; /3Aes) „yeszi, cr€2AES)

kee+4

= E bi,„(0E)0i,„ = B„(XE)oee
i=1

kes +4

= E (XAES V3i,es = Bes(XAES)Oes,
i=1

(10)

(11)

(12)

(13)

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210
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where B„() and B„() are n x (k„-F 4) and n x (k„ + 4) B-spline basis matrices 211

that can be constructed using the recursion specified in [380. We let kee and k„ denote 212

the number of knots for the EE and AES splines, respectively. 213

There are many different types of splines, but we picked B-splines because in similar 214

problems [25,26,280 it has been shown that they are numerically more stable than 215

P-splines, for example, which can have major effects on outcomes as compared in [250 216

We allow more flexibility in the distribution of the latent variables (XEE ,x-f.Es) by 217

specifying a Dirichlet process mixture prior for them. This allows the data to "speak for 218

themselves" which is ideal when the model includes latent variables. The density of 219

(XEE, can then be modeled as an infinite mixture of normals: 220.X-ES)

mE,jcAES)1(., N ([1-tee,1 ,Eh) (14)
ties,h

Cat(H, 7r) (15)

Vh Beta(1, (16)

VH = 1 (17)

7rh = Vh — Ve), (18)
t<h

where a helps control how many components of the infinite mixture are used. We 221

choose to set a to 1. The parameter C, takes value for which group observation i came. 222

Cat(H, 7r) is a categorical random variable such that P((i = h) =7rh,h < H. In any 223

given problem, we can select H such that 7rh < e for some e > 0 39[, pg. 552. 224

Although we do not know the true form of the association between the noisy 225

measurements and the usual values, we do not anticipate it to be highly complex, so we 226

would like to use as few knots as necessary. We use ree and r„ to denote the knot 227

locations. Our discrete uniform prior on these, means that knots can only occur at the 228

latent values of (XrE,x-ES\) This was done largely for computational convenience; 229

we could have assigned a continuous prior for the knot locations, but we do not believe 230

this will adversely affect estimation because the latent (xrE,x-fEs) are updated every 231

MCMC iteration. Notice that we have not placed priors on the spline regression 232

coefficients f3ee and Oes, or the linear regression coefficients -yee and -yes; this is 233

because we will update them using ordinary least squares (OLS). More details can be 234

found in the S2 Appendix. 235

Simulated Data 236

In this section we describe how we simulate data to mimic "rear observations, in order 237

to perform a simulation study. Our simulated data need to be sufficiently complex and 238

incorporate dependence in order to faithfully represent the distributions of true EE and 239

EI, as well as gold standard measurements and less precise measurements. We need to 240

simulate data for all the components in the model as well as the latent variables 241

XES). We explore estimation with measurement errors for the gold standard 242

and less precise measurements under three different scenarios: normal errors, skewed 243

errors, bimodal errors. 244

For this simulation, we used three covariates: gender, age, BMI. Using a total sample 245

size of 300, we sampled 300 Bernoulli(0.5) to determine gender. Age was simulated from 246

Uniform(20,40). The BMI for an individual was simulated from a Normal(27,5). Let Z 247

be the matrix of dimension 300 x3 that links covariates to individuals. 248

We simulate (X27 , XP) from a mixture of 5 bivariate t-distributions. Sixty 249

observation pairs are simulated from five different bivariate t-distributions. The mean 250
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and standard deviation of the two-dimensional vector for each of the five t-distributions 251

are each different. The scale matrix for each of the five t-distributions is constant and 252

the degrees of freedom is equal to five. 253

We let the correlation between EE and EI be 0.4376 as calculated from previous 254

studies' data. The values used for the vector ry„ = (300,14, —7) and -yes = (-200, 8, —5) 255

for gender, BMI and age, respectively. We compute X°Es using the energy balance 256

equation in (1). Fig 1 shows histograms f or the latent variables in one simulated data 257

set. 258

Fig 1. Simulated Data Distribution Distribution of simulated latent variables X
from one simulated data set.

For the gold standard measurements, let

,EE sEE
—

v4ES = u4ES ± (54ES

t3 t3 7,3

(19)

where uEE represents the measurement error in DLW and 21AES represents the 259

measurement error in DXA. Above, sgE represents the within person deviation in EE 260

for person i during time period j from the person's true mean, and (5°ES similarly 261

represents the within person deviation in AES for person i during time period j from 262

the person's true mean. For the less precise measurements there is a slightly different 263

setup. The within person variability gets added to each individuals' usual values of EE 264

and AES and thus is affected by the functions m.(.). Therefore we add these within 265

person variation terms (5 to the usual X values we simulated to get: 266

xEiE = KEE ± sEiE

xei.ES = xf.ES
(20)

and the functions m.(•) depend on X. 267

(4E, (5,rSThe pairs ) are simulated jointly but independently across time and 268

individual. We simulate the within person variability terms (se,ES\) from a 269

bivariate normal distribution. 270

We assume that DLW and DXA are unbiased measurements of EE and AES, 271

respectively. These measurements are simulated according to (7),(8) where we further 272

brake down v as in (19). The u term represents the measurement error components we 273

still need to specify and (5 represents the within person component of the error which we 274

have already discussed. We assume that the u terms are independent within and across 275

individuals as well as of all 8 and X . 276

From these simulated values, we then get simulated gold standard data 277

WZEE,
. We generate measurement errors for the gold standard measurements 278

(and for the less precise measurements) from three different distributions: normal, 279

skewed normal, and a bimodal mixture of two normals that is centered around 0. 280

Parameters were chosen such that the means of all error distributions are 0, and the 281

variances for each distribution is the same within EE errors and within AES errors. 282

We generate observations for less precise measurements in a similar fashion as in the 283

last section. We assume that the errors are independent within and across subjects as 284

well as mutually independent with all (5, X and Z terms. We draw these errors from 285

densities that are the same to those in the previous section, except with larger variances. 286

In contrast to the gold standard measurements which we assume are unbiased, we
now add bias to the less precise measurements. The bias is introduced via the functions
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mee and m„. For these simulated data, we let:

mee(X, 
Z) = 2XiEE  

4000 
(21)1 + e-0.002XrE-2200

1000
in„ (X, Z) =   2000 + X°Es. (22)+ e-o.o4x- Es

Fig 2 shows m„(-) on the left and mes (.) on the right both against a y = x line for 287

comparison. 288

Fig 2. Nonlinear Functions Plot of nonlinear functions mee() (left) and mes()
(right), and Y=X is black for reference to unbiased measurement.

We then add Zi-y. to the simulated less precise measures of EE and AES. 289

Estimation 290

We adopt a Bayesian approach to estimation in this problem, and therefore, our goal is 291

to estimate the joint posterior distribution of all parameters and latent variables in the 292

model. In our case, the joint posterior distribution is 293

p(e, x-EE x-AESIT/yEE woEs,yEE YoES
Z). We use Markov Chain Monte Carlo 294

(MCMC) methods to approximate the posterior distribution. For the naïve and LMEM 295

models, we used Just Another Gibbs Sampler (JAGS) to simulate draws from the 296

posterior distribution. This was simple to implement and was relatively quick to sample. 297

In order to fit free knot splines which allow for dimension change, we must use 298

Reversible Jump MCMC which requires a more complex sampler. We use R and C++ 299

for the RJMCMC sampler. Because the algorithms are technical and not the main 300

objectives of this paper, we provide the algorithm for the Gibbs sampler in the S1 301

Appendix and the reversible jump algorithm in the S2 Appendix. 302

Simulation Study 303

In this section we describe a simulation study that we carried out, to check the 304

performance of the models we propose. We are interested in the predictive performance 305

of the models because our main goal is to develop a calibration tool. We are also 306

interested in evaluating the robustness of the model to departures of the errors from the 307

standard normality assumption, which is why we simulate errors from two alternative 308

error distributions. We present performance measures such as predicted mean squared 309

error (PMSE) for the regression function in question as well as posterior means and 310

posterior standard deviations for parameters of interest. 311

Setup 312

We simulated 200 data sets each for normal, skewed, and bimodal errors for both 2 and 313

4 replicate measurements per individual. The number of individuals is 300 in all cases. 314

Preliminary analysis suggest that the number of replicates per individual has a stronger 315

impact on performance than the number of individuals. 316

Although we would like to be as flexible as possible with our distributional 317

assumptions on the bivariate latent variables, we also want a model that produces 318

estimates with low prediction mean squared error (PMSE) given the data constraints of 319

our application. In practice, it is difficult to obtain more than two replicate 320

measurements on an individual, at least when using the gold standard measurements. 321
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During the simulation study, we found that the Dirichlet Process prior on the latent 322

variables produced unstable results in parameter estimates and low acceptance rates of 323

proposals in the random walk Metropolis-Hastings algorithm when we only had two 324

replicate observations per person. Results were stable however, when four replicates per 325

person were available. Because of this issue, we fit a fourth model using a bivariate 326

normal distribution for the prior of latent variables instead of the Dirichlet Process prior 327

while still using splines for the regression functions. We refer to this model as SMEMN. 328

The MCMC has a minor change in the Gibbs step (steps (a)-(c) are eliminated and step 329

(d) no longer depends on grouping h). 330

We set the values of the hyperparameters as follows: Moo,ee = Mpo e9 = 0, Cooee = 331

CO,,es = 100000, M oi,ee = M 01,es = 1, C oi,ee = C 0, ,es = 100000, Myee = Myee = 332

0, ayee = ayes = 100000, ayee = ayes = awee = awes = byee = byes = bwee = bwes = 333

0.1 = 1-2 x 2 d = 3, M p, = (2400, 0), Cp, = diag(100000, 100000), A„ = Ae,, = 1. We ran 334

the MCMC for 3 chains of 12,000 iterations, using the first 2000 as burn in, and 335

convergence for all models was fast as indicated by trace plots and Gelman-Rubin 336

diagnostics less than 1.04.

Results

337

338

Tables %IA show results averaged over 200 Monte Carlo samples, for normal, skewed, 339

and bimodal errors, respectively. The asterisk next to the truth for the measurement 340

error with respect to the less precise measurements indicates that this is a Monte Carlo 341

approximation to the truth. Recall that we included within person variation in the 342

functions m.(•), but in our model we use the working assumption that the additive error 343

term accounts for both within person variability and measurement error. Because we 344

cannot directly extract the value from the function, we approximate it by generating 345

10,000 data sets and removing the mean function from the less precise observations, and 346

then calculating the standard deviation of the residual. We then averaged those 347

standard deviation estimates to get the one reported in the table. 348

Table 2. Summary of Simulation under Normal Errors for naïve, LMEM, SMEMN,
SMEM Models, respectively.

Naïve cr,„ '',ms l'1,se l'2,se 73" 'Yl,es 72,.
Replicates 2 4 2 4 2 4 2 4 2 4 2 4 2
Mean Est 477.65 47342 347.49 354.85 254.67 248.66 14.88 14.03 -4.14 -5.29 -200.53 -199.39 7.9
Std Err 17.82 19.24 9.43 6.80 43.65 36.10 4.33 3.62 3.37 3.06 28.19 22.83 2.9

Bias 72.15 67.92 13.49 20.85 -45.33 -51.34 0.88 0.03 2.86 1.71 -0.53 0.61 -0.1
7Yuth 405.50 405.50 334.00 334.00 300.00 300.00 14.00 14.00 -7.00 -7.00 -200.00 -200.00 8.0

LMEM o,„ cr,„s cr,.,„, a,uss 71,se 72,es 73,se 71,es 'Y2,.
Replicates 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2
Mean Est 444.34 446.63 320.41 338.26 255.70 255.85 69.18 71.81 249.50 240.63 14.30 13.67 -4.50 -5.28 -199.27 -198.49 7.9
Std Err 16.84 14.22 10.76 7.53 10.74 6.33 2.27 1.56 43.44 37.02 4.25 3.60 3.38 3.04 28.31 22.96 2.9

Bias 38.84 41.13 -13.59 4.26 5.70 5.85 -3.68 -1.05 -50.50 -59.37 0.30 -0.33 2.50 1.72 0.73 1.51 -0.1
nuth 405.50 405.50 334.00 334.00 250.00 250.00 72.86 72.86 300.00 300.00 14.00 14.00 -7.00 -7.00 -200.00 -200.00 8.0

SMEMN as„ ay„ o,„„ as,es 71., -Y2,ee 'Y3,se 'Yl,es 72,.
Replicates 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2
Mean Est 393.69 400.55 313.47 331.79 246.81 248.93 67.61 71.04 293.16 294.61 14.17 14.11 -6.86 -6.78 -200.07 -200.86 8.0
Std Err 11.52 8.29 12.00 8.27 8.78 5.79 2.32 1.66 36.16 26.19 3.50 2.42 2.86 2.16 26.86 19.44 2.4

Bias -11.81 -4.95 -20.53 -2.21 -3.19 -1.07 -5.25 -1.82 -6.84 -5.39 0.17 0.11 0.14 0.22 -0.07 -0.86 0.0
Truth 405.50 405.50 334.00 334.00 250.00 250.00 72.86 72.86 300.00 300.00 14.00 14.00 -7.00 -7.00 -200.00 -200.00 8.0

SMEM ,see ,ses ,wee Caves 'Yl,se 72,se 73,se 'n,es
Replicates 4 4 4 4 4 4 4 4
Mean Est 400.13 331.38 248.94 70.85 297.62 14.16 -7.11 -198.04
Std Err 8.25 8.43 6.05 1.62 26.53 2.72 2.08 18.11

Bias -5.37 -2.62 -1.06 -2.01 -2.38 0.16 -0.11 1.96
nuth 405.50 334.00 250.00 72.86 300.00 14.00 -7.00 -200.00

Across all models and error types, the linear coefficients are estimated largely 349

without bias. This is not too surprising since these covariates are measured without 350

error. This suggestst the regression coefficient estimates will not be affected by 351

distribution of the errors. Additionally, the regression coefficients can be interpreted as 352

biases inherent to the device. For example, -yl,„ can be thought of as the the additional 353
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Table 3. Summary of Simulation under Skewed Errors for naïve, LMEM, SMEMN,
SMEM Models, respectively.

Nalve cr,„ a„s 71,ee 72,ee 73,ee 71,es 72 0
Replicates 2 4 2 4 2 4 2 4 2 4 2 4 2
Mean Est 473.87 466.80 311.66 317.05 255.46 250.72 14.08 13.23 -5.05 -6.04 -197.98 -200.46 7.7
Std Err 17.36 13.06 9.08 6.64 40.99 32.70 3.99 3.53 3.38 3.02 24.90 19.73 2.4

Bias 68.37 61.30 -22.34 -16.95 -44.54 -49.28 0.08 -0.77 1.95 0.96 2.02 -0.46 -0.:
Truth 405.50 405.50 334.00 334.00 300.00 300.00 14.00 14.00 -7.00 -7.00 -200.00 -200.00 8.0

LMEM av„ ay„ a,„„ 0-.., 71,ee 72,ee 73,ee 'h,es 72,.
Replicates 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2
Mean Est 432.67 435.88 289.34 304.25 254.13 255.00 69.67 71.68 251.72 244.04 13.38 12.88 -5.46 -6.10 -196.76 -200.05 7.8
Std Err 16.70 12.10 9.90 7.05 11.99 6.27 2.63 1.80 41.34 33.01 3.95 3.50 3.35 3.00 25.32 19.53 2.3

Bias 27.17 30.38 -44.66 -29.75 4.13 5.00 -3.20 -1.18 -48.28 -55.96 -0.62 -1.12 1.54 0.90 3.24 -0.05 -0.
Truth 405.50 405.50 334.00 334.00 250.00 250.00 72.86 72.86 300.00 300.00 14.00 14.00 -7.00 -7.00 -200.00 -200.00 8.0

SMEMN rr,„ ,y. cr„„ 0"... 'YI,ee 72,ee 'n,ee 'YI,es 'n,.
Replicates 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2
Mean Est 393.56 402.91 282.68 298.37 247.00 248.83 68.93 71.23 306.58 305.65 14.27 14.44 -6.95 -7.14 -197.44 -198.85 7.7
Std Err 13.33 9.56 10.96 7.47 9.54 6.33 2.56 1.69 36.09 27.06 3.35 2.57 2.77 2.31 24.41 17.81 2.4

Bias -11.94 -2.59 -51.32 -35.63 -3.00 -1.17 -3.93 -1.63 6.58 5.65 0.27 0.44 0.05 -0.14 2.56 1.15 -0.:
Truth 405.50 405.50 334.00 334.00 250.00 250.00 72.86 72.86 300.00 300.00 14.00 14.00 -7.00 -7.00 -200.00 -200.00 8.0

SMEM cr,„ ases ci•,„ cr•,,,, 71,ee 72,ee 73,ee 'Yl,es
Replicates 4 4 4 4 4 4 4 4
Mean Est 403.10 298.16 248.70 71.11 313.22 14.13 -7.26 -199.31
Std Err 8.25 7.01 6.67 1.57 27.80 2.37 2.13 17.70

Bias -2.40 -35.84 -1.30 -1.75 13.22 0.13 -0.26 0.69
Truth 405.50 334.00 250.00 72.86 300.00 14.00 -7.00 -200.00

Table 4. Summary of Simulation under Bimodal Errors for naïve, LMEM, SMEMN,
SMEM Models, respectively.

Naive au„ ores 71,es 72,ee 73,ee 71,es
Replicates 2 4 2 4 2 4 2 4 2 4 2 4
Mean Est 342.63 344.52 233.52 246.69 227.08 221.48 12.15 12.22 -5.61 -5.52 -198.19 -199.20
Std Err 12.61 15.26 6.43 5.24 32.41 29.92 3.28 3.21 3.05 2.94 17.40 15.19

Bias -62.87 -60.98 -100.48 -87.31 -72.92 -78.52 -1.85 -1.78 1.39 1.48 1.81 0.80
Truth 405.50 405.50 334.00 334.00 300.00 300.00 14.00 14.00 -7.00 -7.00 -200.00 -200.00

LMEM ow av„ u,,„ a,„„ 71,•e 72,ee 'n,„ 'Mee
Replicates 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4

Mean Est 264.16 265.06 220.65 237.60 207.41 207.86 52.92 56.11 216.24 203.84 11.50 11.52 -5.75 -5.38 -201.48 -201.44
Std Err 15.07 8.86 7.31 5.56 11.92 8.43 1.85 1.26 32.90 30.36 3.20 3.25 3.07 2.91 17.18 15.06

Bias -141.34 -140.44 -113.35 -96.40 -42.59 -42.14 -19.94 -16.75 -83.76 -96.16 -2.50 -2.48 1.25 1.62 -1.48 -1.44
Truth 405.50 405.50 334.00 334.00 250.00 250.00 72.86 72.86 300.00 300.00 14.00 14.00 -7.00 -7.00 -200.00 -200.00

SMEMN as„ ow, a,„, a„,„ 71,ee 72,• ‘y3,„ 'n,
Replicates 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4
Mean Est 257.20 256.24 217.62 235.09 182.30 189.38 51.86 55.39 220.14 211.17 12.25 11.96 -5.90 -5.81 -201.34 -200.20
Std Err 11.41 10.47 7.51 5.46 8.22 5.74 1.87 1.19 30.56 32.63 3.24 2.84 2.86 2.47 17.33 13.18

Bias -148.30 -149.26 -116.38 -98.91 -67.70 -60.62 -21.01 -17.47 -79.86 -88.83 -1.75 -2.04 1.10 1.19 -1.34 -0.20
Truth 405.50 405.50 334.00 334.00 250.00 250.00 72.86 72.86 300.00 300.00 14.00 14.00 -7.00 -7.00 -200.00 -200.00

SMEM o,„ o,„ ass„ oss„ 'I'l•e 72,ee. 'n,ee. 'Yl,
Replicates 4 4 4 4 4 4 4 4
Mean Est 251.97 235.27 191.80 55.25 218.08 12.43 -5.67 -202.35
Std Err 12.67 5.58 6.59 1.30 37.21 2.84 2.34 12.93

Bias -153.53 -98.73 -58.20 -17.62 -81.92 -1.57 1.33 -2.35
Truth 405.50 334.00 250.00 72.86 300.00 14.00 -7.00 -200.00

number of calories a device will report for a male compared to a female, all else equal. 354

These results could be informative and useful as a secondary study goal. The biases and 355

standard errors are slightly smaller for models SMEMN and SMEM, however. All three 356

measurement error models perform about the same when assessing the measurement 357

error in the gold standard instruments. When errors are generated from a bimodal 358

distribution, estimated error variances are biased toward zero. This is true for the 359

measurement error in the less precise measurements as well. The SMEMN and SMEM 360

models produce similar results for the estimates of variance measurement error of less 361

precise measurements. Estimates are good for EE and AES when errors are normal, but 362

biased low for AES for both skewed and bimodal errors. Both the naïve model and the 363

linear measurement error model result in estimated measurement error standard 364

deviations for the less precise measurement that are too large under normal errors and 365

skewed errors for EE. When the departure from normality is significant (bimodal error 366

distribution) unbiasedly estimating the measurement error variance can be challenging. 367

Fig © shows boxplots of the log mean PMSE for each simulation for each model 368

under each type of error distribution for EE for 2 and 4 replicates, and Fig 4 shows the 369
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same for AES. There is a consistent decreasing pattern from simpler to most complex in 370

terms of the models. First, the naïve model does much worse than the same model which 371

accounts for measurement error. The naive model and the linear measurement error 372

model perform much worse than the models with free knot splines in terms of PMSE. 373

This is under the case where the true relationship is non-linear, but when looking at the 374

noisy data the relationship doesn't appear to be highly non-linear. This suggests the 375

methods using free knot splines are able to see potential relationships that are difficult 376

to see with only the noisy data. There is not a large difference between the SMEMN 377

and SMEM model in terms of PMSE, but the SMEM model generally does better. 378

There are more parameters in SMEM to help explain the scientific mechanism of the 379

problem, but that does not necessarily imply better prediction. The question is whether 380

the small improvement is worth the increase in model complexity. We think that the 381

answer is no for two reasons: (i) our main focus with this model is calibrating the less 382

precise measurements and not necessarily conducting inference at the latent variable 383

level, and (ii) the DP approach is reliable only situations when we have four replicates, 384

which for gold standard measurements, is unrealistic in practice. Because the main 385

focus is to calibrate less precise measurements, the simulation results are promising. 386

Fig 3. PMSE for EE. Log PMSE for EE Regression faceted by measurement error
distribution and number of replicates.

Fig 4. PMSE for AES. Log PMSE for AES Regression faceted by measurement
error distribution and number of replicates.

To see the structure of the nonlinear model with the fitted spline on top of the 387

simulated data, we provide plots from one of the 200 simulated data sets. We chose a 388

simulated data set with skewed errors and two replicates per person. Fig 5 shows the 389

fitted spline between the values of EE and AES and the measurements obtained with 390

the less precise measurement. The points correspond to the individual simulated data 391

where the y value is the mean of the two replicates. The bold (red) line is the mean 392

estimated spline function. We randomly selected 500 MCMC draws for the spline, and 393

plotted them behind the mean. Fig Q gives the distribution of the number of knots for 394

the spline for both the EE and AES splines. The splines are not overly complex and 395

typically use four or fewer knots. 396

Fig 5. Fitted Spline. Spline function for Model SMEMN with Skewed Errors.

Fig 6. Distribution of kee and k„. Distribution of Number of knots for Model
SMEMN with Skewed Errors.

Calibration 397

The main goal of this work is to develop a calibration approach to "correct" the 398

measurements of EE AES obtained with less precise, noisy measurements. That is, 399

given a measurement of EE or AES from an less precise instrument and some 400

demographic information, we can return a better estimate of the true value as well as a 401

credible interval that shows the uncertainty in the estimate. Calibration for our models 402

simply amounts to finding the inverse of the fitted models as a function of Y instead of 403
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X, and Z. For a given observed value of Y and Z, and an estimate of -y, the calibration 404

for X is: 405

Xcalibrated = 1(y — -y' Z)• (23)

We cannot find the inverse in (23) in closed form so we find it numerically instead. 406

To do so, we use optimize in R for the function I s(x) — y* I where s() represents the 407

regression function and y* is the observed less precise measurement minus the vector of 408

coefficients -y multiplied by the individuals' covariate values Z. The algorithm for our 409

calibration for individual i is as follows: 410

For r = 1,...R 411

1. Calculate y: = yi — -y(rr Zi, where Z, are the covariate values for individual i. 412

2. Use optimize for the function I si(x) — to choose the value of x that will 413

minimize the criterion, call this xi,calibrated• Here, si (x) is the predicted value of 414

y, for the given value x using the MCMC draw for the spline coefficients /3.(r),
XAES(r)), 

415

latent variables (XEE(r), and knot locations (i. rd, rW) from the rth 416

draw of the chain. 417

Since our interest lies in correcting less expensive measurements for potentially 418

non-linear biases and measurement error as determined jointly in the model through the 419

use of gold standard measurements, this calibration step is of most interest to 420

practitioners. Although parameters estimates from the model may be interesting, 421

obesity, nutrition, and physical activity researchers often need reliable data on EI and 422

EE to understand the effects of treatments in controlled experiments or relationships 423

found in exploratory analyses from observational data. The calibration method above 424

along with the estimated posterior distribution for the model gives practitioners a 425

powerful way to adjust their measurements of EI and/or EE for measurement error. 426

As an example, suppose that we wish to calibrate three noisy measurements each 427

from a different individual using Model SMEMN. We randomly select 3 individuals from 428

the same data set used earlier to give results for model SMEMN. Individual 1 is male, 429

BMI of 28.6, age 20.5; individual 2 is female, BMI of 21.5, age 30.1 and individual 3 is 430

male, BMI 38.6 and age 22.8. Observed less precise measurements for these individuals, 431

their true values, as well as 95% credible intervals for their mean calibrated truth under 432

skewed normal errors are given in Table 5. Fig 7 shows histograms of 1000 calibrated 433

draws for each individual for EE and AES measurements under skewed errors. Looking 434

at the table and figure, one can see that the calibration helps pull the less precise 435

measurement closer to the truth. In all cases, the calibration helped to improve the 436

estimate obtained from the less precise measurement. A simple point estimate 437

correction may be used and an analysis could procede with these corrected 438

measurements taken as truth; a more comprehensive approach would be to use the point 439

estimate of EE and AES as well as the uncertainty given by the posterior distribution. 440

This would allow for an approach that fully accounts for biases and measurement error 441

uncertainty present in the data as to avoid making erroneous conclusions based on bad 442

data. Running this on many of the simulated individuals had similar results. 443

Fig 7. Calibration. Posteriors of calibrated observations. Solid vertical line shows
observed value from less precise measurement and dashed vertical line shows truth.
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Table 5. 95% credible interval for calibration estimate for less precise measurements
for Skewed Errors

Person Lower Median Upper Observed True Value
1 EE 2574.18 2666.00 2736.39 3028.89 2199.25
2 3452.51 3525.18 3619.08 4119.26 3588.12
3 2571.99 2665.46 2744.65 2555.86 2643.14
1 AES 25.15 42.35 60.57 142.30 64.17
2 -104.21 -82.93 -63.90 -405.74 -21.08
3 -8.41 3.91 17.83 96.06 -0.48

Discussion .

In this chapter we presented a semi-parametric approach to model energy balance via 445

its components EE and AES. We assume that we have gold standards for both 446

quantities that are unbiased, as well as less precise instruments that result in biased 447

measurements of the truth. We propose a model where the form of the association 448

between the unbiased and the biased measurements of EE (or of AES) is left 449

unspecified and uses splines to estimate that function. This allows a flexible relationship 450

between an less precise measurement and its unobserved truth. We assumed that the 451

gold standard measurements and less precise measurements are conditionally 452

\.independent given the latent vector (XEE x-AES),  We modeled the latent vector 453

(x-EE , x-AES) using a bivariate normal distribution and a Dirichlet process. Although 454

the Dirichlet process is more flexible and based on a weaker assumption, it required 455

more replicate observations (mainly on gold standard measurements) than is feasible in 456

practice in order to give stable results. The normality assumption was robust and 457

resulted in stable and surprisingly reasonable results given the true structure of the 458

latent variables. Because this model produced accurate estimates even with only two 459

replicates of gold standard measurements per person, we believe that it is a plausibly 460

useful model for this specific application unless more than two replicates per person are 461

available. The resulting estimates and PMSE show the approach what we propose 462

outperforms a simpler linear measurement error model and a naïve model that does not 463

take measurement error into consideration. 464

The intended use of the model presented in this paper is for device calibration. In 465

order to do meaningful research in the fields of physical activity, nutrition, and health, 466

one needs accurate, reliable data. The issue of obesity was highlighted in the 467

introduction, and understanding energy consumed versus energy expended is crucial to 468

understanding the obesity crisis, but collecting data on these quantities is difficult. 469

Because measurements of EE and AES from less expensive devices can often include 470

considerable error and bias, these data can lead to erroneous results later in a study. 471

Although gold standard measurements exits for EE and AES, they are expensive and it 472

is unreasonable in a large study to administer gold standard measurements to everything 473

in the study. The method presented in this paper provides a statistical approach that 474

allows for flexibility in the relationship between less expensive measurement and truth 475

in order to calibrate less expensive measurements. This way, large studies can 476

administer both gold standard and less expensive measurements to a small subsample, 477

and use the methods presented in this paper to calibrate the less expensive 478

measurements for those who didn't receive gold standard measurements. This can save 479

time and money for researchers without having to compromise the integrity of the data. 480

One of the uses would be to obtain a corrected estimate of EI, by getting corrected 481

estimates of EE and AES and then using the energy balance equation. Although only a 482

simulation study is presented, given a study with the same data structure, estimates of 483

the parameters in the model could be used for future device calibration. 484
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The main motivation for constructing this model was to account for the error and 485

bias in easy to administer measurements in order to calibrate less precise observations. 486

We presented a simple way to do this calibration given an less precise measurement for 487

EE and AES and values of gender, BMI, and age. Using a Bayesian approach we are 488

easily able to get a posterior distribution for the mean calibrated estimate which also 489

provides a measure of uncertainty. Our example shows that the calibrated estimate is 490

often an improvement compared to the observed less precise measurement. 491
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