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Abstract A detailed description and analysis of the
Fermi kinetics transport (FKT) equations for simulat-
ing charge transport in semiconductor devices is pre-
sented. The fully coupled nonlinear discrete FK'T equa-
tions are elaborated, as well as solution methods and
work-flow for the simulation of RF electronic devices
under large-signal conditions. The importance of full
wave electromagnetics is discussed in the context of
high speed device simulation and the meshing require-
ments to integrate the full wave solver with the trans-
port equations are given in detail. The method includes
full semiconductor band structure effects to capture the
scattering details for the Boltzmann transport equation
(BTE). The method is applied to high speed gallium
nitride (GaN) devices. Finally, numerical convergence
and stability examples provide insight into the mesh
convergence behavior of the deterministic solver.
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1 Introduction

Physics based modeling of GaN high electron mobil-
ity transistor (HEMT) power amplifiers (PAs) offers a
promising alternative to high frequency and large signal
measurements. The physics based technology computer
aided design (TCAD) tool, however, must accurately
capture the physical processes in the device to provide
useful data to radio frequency (RF) circuit designers.
The salient features required in the TCAD tool for ac-
curate large signal RF simulations include electronic
band structure, hot electron effects, self heating, scat-
tering, trapping, and full wave electromagnetics (EM).
Charge transport in semiconductors can be deter-
mined by the solution of the semi-classical BTE [1]

of(k,r,t)
ot

F
+v-V,.f(k,r,t)+ %~ka(k,r,t)

B <af(lgtr’t)>coll ' (1)

Here, f is the distribution function, F represents exter-
nal forces acting on the distribution of particles, # is
Planck’s constant, v is the group velocity of the par-
ticles, and k, r and t represent reciprocal space, real
space and time, respectively.

The BTE is an integro-differential equation and de-
scribes how a collection of particles responds to EM
fields and scattering potentials. The distribution func-
tion f(k,r,t) gives the occupation probability at r and
k at time t. It can be found by solving Eqn. (1), but
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approximations are required in order to yield tractable
solutions for realistic applications.

A powerful statistical method for solving the BTE
is the Monte Carlo technique [2]. Monte Carlo was first
presented as a statistical approach to solving general
integro-differential equations [3]. Since then, it has seen
a wide variety of applications, and is one of the pre-
ferred methods for accurate numerical simulation of
semiconductor devices. Many flavors exist in the lit-
erature including the ensemble Monte Carlo (EMC)
method [4]. It is well known, however, that the EMC
method comes at an immense computational cost. The
cellular Monte Carlo (CMC) algorithm was developed
to reduce the burdensome high computational demands
[5]. Even after sophisticated algorithms such as scatter-
ing rate precomputation and tabulation, CMC is still
computationally intensive and can lead to long simula-
tion times for complex devices. Coupling full-wave EM
to EMC has also proved to be challenging and compu-
tationally expensive [6,12,13].

Despite the computational burden, many EMC and
CMC methods have successfully simulated GaN HEMT
technology. Variations include quantum corrected full-
band CMC simulations 7] and electro-thermal MC mod-
els with self-heating effects [8,10,11]. Further EMC sim-
ulations have investigated large signal RF performance
[12,13] and the effects of source-gate spacing [9].

An alternative approach to solving the BTE is ac-
complished through deterministic methods. These rely
on taking moments of the BTE. One of the first de-
terministic Boltzmann solvers for semiconductor device
simulations was presented in the paper by Scharfetter
and Gummel [14]. This work presented physical approx-
imations to the phenomenological drift-diffusion (D-D)
model of charge transport. The physical size of the de-
vice technology was still relatively large and the numer-
ical solution of the D-D model produced satisfactory re-
sults. However, reduced device features produce larger
electric fields and hot electron effects, such as electron
velocity saturation, rendering the D-D approximation
insufficiently accurate.

Two seminal works which extended the D-D model
to include carrier heating were presented by Stratton [15]
and Blotekjaer [16]. These methods utilized different
approximations of the BTE. Stratton proposed that the
distribution function be split into even and odd com-
ponents while Blotekjaer derived moments of the BTE
without any assumptions on the form of the distribution
function. Both methods required closure relations to
generate a linearly independent system of equations [17]
as well as further approximations to yield tractable so-
lutions. A common closure relation is the prescription
of electronic heat flow with Fourier’s law [17]. One ap-

proximation used to specify momentum and energy in
hydrodynamic models is parabolic band structure [17].
However, this approximation will reduce the accuracy
of the device solver when the electric field is large. To
the best of the authors’ knowledge, no hydrodynamic or
energy-transport model can include complete electronic
band structure effects without the use of phenomeno-
logical models. Thus, some device solvers employ fitting
parameters such as field- and temperature-dependent
mobilities to improve upon the parabolic band approx-
imation [18].

Hydrodynamic solvers are widely used in the de-
vice simulation community for analysis and character-
ization of power transistors. An AlGaN/GaN HEMT
with surface traps was investigated with the commer-
cially available DESSIS hydrodynamic software in [19].
This contribution did not include RF simulations, how-
ever. Self heating and hot electron effects were stud-
ied in AlGaN/GaN double-channel HEMTs in [20], but
also did not include RF simulations. Finally, the 2D de-
vice simulator Minimos-NT [21] was used to accurately
simulate both the static and small-signal response of
several GaN HEMTs. A field-dependent mobility was
tuned in [21] to accurately model the velocity satura-
tion in GaN. Hydrodynamic solvers rarely incorporate
full wave EM, with the exception of a 2D solver used
to simulate terahertz plasma waves [22].

FKT is a deterministic Boltzmann solver which has
shown promising results. Historically, FKT was con-
ceived by seeking an alternative method for calculating
the electronic heat flow. Rather than use the combi-
nation of Fourier’s law and an approximate thermal
conductivity [17], it was proposed that a thermody-
namic identity could be used as a closure relation for
energy-transport models [23]. This closure relation pro-
vided a robust Boltzmann solver, and it was later shown
that FKT could incorporate electronic band struc-
ture [24] and full wave EM [25]. In particular, a version
of FKT with GaAs band structure, quantum scatter-
ing, and hot electron effects was shown to reproduce
the electron velocity overshoot and saturation calcu-
lated by sophisticated MC methods [24] in a fraction of
the computational time. FKT was also shown to accu-
rately simulate a GaAs metal semiconductor field effect
transistor (MESFET) and a GaN HEMT from DC up
through mm-wave frequencies without adjustable cali-
bration parameters [24,26].

This paper presents a detailed description and anal-
ysis of the discrete nonlinear system of equations used
to simulate charge transport coupled to full wave EM
in the FKT device solver. The computational aspects of
the discrete form of the equations have not been elab-
orated previously and are critical for wider use of the
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methodology. First, a detailed discussion of the device
simulation framework’s meshing requirements is pre-
sented in Section 2. Next, the system of discrete non-
linear equations are reported in Section 3 followed by
a discussion of solution variable assignment in real and
energy space, a discussion of the numerical solution of
the nonlinear equations, and numerical details of the
different device solve types. Detailed descriptions of the
boundary conditions (BCs) required for high speed de-
vice simulations are presented in Section 4. Finally, the
mesh convergence and stability of the FKT device sim-
ulation framework are investigated in Sections 5 and 6,
respectively.

2 The Delaunay-Voronoi Mesh

An important discretization technique used in the semi-
conductor device simulation community is the box in-
tegration method [27]. To properly discretize the diver-
gence of a vector field with the box integration method,
a special type of mesh called a Delaunay mesh [28] is re-
quired. A 2D Delaunay mesh is a set of polygons where
the circumcircle of any polygon contains no points of
the mesh. The points of each polygon lie on the perime-
ter of its respective circumcircle. The 3D analogue is a
set of polyhedra with circumspheres. An example of
a Delaunay triangulation of a random set of points is
shown in Figure 1. The Bowyer-Watson algorithm, de-
tailed in [29,30], was used to generate this triangula-
tion. In the left of Figure 1, the Delaunay triangles
are drawn in black and the Voronoi cells (most com-
monly referred to as the Voronoi diagram [31]) corre-
sponding to the interior Delaunay nodes are drawn in
red. Two circumcircles which inscribe triangles are also
drawn in gray. This simple triangulation demonstrates
the powerful relationship between the Delaunay trian-

Fig. 1 (left) The Delaunay triangulation of a random set of
ten points. The Bowyer-Watson algorithm was used to cre-
ate this triangulation. The Delaunay triangles are illustrated
in black and the Voronoi cells in red. Only the Voronoi cells
corresponding to interior Delaunay points are shown. Two cir-
cumcircles of the Delaunay triangles are also included. (right)
One of the divergence stencils corresponding to the shaded
Voronoi cell is outlined with arrows.

gles and the Voronoi polygons. Each Voronoi polygon
corresponds to a single Delaunay node in the mesh.
The faces of this Voronoi polygon (edges) correspond
to edges which are connected to the Voronoi polygon’s
node. The normals of the Voronoi polygon’s faces point
in the ezact same direction as their corresponding De-
launay edges, by construction. The importance of this
relationship now becomes clear in terms of the box in-
tegration method. A divergence of a vector field inte-
grated over each Voronoi polygon can be represented
as a discrete summation of fluxes, defined on the De-
launay edges, across each face of the Voronoi polygon.
This is the crux of the box integration method [27]. One
divergence stencil corresponding to the shaded Voronoi
polygon is illustrated in Figure 1 (right).

The collection of the Delaunay elements and the
Voronoi diagram will here on out be referred to as the
Delaunay-Voronoi (DV) mesh. Furthermore, the nodes
and edges of the Delaunay elements are called primary
nodes and primary edges, respectively. Dual nodes and
dual edges refer to those comprising the Voronoi dia-
gram.

There exists a wide range of algorithms to gener-
ate Delaunay triangulations. Included is the Bowyer-
Watson algorithm, as well as other standard methods
used in computational geometry [32,33]. These meth-
ods are reliably used to generate meshes for the finite
element method (FEM), among many other compu-
tational techniques. Any arbitrary Delaunay meshing
algorithm alone, however, does not produce adequate
meshes for simulating semiconductor devices with the
box integration method.

To elaborate on the difficulties of generating a qual-
ity DV mesh for discretization with the box integra-
tion method, a simple MESFET geometry is consid-
ered. The device consists of a thin semiconductor on
top of a larger substrate. These types of features are
common in electronic devices. Figure 2 illustrates an at-
tempt at meshing a basic MESFET with an open-source
Delaunay meshing tool. The code is Gmsh [34], which
uses the software TetGen [35] as its Delaunay mesher.
It is evident that Voronoi polygons corresponding to
certain interior mesh points, each lying within one par-
ticular material, cross material interfaces as well as the
boundaries of the problem domain. This is due to ob-
tuse angles in triangles whose circumcenters fall out-
side of the domain boundary. A characteristic like this
will not allow proper simulation of electronic devices as
the charge densities must be uniquely defined in each
material. Furthermore, numerical BCs rely on proper
truncation of the Voronoi cells at mesh boundaries.

As an attempt to fix the Voronoi polygons, the mesh
is refined in the semiconductor region. Figure 3 illus-
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Fig. 2 The Delaunay triangulation (black lines) and the corresponding Voronoi diagram (red lines) of the basic outline of a
MESFET. This mesh was generated with the open source program Gmsh which uses the TetGen Delaunay triangulator.
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Fig. 3 A zoom of the Gmsh generated Delaunay mesh of
the simple MESFET geometry. The gray shaded area is the
semiconductor and the non-shaded region is the insulating
substrate. (a) A coarse mesh which does not preserve material
interfaces and geometry boundaries. (b) A refined mesh which
over-meshes the direction parallel to the interface.

trates (a) the original mesh and (b) the refined mesh in
the top left corner of the device. The refined mesh pro-
duces conforming Delaunay triangles in both regions
as well as Voronoi polygons which preserve geometry
boundaries and can preserve material interfaces. This
mesh, however, is not optimal for simulating electronic
devices because solution variables often change rapidly
perpendicular to interfaces. Generating a Delaunay mesh
with standard FEM software which preserves material
interfaces and geometry boundaries will generate su-
perfluous edges which leads to a very large number of
degrees of freedom (DOF).

An alternative to simple mesh refinement could be
sophisticated algorithms which ensure that circumcen-
ters do not fall outside of their respective Delaunay
elements. One example is the centroidal Voronoi tes-
sellation (CVT) algorithm [36]. In 2D, the CVT al-
gorithm attempts to move the points of the Delau-
nay triangulation to the centroids of their respective
Voronoi polygons. This algorithm can be generalized to
higher spatial dimensions. Figure 4 presents an exam-

(b)

Fig. 4 The (a) initial DV mesh, which is an input to the
CVT algorithm and (b) the resulting DV mesh from the CVT
algorithm.

ple of the CVT algorithm. Figure 4(a) is the initial DV
mesh of a random set of points. The Delaunay mesh
points are then moved according to the CVT algorithm
to produce Figure 4(b). Clearly, the CVT algorithm
produces a quality DV mesh in the interior of the do-
main. It does not prevent circumcenters from falling
outside of the Delaunay triangulation boundary, how-
ever. Furthermore, because the algorithm is based upon
moving Delaunay mesh nodes, the CVT algorithm will
not preserve the original device geometry. Several pa-
pers appear in the literature which address these prob-
lems. One is a stitching algorithm, which aims to use
the CVT algorithm in the interior of the geometry and
stitch the resulting mesh onto a boundary conforming
and preserving mesh [37-39)].

A considerable amount of work exists in DV mesh-
ing algorithms specifically designed for semiconductor
device geometries. A prominent algorithm which gen-
erates 3D Delaunay grids suitable for complex semi-
conductor device structures was pioneered by Conti,
Hitschfeld, and Fichtner [40-42]. An example of a mesh
of the simple MESFET geometry generated by an in-
house Air Force Research Laboratory, Sensors Direc-
torate ( AFRL/RY) code based on the work of Conti et
al. is presented in Figure 5. These meshing algorithms
decompose the global device geometry into sub-regions
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which can be refined in terms of the mesh. The sub-
regions automatically preserve material interfaces and
mesh boundaries and the interiors of the sub-regions
are allowed to have circumcenters which fall outside
of their respective element but still reside inside the
sub-region. The commercial device simulator Sentau-
rus Device, a product of Synopsys, utilizes a separate
meshing code which incorporates these algorithms [43].
Further progress on this meshing topic extends the work
of Conti et al. to produce meshes conforming to arbi-
trary boundaries [44,45].

Finally, a discussion on splitting the Voronoi mesh
at material interfaces and truncating the Voronoi mesh
at geometry boundaries is required. Given that the tri-
angles (2D) or tetrahedra (3D) on material interfaces or
mesh boundaries do not have obtuse angles “pointing”
towards the interface/boundary, the Voronoi mesh can
be properly split or truncated. Figure 6 illustrates ma-
terial interface truncation on (a) a mesh generated by
the algorithm of Conti et al. [40] and (b) a mesh gener-
ated by Gmsh [34]. In both instances, the Voronoi cells
corresponding to Delaunay nodes on the material inter-
face have edges which are exactly perpendicular to the
material interface. The Voronoi edges intersect the pri-
mary edges at exactly the circumcenters of the primary
edges — the midpoints of the edges. In 3D, the edges
of a Voronoi polyhedron intersect at the circumcenters
of the Delaunay triangles. The Voronoi diagram at the
mesh boundaries uses the same recipe for truncation.
The portion of the Voronoi cell which falls outside of the
Delaunay mesh, however, is not included in the simu-
lation domain. Figure 7 demonstrates the truncation of
the Voronoi diagram at a boundary shaded in gray. The
Voronoi edges in the plane of the boundary are drawn
as dashed red lines. This boundary could be either a
material interface or the end of the Delaunay mesh. If
the boundary is a material interface, the Voronoi cells
can represent areas corresponding to fluxes across the
boundary. In the case of mesh boundaries, the Voronoi
edges and cells on the plane can be used for BCs. Both
of these cases will be highlighted in Section 4.

The following criteria summarize mesh features use-
ful for semiconductor device simulations which utilize
the box integration method.

— The mesh must be Delaunay compliant. No nodes
of any primary element fall within any of the cir-
cumcircles/circumspheres.

— Both the Delaunay triangulation and the Voronoi
diagram should preserve mesh boundaries and ma-
terial interfaces. In other words, the circumcenters
of interior elements should not cross mesh bound-
aries or material interfaces.

3 The System of Nonlinear Equations

The governing equations of the FKT device simulator
are Poisson’s equation, Ampere’s and Faraday’s equa-
tions, electron continuity, energy conservation, and the
lattice heating equation [26]. After real and energy space
discretization techniques are applied to the continuous
equations, the nonlinear residuals for n-type unipolar
devices are
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Solution variable assignment is discussed in subsequent
sections. The terms Ng, C™, and C¢ represent the ion-
ized donor density and the particle and energy colli-
sion operators, respectively. Physical constants of Eqns.
(2) — (7) include the semiconductor permittivity, &, the
electron charge ¢, the permeability of free space, pg, the
mass density of the semiconductor, p, the specific heat
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Fig. 5 The Delaunay triangulation (black lines) and the corresponding polygons of the Voronoi diagram (red lines) of the
basic outline of a MESFET. This mesh was generated with an in-house code based upon the work of Conti et al.
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Fig. 6 Two examples of mesh splitting at material inter-
faces. In both cases, the primary edges separating the red
and blue shaded Voronoi polygons represent the material in-
terface. (a) Material interface Voronoi splitting on a mesh
generated by the algorithm of Conti. (b) The same material
interface Voronoi splitting on a mesh generated by Gmsh.
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Fig. 7 An example of Voronoi diagram splitting in 3D. The
primary edges are drawn in black and the Voronoi edges are
drawn in red. The interface of the Delaunay mesh is shaded in
gray. The dashed red lines correspond to the Voronoi cells in
the plane of the interface. Two Voronoi cells in the interface
are shaded in red.

of the semiconductor, Cp, and the thermal conductiv-
ity of the semiconductor, k. Energy space discretization
techniques are presented in detail in [24]. The box in-
tegration method [27] is used to discretize divergence
operators on the DV mesh. A version of the Scharfetter-
Gummel (SG) technique [14,24] is used to discretize
the particle fluxes, and the full wave EM is discretized
with the DV surface integration (DVSI) technique [46].
Backward Euler time integration is used to discretize
temporal derivatives. The index i of the residuals cor-
responds to specific elements in the DV mesh. Densities,
fluxes, and collision operators with the subscript m are
associated to unique Fermi distributions at the i*" semi-
conductor node of the DV mesh. Discrete lengths, areas,
and volumes of the mesh are denoted by L, A, and V,
respectively and At represents the time step. The elec-
tron number and energy densities (with the time step
superscript ¢ removed for brevity) are

n; = Z Alk (kBTi)aik—i_l ‘Faik (np,ika ik blk) (8)
k

Enyg = ZAik (ksT3)** > Foys1 (Mp,iks Qiks bir) s (9)
%

and the discretized particle and kinetic energy flux
densities are
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Here, B(z) = 5% is the Bernoulli function. The

4t primary edge corresponds to the stencil associated
to the ¢ primary node. The index k corresponds to
the piece-wise energy windows used to fit the isosur-
face integral data [24]. Energy power laws of the form
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respectively [24]. The functions (7 jx),,. and AT, jk
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Here, the notation “j,0” represents node zero of the ;'
primary edge. The equivalent functions for the kinetic
energy flux density are
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The incomplete Fermi-Dirac integral and its derivative
are
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The parameters of the Fermi integrals, n, a, and b, and
their relations to FKT solution variables are discussed
in [24]. The series expansion method [47] is preferred for
the fast numerical evaluation of the incomplete Fermi
integral of arbitrary order and parameter. With the def-
initions

qD;
JO,ijk (TPJ7T ) = Tjk (nvjk)ave (Tp,jqu,j)
J
X B(&n,jk (Tp,5))No,jk (Tp,5), (22)
qD;

J1iji (Tp,j, Tg,5) = ij (Tnik)ave (Tp.j> Ta.5)
B(—&nk (Tp,5)) N1 gk (Tp,5) ,  (23)
qD;

KO,ijk (TPJ7T ) ij (TS,jk)ave (Tmeq,J)

( E,Jk( pA,j))gO,jk (Tp,j)v (24)
qD

Kvijk (Tpjs Tog) = 25 (Tejk)ave Ty Tas)

L;
x B(=Ee ik (Tp,5))E1,5k (Tp,5) » (25)

the heat flow and total energy flux densities are
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The heat flow algorithm is discussed in detail in [23] and
applied to complete electronic band structure in [24].

3.1 Solution Variables

The solution variables of the discrete nonlinear system
of equations are the electric potential @f+17 rotational
electric field vector projection Er;'D i» magnetic field vec-
tor projection H, f‘H, the Fermi level relative to the con-
duction band minimum in each material (F — &)t
the electron temperature kBTfJrl of a Fermi distribu-
tion, and the lattice temperature kBthl. These solu-
tion variables are governed by Eqns. (2) — (7), respec-
tively. Derived solution variables required for evaluation

of the incomplete Fermi integral, Eqn. 20, are

F-¢&
kT ’

n= (28)
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where &, and &, are the bounds of a piece-wise energy
window [24]. Assignment of the electron gas solution
variables in real and energy space, EM solution vari-
ables, and lattice heating variables are next presented.

3.1.1 FElectron Gases in Real Space

One or more electron gases are assigned to each Voronoi
polygon (2D) or polyhedron (3D) in the DV mesh lo-
cated in a semiconducting material. If a semiconduc-
tor mesh node lies on a material interface, then the
Voronoi cell is split into sub-regions. Each sub-region
corresponding to a unique material is assigned a sep-
arate electron gas. Primary nodes on the boundary of
the mesh are truncated in a similar manner. Section 2
provided a discussion on material interface and mesh
boundary splitting of the Voronoi diagram.

Figure 8(a) presents an example of a DV mesh on
which electron gases are assigned. Three Voronoi poly-
gons are drawn in Figure 8(b). The Voronoi polygon
associated to gas A is completely enclosed in mate-
rial 2 and therefore the entire polygon shaded in red
represents the volume of the gas. Because gas B is as-
sociated to a node on the boundary of the mesh, the
Voronoi polygon is truncated at the boundary. Node C
is an important case in semiconductor device meshes.
Because this mesh node resides on a material interface,
it receives separate gases associated to the two unique
materials. The Voronoi volume of gas C2 (the gas as-
sociated to material 2) and the Voronoi volume of gas
C3 (the gas associated to material 3) are distinguished
with different shading in Figure 8(b). This procedure
generalizes to interfaces of an arbitrary number of ma-
terials.

8.1.2 Electron Gases in Energy Space

The band structure of a bulk semiconductor is incorpo-
rated into the FKT device simulator through piece-wise
energy power law fits of the isosurface integrals [24].
For example, the power law fits are used to calculate
the electron density and energy density, Eqns. (8) and
(9). These densities are associated to a sub-region of
the Voronoi cell corresponding to a unique material as
described in the previous section.

Material 1

Ho— Material 2525

Material 3

(a)

— Material 2N "5
C

Material 3

(b)

Fig. 8 (a) An example of a device mesh generated by the
Sentaurus meshing tool. (b) An illustration of the electron
gases assigned to unique Voronoi polygons in the DV mesh.

The energy space corresponding to an electron gas
in a unique material can further be discretized into mul-
tiple Fermi distributions. Typically, valleys in the semi-
conductor band structure are assigned separate distri-
bution functions. Scattering between the distributions
is calculated with the collision operators C™ and C¢
discussed in detail in [24]. Figure 9 illustrates a panel
diagram and the density of states (DOS) isosurface in-
tegral of wurtzite GaN [26]. The band structure was
calculated with the empirical pseudopotential method
(EPM) [48]. In the example in Figure 9, only the first I'-
valley is included in the DOS calculation and the energy
space of the valley is split into two separate Fermi dis-
tributions labeled I'; and I5. The separation of the first
I-valley into two distinct Fermi distributions yields two
sets of solution variables, F'—&. and kgT, at each semi-
conductor mesh node. Real space transport only occurs
between distributions occupying the same regions of en-
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Fig. 9 The (left) panel diagram of wurtzite GaN and (right)
corresponding DOS isosurface integral of the first I'-valley.
The energy space of the first I'-valley is split into two sepa-
rate Fermi distributions. Therefore, the energy space of each
electron gas in distinct real space sub-regions in the semicon-
ductor are approximated with two Fermi distributions.

ergy space. Therefore, there is no particle flux between
the Iy and I distributions. Rather, particles can drift
and diffuse between I at mesh node 1 and I'] at mesh
node 2 and then scatter from I to Iy at mesh node 2.
The same is true for energy transport.

3.1.83 EM Solution Variables

The solution variables corresponding to full wave EM
are @;, E.o; and H;. Electric potential solution vari-
ables are assigned to all primary nodes of the DV mesh
that are not vacuum. The rotational electric field vector
projections are defined on the primary edges of the DV
mesh and magnetic field vector projections are defined
on the dual edges of the DV mesh. A derived solution
variable is the total electric field. On the j* primary
edge, the total electric field is

@3,0 = @],1

L; ’

Ej = Erot,j + (31)
where the subscript j, 0 corresponds to node zero of the
primary edge. The primary edge points from node 0 to
1. A complete discussion of the full wave EM discretiza-
tion, DVSI, is presented in [46].

3.1.4 Lattice Heating Solution Variables

The solution variable corresponding to lattice heating
in semiconductor devices is kg1’ F;l The lattice tem-
perature solution variables are aséigned to all thermal
materials in the device. Examples of non-thermal mate-
rials in the device include dielectrics like air which are
included between metal contacts at the tops of devices.

3.2 The Nonlinear Solver: Newton’s Method

The nonlinear system, Eqns. (2) — (27), is solved with
Newton’s method. The system consists of Ng electric

potential variables, N electron relative Fermi levels,
Nr electron temperatures, and Npy lattice tempera-
tures. If full wave EM is included in the device simula-
tion, there are an additional Ng rotational electric field
vector projection solution variables and Ny magnetic
field vector projection solution variables.

A linear system is solved at each Newton iteration.
The linear system is comprised of the residuals Pois;,
Amp,, Far;, ElCont;, EnCons;, and LattCons;. With
this arrangement, the general Newton linear system is

OPoisq OPois; OPois;
0P OD2 OkTL Ny p
OPoisy OPoisa OPoisa
8451 8‘152 8kB,I‘L,}\Tr]—vL
8LattConsNTL aLattCOHSNTL BLattConsNTL
kpTr,1 kpTwr,2 kTrL,Npp
A@l POiSl
A@Q POiSQ
el ) =— ) : (32)
AkBTL,NTL LattCOHSNTL

The linear systems corresponding to specific solvers in
the FKT device simulation framework are described in
the following.

3.3 Solve Types

The solve types of the device simulator are grouped into
three distinct classes: Equilibrium, static, and transient
solves. The Newton linear system corresponding to a
specific device solve is presented in block matrix form.
For example, the matrix corresponding to the partial
derivative of the i*" Poisson residual with respect to the
4 electric potential solution variable is %. The i*?
diagonal of this matrix is
8POiSi * 5iinj
8@1‘ - Lij '

(33)

The derivative of the i*" Poisson residual with respect
to the j*" Fermi level solution variable is

OPois; onltl
Bl S k., 7 4
a(F — £, q; AF=£),; " @

This Jacobian element requires partial derivatives of
the densities with respect to the relative Fermi levels.
The numerical routine which calculates the incomplete
Fermi integrals also returns the derivative of the Fermi
integrals for these purposes.
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3.4 Equilibrium Solve

The equilibrium solve is the first component of the de-
vice simulation work-flow. This produces the electric
potential and electron relative Fermi level profiles in
thermal equilibrium. Only Poisson’s equation, Eqn. (2),
is solved to produce the thermal equilibrium solution
profiles. The Newton linear system of this solve is

| st | [ 42;] = - [Poisi] . (35)
Because the conduction band, &., will vary across the
device in thermal equilibrium, the relative Fermi level
solution variable, F' — &., must also be updated after
each Newton iteration. This can be accomplished by
amending the diagonals of the Jacobian to be

OPois; €Ay
06, 2~ I, ¢ Z o0,

J
_ z ’Lm

gij A
_Z JLU
on. t+1

25” 2t Za Vi (36)

The relation &. = . — @, where Y. is the electron
affinity of the semiconducting material, dictates that a
positive change in the electric potential corresponds to
a negative change in the conduction band. Furthermore,
the electron Fermi level, F, is spatially constant at ther-
mal equilibrium which allows for the final substitution
in Eqn. (36).

After the Poisson stage of the thermal equilibrium
solve, the rest of the steady-state equations are added
one at a time to allow all solution variables to relax to
their numerical thermal equilibrium. The Newton lin-
ear system of the final equilibrium stage, comprised of
the residuals Pois;, E1Cont;, EnCons;, and LattCons;, is
shown in Eqn. (37). The additional stages of the ther-
mal equilibrium solves do not drastically change the
electric potential or relative Fermi level solution vari-
ables.

t+1

t+1

3.5 Static Solve

The next solve in the semiconductor device simula-
tion work-flow is the static or steady-state solve. Typ-
ically, an external voltage or current bias is applied to
metal contacts to produce steady-state current flow.
The static solver computes steady-state data including
the current-voltage (I-V) family and transconductance.
The quiescent bias of a transistor is also calculated with
the static solver.

As described previously, a linear system is solved
at each Newton iteration in order to update the FKT
device simulation solution variables. The linear system
of the m" static Newton iteration is

OPois; OPois; OPois; OPois;
0P ; O(F—E.);j OkpT; OkpTr ;
BElCont BEICont aElContZ 8E1Cont
0D ; O(F—Ec);j OkpT; OkpTr ;
8EnConsl 6Enconsz 8EnConsZ OEnCons;
0P O(F—E&.);j OkpT; OkpTr ;
0 6LattConﬁ1 BLattConsz 8LattConsl
o(F—E.); 0Oksl; dkpTL ;
A@j POiSi
A(F - 56)]' ElCOHtZ' (37)
AkpTj EnCons;
AkpTy ; LattCons;

The static FKT device simulation equations include
Equs. (2), (5), (6), and (7) with all time derivatives set
to zero, i.e., % — 0. The Jacobian matrix, Eqn. (37),
is more complex than the equilibrium Jacobian matrix.
For example, the middle diagonal matrix element re-
quires the partial derivative of the collision operator
and the particle flux with respect to the relative Fermi
level solution variable. This Jacobian matrix element is

acn ,t4+1 t+1

OElCont; _ Iy U
3(F &) Z 5

8(F - gc)

(38)

Derivatives of incomplete Fermi integrals are required
for evaluating this Jacobian matrix element. The par-
ticle flux is exponentially dependent on ratios of Fermi
integrals making this matrix element highly nonlinear.

3.6 Quasi-Static Solve

After the quiescent bias of the device is calculated by
the static solve, the quasi-static solve can be used to
simulate the RF response without the inclusion of full
wave EM. The RF response metrics of transistors in-
clude small-signal S-Parameters. These simulated pa-
rameters computed across a broad frequency range can
be very useful to circuit designers for impedance match-
ing at input and output ports in commercial software
including Advanced Design System (ADS) [49].

The linear system of the m'" Newton iteration of the
quasi-static simulation retains the same form as Eqn.
(37). However, because the time derivatives are now
included in Eqns. (2), (5), (6), and (7), the Jacobian
matrix is different. As an example, the middle diagonal
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element of the quasi-static Jacobian matrix is

OEICont; 8n§+1 1 " 50?’“1 Vv
OF—-E&); \OF-E);At O(F-E); )"
aJrtl
n,1J A 3
+ ; ARG (39)

The time step At is typically chosen according to the
driving frequency of the electronic device simulation. A
standard choice is At = 1/(100 x fp), where fy is the
fundamental frequency of the device simulation.

3.7 Full Wave Solve

Full wave and hot electron effects are captured in an
electronic device simulation by solving Eqns. (2) — (7).
This solver can produce simulated S-Parameters which
reflect the high frequency parasitics in an electronic de-
vice. The Newton linear system corresponding to a full
wave FKT device simulation is

- OPois; 0 0 APois; OPois; OPois; T
0P ; IF—E:); OkpT; OkpTyr,;
OAmp; OAmp; OAmp;, OJAmp, OJAmp, 0
0P; OF.o,; OH; O(F-E.); OkpTj
0 OFar; OFar; 0 0 0
OFror,; OH;
OEIC; OEIC; 0 OEIC; OEIC; 9EIC,
Bq')j 6Erot,j Cr)(F*Sc)J BkBT]- 6k‘BTL1j
OEnC; 0EnC; 0 OEnC; OEnC; O9EnC;
0P;  OFiot,; O(F—E.); OkpT; OkpTyL,;
0 0 0 LC; ILC; OLC;
L I(F—-E.); OkpT; OkpTr,; d
AD; Pois;
AErotJ Ampi
AH]' _ Fari (40)
A(F - &) EIC;
AkBT] EnC;
AkBTLJ LCZ

Here, the electron continuity, energy conservation, and
lattice heating residuals are renamed to EIC;, EnC;,
and LC;, respectively. Full wave simulations use the
same choice of time step as quasi-static simulations.

4 Boundary Conditions

A list of the BCs required for electronic device simula-
tions is presented in Table 1. Typical BCs include metal
contacts and port BCs used to provide or absorb EM
energy.

4.1 Ohmic Metal Contact

An essential metal BC found in almost every semicon-
ductor device simulation is the Ohmic contact. Charge

neutrality is enforced at a distribution on an interface
between a semiconductor and an Ohmic contact. The
solution variable F' — &, of a charge distribution on an
Ohmic contact interface is fixed to the charge neutral
value (F' — &:)cn and, for the perfect electrical con-
ductor approximation, the contact maintains the elec-
tric potential @on + V. Here, V, is a voltage applied to
the Ohmic contact. The charge neutral quantities are
determined by the numerical solution of

Pois;| . = Z (N;,i,m — nfﬁ) Vim =0, (41)

m

and the assignment
QCN = —Xe + ¢M + (F - SC)CN' (42)

Here, the electron affinity, y., and the work-function,
@), are properties of the semiconductor and metal, re-
spectively.

4.2 Lattice Heat Absorbing Boundary Condition

The heat absorbing (HA) BC is meant to emulate lat-
tice heat flow out of the device domain. Without this
BC, the simulated devices will heat up to nonphysi-
cal levels. Outgoing lattice heat flow is represented by
the outward lattice temperature gradient (VT )y, ona
boundary mesh node. The area of the gradient flux cor-
responds to the in-plane Voronoi polygons associated to
primary nodes on the mesh boundary. In Figure 7, the

gradient flux area associated to the primary node la-
beled n; is shaded in red. The total HA BC is

TE“ — 17, E,t+1
LattCons;| ;5 = lpicp,iT - Z G Vi
A
T+l _ Tt+_1) Kij Aig
+ zj: ( L,i L,j Li;
+ [ (VTL) kA]gs = 0. (43)

Here, n represents the normal of the mesh boundary.
The lattice temperature gradients at the mesh nodes
of the HA boundary are reconstructed from the vector
projections of the lattice temperature gradients onto
the primary edges associated to the mesh nodes.

4.3 Quasi-Static AC Impedance Boundary Condition

The quasi-static solver is suitable for lower frequency
simulations where full wave effects are negligible. In or-
der to calculate useful quantities with the quasi-static
solver, the AC impedance must be used as a termination
opposite the excitation contact. The AC impedance BC
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B.C. ] Erot H F-£&. kT  kpTL
Ohmic PN + Ve 0 (F—&)c~n  kBTL Soln.
Schottky Dsp + Vo 0 Soln. Soln. Soln.
Lattice heat absorbing Soln. Soln.  Soln. Soln. Soln. Soln.
AC impedance (Ohmic) 95?('311 0 (F—&)en  kBTL Soln.
AC impedance (Schottky) @T‘Cll 0 Soln. Soln.  Soln.
Full wave voltage Soln. Soln. Soln. Soln. Soln.
Full wave impedance Soln. Soln.  Himp Soln. Soln. Soln.

Table 1 A list of semiconductor device simulation BCs.

is defined on metal contacts in the quasi-static solver.
The integrated current flowing into the AC impedance
contact is

i =" i Ay (44)
k

Here, J), represents the particle flux density on the k"
primary edge pointing into the AC impedance metal
contact. The area Ay is that of the in-plane Voronoi
polygon associated to the primary edge. In Figure 7,
the area of the in-plane Voronoi polygon labeled A;
corresponds to the particle flux vector projection de-
fined on the primary edge p;. The integrated current
on this BC specifies a Dirichlet condition on the metal
contact’s potential via Ohm’s law, i.e.,

t+1 _ t+1
¢i+ ‘ACI = ZActixcr (45)

where i, = i**1 —i*=0 represents only the AC compo-

nent of the integrated current. This approximates the
effects of a bias tee, which is typically used for measur-
ing dynamic quantities such as S-Parameters.

4.4 Full Wave Voltage Port

The voltage BC is a specific case of the port BC in which
EM energy enters the full wave solver. The voltage port
connects two metal contacts in the device under test
(DUT). The electric field in the voltage port is strictly
irrotational, i.e., Fyot; = 0. Ampere’s law is solved on
voltage port primary edges. The BC is

- t+1 €in t+1
Ampi|volt. = [Ei,-ii_rr - Ef,irr:| 7At - q; Jn,imAim
- HF'L;=0. (46)
J

E1_5+1 _ Pi0—Pia

Here, the irrotational electric field is E; 7 o

where the subscript 7,0 corresponds to node zero of
the " primary edge. The primary edge points from
node 0 to 1. This BC serves as the governing equation
for the magnetic field defined on the i*" in-plane dual
edge associated to a primary edge on the boundary. In

Figure 7, the in-plane dual edge labeled dy corresponds
to the primary edge p2 on the voltage BC. The magnetic
field vector projection defined on this in-plane dual edge
is included in the line integral of Eqn. (46).

4.5 Full Wave AC Impedance Port

The full wave AC impedance (FWACI) BC is an en-
ergy sink port BC connecting two metal contacts. The
magnetic field Hpwacr is defined on an in-plane dual
edge associated to a primary edge on the boundary.
The definition of the in-plane dual edge associated to
the primary edge in the BC is the same as the full wave
voltage port BC. The magnetic field is equal to the to-
tal electric field defined on the primary edge divided by
the boundary’s impedance Zgpwacr- The BC is

PWACL = BitL — B9

— ZFWACI (Hit,—fb:‘{NACI - Hf,?%mm) =0,
(47)

In a manner similar to the quasi-static AC impedance
BC, the subtraction of the solutions calculated at the
first time step ensures that the BC only affects the AC
components of the solution variables.

4.6 Heterojunctions and Thermionic Emission
Boundaries

As outlined in Section 3.1.1, one or more electron gases
are assigned to semiconductor mesh nodes residing on
heterojunctions. Figure 10 illustrates a thermal equi-
librium band diagram across a heterojunction of two
semiconductors. In this example, each electron gas is
approximated with a single Fermi distribution in en-
ergy space. Because the two materials have different
electron affinities, there is a discontinuity in the con-
duction band across the heterojunction and thermionic
emission is used to calculate real space transport across
the discontinuity. With both distributions’ Fermi levels
referenced to the higher conduction band, the particle
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Fig. 10 The thermal equilibrium band diagram across a two
material heterojunction. The electron affinity of material A is
greater than material B’s electron affinity. The relative Fermi
level solution variables are illustrated for each electron gas at
the heterojunction.

flux and kinetic energy flux density thermionic emis-
sions from semiconductor node 1 to semiconductor node
2 are

1 m*
Ti#(T)) = 5555 (keTh)?
X /daz In[1+exp (M —e.)], (48)
0
and
1 m*
K = 5™ (kaTy)?

x [ de,e,In[l+exp(in—e.)], (49)

with the parameter

. (F—E&);+&

- gc,high
m= .
kT

(50)

Here, m* is the effective mass of the semiconductor with
the lower electron affinity and & is the Planck constant.
A numerical quadrature routine is required to evaluate
Eqns. (48) and (49). The high side conduction band
edge, & high, is associated to the charge distribution in
the material with the smaller electron affinity at the
heterojunction. The total thermionic emission particle,
kinetic energy, heat, and total energy flux densities are

Jn,TE = Ji}QE(Tl) — Jg?%(Tg), (51)

Knre =K} TE(Tl) - K?H‘}E(B% (52)

Hure = K\ 7%(T) — K 75(Ts)
- (F - 5C-high) [Jl%z ( ) Jr%??ﬂ( )]
- K 7p(Te) + K7 (Th)

+ (F = Eenign)2 [ 1u(T2) — T 7p(T1)]

(53)
and
Spne =Knre+ Hore. (54)
Material A |  Material B
re— V.JH,A]

= v-‘]n.Bl

o<>0

Thermionic emission
across heterojunction

Fig. 11 An example of the particle flux divergences associ-
ated to two electron gases at a heterojunction. BTE particle
fluxes are calculated between two electron gases in the same
semiconductor.

The thermionic particle flux and total energy flux
densities are added to the electron continuity and en-
ergy conservation divergences, Equs. (5) and (6). Fig-
ure 11 illustrates the particle divergence for the two
unique charge distributions defined on a heterojunction
mesh node. There is only a BTE particle flux (J,, ;; and
K, i;) between charges associated to the same material.
Thermionic emission connects the two charge distribu-
tions at the heterojunction. With charge distributions
Al and B1 at the heterojunction mesh node, the elec-
tron continuity and energy conservation equations for
both distributions are

nit —nt t+1
ElCont g1|y; = (‘41—‘41 + CZ’1+ > Va1

At

Z Al] Ay +

t+1 —
mTEATE = 07

(55)
t+1 ¢
ElCont s |y = <% o m) o
Z L Ay — T Arg = 0,
(56)
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t+1 t

& - &
EnCons a1 |y, = (T%Al—nv

+a) (B L) Sl A

+ Z Sﬁjl]Am + S’fl %EATE

+ gpotJ TEATE =0. (57)
o, —EE o
EnConspi|y; = ( L BlAt n,B —I—C'g bl | w2,

+qz (BAHLy) T Apy;
+ZS£+§1J — SytpAre = 0. (58)

Here, HJ refers to the heterojunction. The last term
in Eqn. (57) represents the potential energy required
to overcome the barrier £, = x4 — xB With x4 >
xB- The area Arg corresponds to the Voronoi polygon
in the heterojunction plane associated to the primary
node on the interface. In Figure 7, the thermionic emis-
sion flux area corresponding to the heterojunction mesh
node labeled n; is shaded in red.

4.7 Schottky Metal Contact

Another important BC is the rectifying Schottky metal
contact. This metal-semiconductor interface is a special
type of heterojunction. The important characteristic of
the BC is the Schottky barrier @gg. With no applied
bias, the solution variable F'—&, of a charge distribution
at this interface equals —q@sg. In the typical way, an
applied bias which raises the Fermi level and conduction
band minimum in the Schottky metal will increase the
potential barrier of the metal-semiconductor interface.
An applied bias which lowers the Fermi level and con-
duction band minimum will decrease the potential bar-
rier. The energy between the metal Fermi level and the
semiconductor conduction band minimum remains con-
stant. Transport across the discontinuity caused by the
Schottky barrier is calculated with thermionic emission.
The energy —q®sp and the lattice temperature kT,
are used to compute the thermionic emission from the
metal into the semiconductor.

5 Mesh Convergence of the Discrete FKT
Equations

The mesh convergence of the discrete FKT device sim-
ulation equations is investigated. This numerical char-

acteristic provides insight into how the errors of the de-
vice simulation solution variables converge with mesh
refinement. Simulation of large electronic devices re-
quires meshing strategies in order to yield accurate re-
sults without insurmountable computational demands.

Convergence of the discrete FKT equations is quan-
tified by evaluating the i*" relative L? error

> wj [Tk
J
2 wju 7
)

2
— Wij k]

€k = (59)

on a series of meshes. Here, ;5 and wu;j are the ith
numerical and analytic solutions in the j* element of
the k™ mesh, respectively. The weights w; are specified
by the type of error calculation. The global error of all
solution variables in the device simulation is calculated

as
&= /Zafk. (60)

The order of convergence of the FKT equations is de-
termined by the relation

lexl < ON;P, (61)

where Ny, is the number of DOF in the mesh, pj is the
approximate order of convergence, and C'is a constant.

Two numerical examples are presented to provide
insight into the convergence of the discrete FKT equa-
tions. The first is a static simulation of the GaN MES-
FET illustrated in Figure 12. After a quiescent bias of
Vas = —0.5V and Vpg = 4V is calculated with the
static FK'T device solver, the global solution variables
are saved on a series of meshes. The first and last meshes
are the most coarse and dense, respectively. Solutions
on the dense mesh are used as the “analytic solutions”,
uij k, in Eqn. (59). Figure 13 reports an example of the
MESFET mesh refinement strategy used for the follow-
ing order analysis.

Calculating the global solution variable error, e,
requires interpolation of the nodal solution variables on
the dense mesh to the nodes of the series of meshes. To
this end, linear interpolation is used for its simplicity
and efficiency in the post-processing. After the dense
mesh solution variables are interpolated to the series of
meshes, the global solution variable error is calculated
with numerical quadrature. Therefore, the weights w;
in Eqn. (59) represent the volumes of the quadrature
simplices.

In Figure 14, the integrated solution variable errors,
€k, are presented for several series of MESFET mesh
refinements. Table 2 reports the integrated errors cal-
culated on each mesh of a single refinement series. The
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Ohmic G

Input Port

Fig. 12 An example of the 3D GaN MESFET used to quantify mesh convergence of the FKT device simulation framework.
The yellow regions at the top of the mesh are the Ohmic source and drain and the Schottky gate contacts. The bottom surface
of the mesh is the Ohmic ground contact (not shown). Total device length is 10pm with a 1pum gate length and a 4pm length
of each Ohmic contact. The width of the active device is 4um. The GaN channel is the dark green region and the insulating
substrate is the gray region. The volume labeled “launch” represents the insulating region connected to the voltage port (the

red surface).

——

Il

Fig. 13 An example of mesh refinement of the 3D GaN MESFET example used to quantify the order of convergence of the
FKT device simulation equations. The primary mesh is refined by splitting the tetrahedra and the channel under the Schottky

gate contact is further refined.

first column lists the DOF corresponding to each mesh.
The second and third columns list the solution variable
errors, €, and the approximate order of convergence,
Pk, for each mesh in the series. According to these re-
sults, the FKT device simulator exhibits approximately
first-order convergence, i.e., pr = 1. This is due to the
SG discretization of the particle fluxes [24]. The crux
of the SG discretization technique is the approximation
of the particle flux vector projections as spatially con-
stant across the primary edges of the DV mesh. This
approximation implies first-order mesh convergence.

A pragmatic example of FKT device simulation con-
vergence is an investigation of the static I-V family of

a GaN HEMT computed on a series of meshes. This
HEMT has previously been investigated in the litera-
ture with MC simulations [50], [51] and FKT simula-

Ny, €k Dk
1041 0.12896775 3.00
1646 0.03903999 2.22
3034 0.01340268 1.38
6283 0.00572172 1.28

Table 2 Convergence of the static FKT solution variables in
the GaN MESFET example with a gate-source bias of —0.5 V'
and drain-source bias of 4 V.
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Fig. 14 Integrated errors, calculated with Eqn. (60), of the
3D GaN MESFET quiescent bias solution variables. Several
different series of mesh refinements are presented. An exam-
ple of the mesh refinement strategy used for the MESFET
example is illustrated in Figure 13.

tions [26], [52]. Device currents are important quantities
calculated by the solver. Therefore, it is a useful study
to determine how the simulated currents are affected
by mesh refinement. The mesh refinement strategy of
the HEMT example is similar to the example presented
in Figure 13. The error calculation of this example re-
quires evaluation of Eqn. (59) at each drain-source bias.
The I-V curves on the dense mesh are used as the “an-
alytic” solutions. Table 3 lists the DOF, global errors
in the I-V curves, i, and the corresponding change in
the errors, Aey. Figure 15 presents the I-V curves cal-
culated on the series of meshes. The change in the de-
vice’s response becomes negligible after the third mesh
refinement. Furthermore, only the linear region of the
device’s I-V family is moderately affected by the mesh
refinement. This type of mesh refinement may not be
necessary when simulating the RF response at the peak
transconductance of the saturated region of the device.

6 Stability of the Discrete FKT Equations

Stability of nonlinear differential equations is a deep
and rich subject in systems theory and engineering [53].

Nk €k Az—:k
2277 0.05570511
2893 0.02115591 -0.03454920
4513 0.00024652 -0.02090938
5535 0.00002885 -0.00021767

Table 3 Convergence of the I-V family of the GaN HEMT
example calculated with the static FKT solver.
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Fig. 15 The I-V families of the GaN HEMT calculated with
the static solver on a series of meshes. The mesh refinement
follows a similar strategy to the example of mesh refinement
presented in Figure 13.

One part of stability theory is the analysis of system

equilibria. The analysis starts with a given equilibrium
point of the autonomous system dwdl—t(t) = Fi(z:(t)),

i.e., F; = 0. The system of nonlinear differential equa-
tions are said to be stable if for a given perturbation of
the equilibrium, the solutions return to the equilibrium
point [53].
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Fig. 16 Deviation of the numerical enthalpy, Eqn. (63), for
the GaN MESFET (red line) and HEMT (black line) exam-
ples. Both equilibria are perturbed by displacing two ran-
domly chosen electron gases from their thermal equilibrium
states.

The following examples analyze the stability of the
discrete FKT equations. The equilibrium points are the
solutions of the static solver at thermal equilibrium,
i.e., no external biases. After the thermal equilibrium
of the specific device example is computed, the total
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numerical enthalpy of the system is calculated as

% = Z [Enyi + kBTing] Vi. (62)

k3

The superscript “sys” is added to avoid confusion with
the magnetic field vector projection, H;, and the dis-
crete heat flux density, H,, ;;. The enthalpy is calculated
from the electron kinetic energy density, &, ;, electron
temperature, kpT;, and electron density, n;, defined in
the DUT. The summation represents integration over
elements of the DV mesh. Perturbation of the ther-
mal equilibrium amounts to displacing the FKT solu-
tions from their thermal equilibrium states. Two elec-
tron gases are randomly chosen and their relative Fermi
levels and temperatures are perturbed. The perturbed
solutions are used as initial conditions to the quasi-
static solver. A transient simulation with no external
biases is solved until the discrete residuals reach the
global numerical tolerance of the nonlinear solver. The
deviation of the total numerical enthalpy is quantified
as

AH™ = |H™* — HY: (63)

equilib. | ?

where H® is calculated with Eqn. (62) at each time
step of the quasi-static solver and H. SZimb. is the numer-
ical enthalpy of the thermal equilibrium solutions, i.e.,
Eqn. (62) calculated at t = 0 before the perturbation.
This analysis follows a similar approach to a stability
analysis of semiconductor device simulation equations
in the literature [54]. The choice of the enthalpy func-
tion differs, however. The enthalpy function of this work
is chosen for convenience.

Two 3D GaN device examples, the MESFET and
the HEMT, are chosen to numerically demonstrate the
stability of the discrete FKT equations. For both sim-
ulations, two electron gases are randomly chosen and
perturbed from their thermal equilibrium states. Fig-
ure 16 presents the enthalpy deviation, AH®Y*, for both
device examples. The red line represents the enthalpy
deviation versus time step for the GaN MESFET exam-
ple and the black line presents the same for the GaN
HEMT example. An approximate convergence line is
illustrated in the figure. Figure 17 presents five more
enthalpy deviation simulations of the MESFET exam-
ple. Each simulation displaced three randomly selected
electron gases from their equilibrium states. No pertur-
bation simulation is found to be unstable. Furthermore,
each enthalpy deviation approaches an exponential rate
of decay near the convergence tolerance. This provides
insight into the stability and robustness of the FKT
device simulation equations.
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Fig. 17 Five independent stability analyses of the GaN
MESFET example. Each simulation displaced three random
electron gases from their equilibrium states. No perturbation
is found to be unstable. The enthalpy deviation decays expo-
nentially near the convergence tolerance.

7 Conclusion

The FKT device simulator with DVSI discretization
can couple nonlinear hot electron transport with full
wave EM. The simulation framework can also incorpo-
rate electronic band structure, self heating, scattering,
and trapping effects. Simulation results suggest that
it may provide accuracy comparable to Monte Carlo
methods but at a fraction of the computational cost.
This accuracy and efficiency could provide a promising
simulation alternative for RF device engineering and
analysis.

Hot electron and propagating EM wave dynamics
are solved simultaneously by exploiting the mutually
perpendicular relationship between a Delaunay primary
mesh and its Voronoi dual. This relationship was pre-
sented in detail along with some additional mesh prop-
erties required for high frequency electronic device sim-
ulation. For example, the circumcenter of a primary
simplex should not lie outside of the simplex’s mate-
rial or outside the problem domain. The planar nature
of microelectronics also requires mesh elements with
large aspect ratios to represent fluctuations in solu-
tion variables while keeping the simulation numerically
tractable.

The device equations solved by the simulator were
also presented in great detail, both in continuous and
in discrete forms, along with necessary boundary con-
ditions and the full-Newton algorithm used to solve the
coupled equations. Detailing the specifics in this way
may enable independent verification of the simulation
methods and results.
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The numerical behavior of the discretized device
equations were assessed by recording variations in simu-
lation results and convergence characteristics with mesh
refinement. This analysis revealed approximately first-
order convergence of the nonlinear system. Further tests
tracked the evolution of numerical enthalpy as random
perturbations in the simulation’s variables caused it
to follow various trajectories through solution space.
These numerical experiments revealed that the simula-
tor’s representations of particle and energy dynamics,
particularly the entropy maximizing treatment of elec-
tronic heat flow through the thermodynamic identity,
provide a high degree of stability and robustness. This
stability and the numerical efficiency of the FKT /DVSI
methodology combined with its fully coupled treatment
of both hot electron and propagating EM wave effects
may prove useful for computer aided RF device design.
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