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=Hierarchical Low-Rank (HLR) Matrices @&.
and Solvers

= L ow-rank structure is everywhere!
= Plenary talk by Alex Townsend

= Hierarchical matrices and solvers experiencing a revival
= Early work by Hackbusch, 1999-2000

= Key insight: Many matrices have useful (rank) structure
= Blocks far from diagonal can be approximated using low-rank
= Holds for elliptic PDEs, some other (e.g., advection-diffusion problems)
= Similar intuition as for Fast Multipole Methods (FMM)
= May also apply to data science (e.g. covariance matrix)
= Qur goals
= Develop new solver/preconditioner with less memory (and flops)
= Speed up sparse direct solvers (high accuracy)
= Use as preconditioner (low accuracy)




Low-Rank Structure

Low-rank structure often occurs in off-diagonal blocks in
" The matrix A

= Theinverse of A

= The LU factors of A

= Hierarchical low-rank structure: (rigure from Wang et al.)
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(a) HSS matrix. ) HODLR matrix.
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Hierarchical Matrix Formats

Weak admissibility HODLR HSS
Any admissibility H H?2

= HSS is perhaps most popular but has drawbacks
= Weak admissibility may require high ranks (esp. 3D problems)

= Example: Inverse of 2D Poisson eqn. (Courtesy G. Chavez et al.)

a) Weak admissibility. b) Standard admissibility.




Fast Sparse Solver Approaches

= Early work was on dense matrices; we focus on sparse

= Approximate Al directl
PP Yy
= Use favorite hierarchical format: H, H2, HSS, HODLR, ...
*= Form inverse in O(k?*n*logPn) work, k is the rank, a,b small constants

= May still be expensive if k is large (aka large “hidden constant”)

= Approximate LU factors of A

= Dense frontal matrices within sparse direct (multifrontal) method
= Xia, Li, Darve, ...
= Strumpack library (Li, Ghysels, et al.)
= Work on entire sparse matrix (Sparse triangular factors)
= H-LU (Hackbusch, Grasedyck, Kriemann, LeBorne, ...)
= LoRaSp (Pouransari, Coulier, Darve)




The LoRaSp/H2 Method

= Pouransari, Coulier, Darve, SISC 2017 (in press)
= Partition graph via recursive bisection, construct tree
= Eliminate “clusters” (blocks) starting at leaf level

= Approximate block LU factorization

= New “coarse” dof via extended sparsification

= Merge neighbors, repeat for each level in the hierarchy (bottom up)

level 0 root.

level 1
level 2

level 3
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Figures courtesy Chen et al., and Pouransari et al.




Multilevel Block Incomplete Factorization

= My Interpretation (algebraic):
= LoRaSp/H2 solver is really a Block ILU(0O) factorization where the
“dropped” blocks are approximated using low-rank method
= A= LU+E, where E has blocks that we approximate by low rank

= We compensate for the dropped blocks by adding new rows/columns
to the matrix (extended sparsification)
= The Schur complement for coarse vertices is a smaller matrix we can

solve recursively
= Can eliminate the black vertices with little fill

= Low-rank approximation is different from earlier ILU work




Extended Sparsification

= For simplicity, assume symmetric A {can be extended)
= Suppose the off-diagonal blocks are {approx) low-rank:

(ur %)
vur A,
= We solve the equivalent extended system

A, 0 U 0
0 4, 0 V
ur o 0 -I
0 vl -1 0
= We sparsify the original matrix, but add extra rows/cols that
also need to be factored.

= The lower the ranks of U,V, the smaller extended system
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ILU and Extended Sparsification

= Note: Fill blocks in the block LU factors often have low rank

= Schur complements in the Gaussian elimination

= Approach: Compute blocks in ILU(O) exactly, and
= Approximate blocks in ILU(1) (not in ILU(O)) using low-rank

= Extend matrix with new rows/cols

QOriginal A, blocksize=4




Related Preconditioners

= LoRaSp/H2 method has similarities to several methods we
already know:

M How LoRaSp/H2 differs

Block ILU Low-rank compensation for dropped fill

Extended sparsification

ARMS Partially factors all blocks, no indep. sets
Low-rank, extended sparsification

DD “Coarse grid” represents dropped ILU fill
Low-rank, extended sparsification

AMG Coarse grid represents dropped ILU fill
No smoother
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“Our Parallel Algorithm

e Data parallel: Each processor works
on a subgraph (subdomain).

* Consider the cluster graph:
* Only boundary vertices need
communication.
* Interior vertices can be eliminated
independently in parallel.

* Use graph coloring on the boundary
to find concurrent work.

* #synchronization points = #colors

e (Can overlap communication and
computation.

* Repeat for each level.

* Future: Task-based; dynamic sched.
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Example: 4 processors. Each
vertex (node) corresponds to
a cluster of variables.
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Experiments

= Parallel H2 solver (and results) by Chao Chen
= Parallel extension of LoRaSp serial code
= MPI everywhere
= Eigen library for dense linear algebra (on node)

= SVD for low-rank compression
= a) Fixed eps in matrix approx. (ranks vary)

" D) Fixed rank in matrix approx. (quality varies)
= used in most of the experiments

= Platform: Cray XC30 (Edison/NERSC)

= Used 16 (out of 24) cores per node
= Used up to 16 nodes (256 cores)
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LABORATORY DIRECTED RESEARCH B DEELCPUENT

Results: Compare SuperLU-Dist

Compare hierarchical solver as preconditioner vs. SuperLU-Dist direct solver
on three 3D PDE model problems. 16 processors (MPI ranks).
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Results: Helmholtz eqgn.
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- Ice Sheet Modeling: Greenland

We simulate ice sheet flow using Stokes’ egn. Use Albany/Felix software,
Trilinos solvers for linear systems. 2.5D geometry is challenging as the z
dimension is very different.

Precond. | 8km mesh | 4km mesh | 7

ML - - oo [

ML/custom 18 17

ILU (custom 12 21 al

order) ‘ 2

H2(1e-1) 141 423 wor £

H2(1e-2) 36 153 a

H2(1e-1)* 19 21

H2(1e2)* 14 13 JRy, X /S riutin]

x (km)

* This version uses x-y mesh partitioning and treats “diagonal” grid points

as neighbors (not well sep.)




Conclusions (1)

= Hierarchical low-rank methods (HLR) augment the current
solver/preconditioner ecosystem.

= Faster than sparse direct

= Most useful as preconditioner

= User must choose accuracy (input arg.)
= Setup phase can be expensive.

= Can often amortize this cost over multiple rhs

= Theory promises near-linear complexity for many PDE
problems
= Potentially more robust than multigrid/AMG (at a cost)
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MBCO nc I usions ( 2 )

= Well suited for modern architectures
= Most work is in dense linear algebra (even for sparse problems)
= High arithmetic intensity
= Many small dense matrices at same time
= Could use batched BLAS/LAPACK
= Qur hierarchical solver
= |s motivated by H2 but can also be interpreted as multilevel ILU
» Many options/variations still to explore
= Low rank: SVD, RRQR, RRLU, ACA, ID, ...
= Early days:
= Several algorithm options, best choice unclear
= Codes are still immature but rapidly improving
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Backup Slides
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D RESEARCH B DEVELCPMENT

HLR: Tree and Matrix

= Recursively bisect the vertices (clustering)

= Corresponds to a binary tree

= Matrix: Low-rank approximation of off-
diagonal blocks

= Only if “well-separated”

= How to choose ranks?
= Use SVD, ACA, ULV, or RRQR?




Ss0ur Hierarchical Low-Rank Sparse @&
Solver

= Collaboration Darve (Stanford) & Sandia

= Solver based on recent H> methods by Darve et al.
= |[FMM (dense), LoRaSp (sparse)

= Uses block approximate LU factorization with low-rank
compression for “well separated” interactions
= Partition matrix, build H-tree, factor approximately

= Leaves are subdomains, internal vertices correspond to
approximate Schur complements (low rank)

= Tree implicitly gives approximate LU factorization

= New method, differs from multifrontal HSS

= Simpler, no trees within trees



Results: Variable coeff. Poisson
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Accuracy Trade-Off
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Timing Breakdown
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