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Hierarchical Low-Rank (HLR) Matrices 
and Solvers

 Low-rank structure is everywhere!
 Plenary talk by Alex Townsend

 Hierarchical matrices and solvers experiencing a revival

 Early work by Hackbusch, 1999-2000

 Key insight: Many matrices have useful (rank) structure
 Blocks far from diagonal can be approximated using low-rank

 Holds for elliptic PDEs, some other (e.g., advection-diffusion problems)

 Similar intuition as for Fast Multipole Methods (FMM)

 May also apply to data science (e.g. covariance matrix)

 Our goals
 Develop new solver/preconditioner with less memory (and flops)

 Speed up sparse direct solvers (high accuracy)

 Use as preconditioner (low accuracy)
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Low-Rank Structure

Low-rank structure often occurs in off-diagonal blocks in
 The matrix A
 The inverse of A
 The LU factors of A

 Hierarchical low-rank structure: (Figure from Wang et al.)
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Hierarchical Matrix Formats

 HSS is perhaps most popular but has drawbacks
 Weak admissibility may require high ranks (esp. 3D problems)

 Example: Inverse of 2D Poisson eqn. (Courtesy G. Chavez et al.)

Simple basis Nested basis

Weak admissibility HODLR HSS

Any admissibility H H2
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Fast Sparse Solver Approaches

 Early work was on dense matrices; we focus on sparse

 Approximate A-1 directly
 Use favorite hierarchical format: H, H2, HSS, HODLR, …

 Form inverse in O(ka*n*logbn) work, k is the rank, a,b small constants

 May still be expensive if k is large (aka large “hidden constant”)

 Approximate LU factors of A
 Dense frontal matrices within sparse direct (multifrontal) method

 Xia, Li, Darve, …

 Strumpack library (Li, Ghysels, et al.)

 Work on entire sparse matrix (Sparse triangular factors)

 H-LU (Hackbusch, Grasedyck, Kriemann, LeBorne, …)

 LoRaSp (Pouransari, Coulier, Darve) 
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The LoRaSp/H2 Method

 Pouransari, Coulier, Darve, SISC 2017 (in press)

 Partition graph via recursive bisection, construct tree

 Eliminate “clusters” (blocks) starting at leaf level

 Approximate block LU factorization

 New “coarse” dof via extended sparsification

 Merge neighbors, repeat for each level in the hierarchy (bottom up)

6Figures courtesy Chen et al., and Pouransari et al. 
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Multilevel Block Incomplete Factorization

 My Interpretation (algebraic):
 LoRaSp/H2 solver is really a Block ILU(0) factorization where the 

“dropped” blocks are approximated using low-rank method

 A= LU+E, where E has blocks that we approximate by low rank

 We compensate for the dropped blocks by adding new rows/columns 
to the matrix (extended sparsification)

 The Schur complement for coarse vertices is a smaller matrix we can 
solve recursively

 Can eliminate the black vertices with little fill

 Low-rank approximation is different from earlier ILU work

7
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Extended Sparsification



8
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ILU and Extended Sparsification 
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 Note: Fill blocks in the block LU factors often have low rank
 Schur complements in the Gaussian elimination

 Approach: Compute blocks in ILU(0) exactly, and
 Approximate blocks in ILU(1) (not in ILU(0)) using low-rank

 Extend matrix with new rows/cols
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Related Preconditioners

 LoRaSp/H2 method has similarities to several methods we 
already know:

10

Method How LoRaSp/H2 differs

Block ILU Low-rank compensation for dropped fill

Extended sparsification

ARMS Partially factors all blocks, no indep. sets

Low-rank, extended sparsification

DD “Coarse grid” represents dropped ILU fill

Low-rank, extended sparsification

AMG Coarse grid represents dropped ILU fill

No smoother
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Our Parallel Algorithm
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Example: 4 processors. Each 
vertex (node) corresponds to 
a cluster of variables.

• Data parallel: Each processor works 
on a subgraph (subdomain).

• Consider the cluster graph:
• Only boundary vertices need 

communication.
• Interior vertices can be eliminated 

independently in parallel.

• Use graph coloring on the boundary 
to find concurrent work.

• #synchronization points = #colors
• Can overlap communication and 

computation.
• Repeat for each level.
• Future: Task-based; dynamic sched.
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Experiments

 Parallel H2 solver (and results) by Chao Chen
 Parallel extension of LoRaSp serial code

 MPI everywhere

 Eigen library for dense linear algebra (on node)

 SVD for low-rank compression
 a) Fixed eps in matrix approx. (ranks vary)

 b) Fixed rank in matrix approx. (quality varies)

 used in most of the experiments

 Platform: Cray XC30 (Edison/NERSC)
 Used 16 (out of 24) cores per node

 Used up to 16 nodes (256 cores)
12
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Results: Compare SuperLU-Dist

13

Compare hierarchical solver as preconditioner vs. SuperLU-Dist direct solver 
on three 3D PDE model problems. 16 processors (MPI ranks).
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Results: 3D Poisson Eqn. 
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Results: Helmholtz eqn.
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We simulate ice sheet flow using Stokes’ eqn. Use Albany/Felix software, 
Trilinos solvers for linear systems. 2.5D geometry is challenging as the z 

dimension is very different.

Ice Sheet Modeling: Greenland

Precond. 8km mesh 4km mesh

ML - -

ML/custom 18 17

ILU (custom 
order)

12 21

H2(1e-1) 141 423

H2(1e-2) 36 153

H2(1e-1)* 19 21

H2(1e-2)* 14 13

* This version uses x-y mesh partitioning and treats ”diagonal” grid points 

as neighbors (not well sep.)
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Conclusions (1)

 Hierarchical low-rank methods (HLR) augment the current 
solver/preconditioner ecosystem. 

 Faster than sparse direct

 Most useful as preconditioner

 User must choose accuracy (input arg.)

 Setup phase can be expensive.
 Can often amortize this cost over multiple rhs

 Theory promises near-linear complexity for many PDE 
problems
 Potentially more robust than multigrid/AMG (at a cost)

17
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Conclusions (2)

 Well suited for modern architectures
 Most work is in dense linear algebra (even for sparse problems)

 High arithmetic intensity

 Many small dense matrices at same time

 Could use batched BLAS/LAPACK

 Our hierarchical solver
 Is motivated by H2 but can also be interpreted as multilevel ILU

 Many options/variations still to explore 

 Low rank: SVD, RRQR, RRLU, ACA, ID, …

 Early days: 
 Several algorithm options, best choice unclear

 Codes are still immature but rapidly improving

18
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Backup Slides
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HLR: Tree and Matrix
 Recursively bisect the vertices (clustering)
 Corresponds to a binary tree 
 Matrix: Low-rank approximation of off-

diagonal blocks
 Only if “well-separated”
 How to choose ranks?
 Use SVD, ACA, ULV, or RRQR?
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Our Hierarchical Low-Rank Sparse 
Solver
 Collaboration Darve (Stanford) & Sandia

 Solver based on recent H2 methods by Darve et al.
 IFMM (dense), LoRaSp (sparse)

 Uses block approximate LU factorization with low-rank 
compression for “well separated” interactions
 Partition matrix, build H-tree, factor approximately

 Leaves are subdomains, internal vertices correspond to 
approximate Schur complements (low rank)

 Tree implicitly gives approximate LU factorization

 New method, differs from multifrontal HSS
 Simpler, no trees within trees

21
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Results: Variable coeff. Poisson
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Accuracy Trade-Off 
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LoRaSp code (Pouransari et al); Poisson 3D
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Timing Breakdown
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2D PDE 3D PDE

LoRaSp code (Pouransari et al.)


