

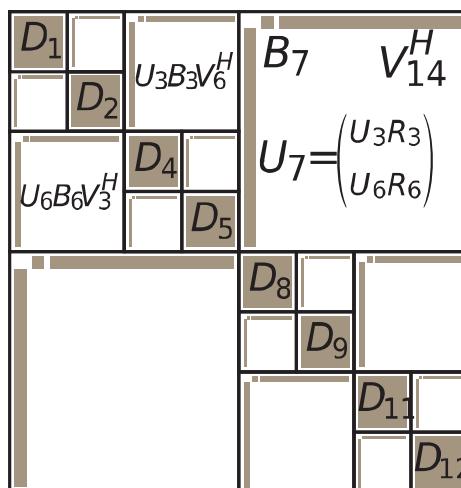
A Parallel Hierarchical Low-Rank Solver for General Sparse Matrices

Erik Boman, Chao Chen, Eric Darve, Siva
Rajamanickam, Ray Tuminaro,

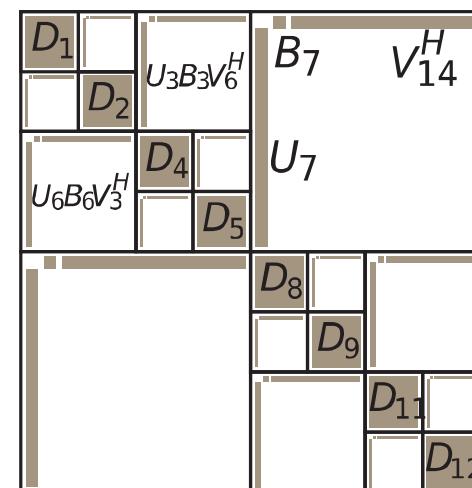
- Low-rank structure is common in applications
- Hierarchical matrices and solvers experiencing a revival
 - Early work by Hackbusch, 1999-2000 (H-matrix)
 - HSS and BLR formats popular now
- Key insight: Many matrices have useful (rank) structure
 - Blocks far from diagonal can be approximated using low-rank
 - Holds for elliptic PDEs, some other (e.g., advection-diffusion problems)
 - Similar intuition as for Fast Multipole Methods (FMM)
 - May also apply to data science (e.g. covariance matrix)
- Our goals
 - Develop new solver/preconditioner with less memory (and flops)
 - Speed up sparse direct solvers (high accuracy)
 - Use as preconditioner (low accuracy)

Low-Rank Structure

- Low-rank structure often occurs in *off-diagonal blocks* in
 - The matrix A
 - The inverse of A
 - The LU factors of A
- Ex: Hierarchical low-rank structure (Figure from Wang et al.)



(a) HSS matrix.



(b) HODLR matrix.

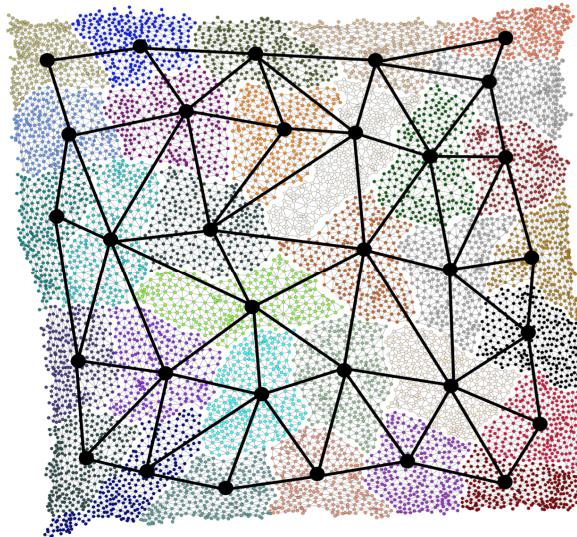
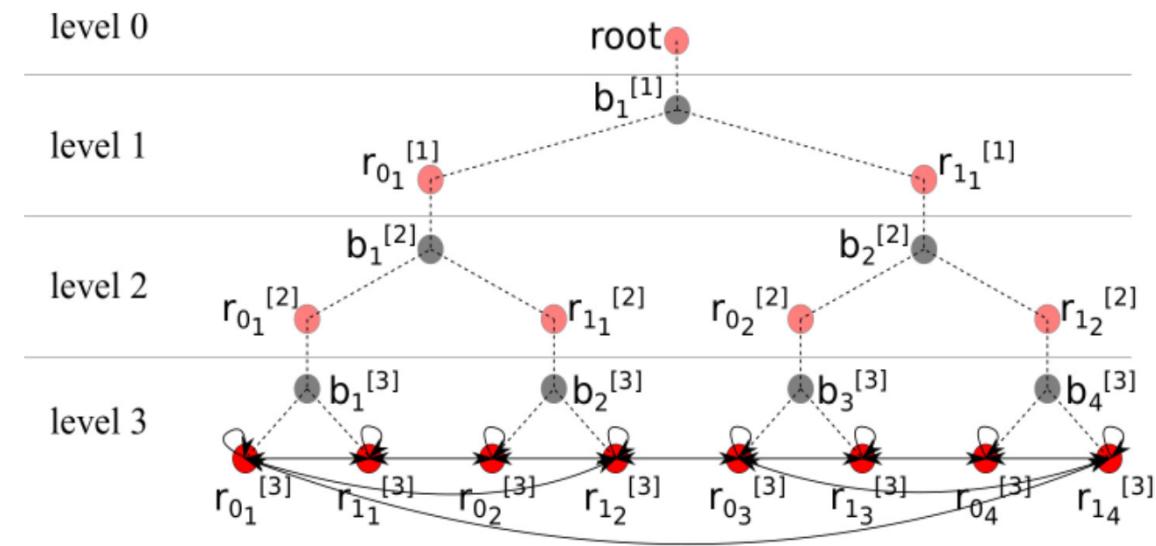
- We use H2 structure to limit rank growth in off-diagonal blocks!

Fast Sparse Solver Approaches

- Early work was on *dense* matrices; we focus on *sparse*
- Approximate A^{-1} directly
 - Use favorite hierarchical format: H, H^2 , HSS, HODLR, ...
 - Form inverse in $O(k^a * n * \log^b n)$ work, k is the rank, a,b small constants
 - May still be expensive if k is large (aka large “hidden constant”)
- Approximate LU factors of A
 - Dense frontal matrices within sparse direct (multifrontal) method
 - Xia, Li, Darve, ...
 - Strumpack library (Li, Ghysels, et al.)
 - Work on entire sparse matrix (Sparse triangular factors)
 - H-LU (Hackbusch, Grasedyck, Kriemann, LeBorne, ...)
 - *LoRaSp* (Pouransari, Coulier, Darve)

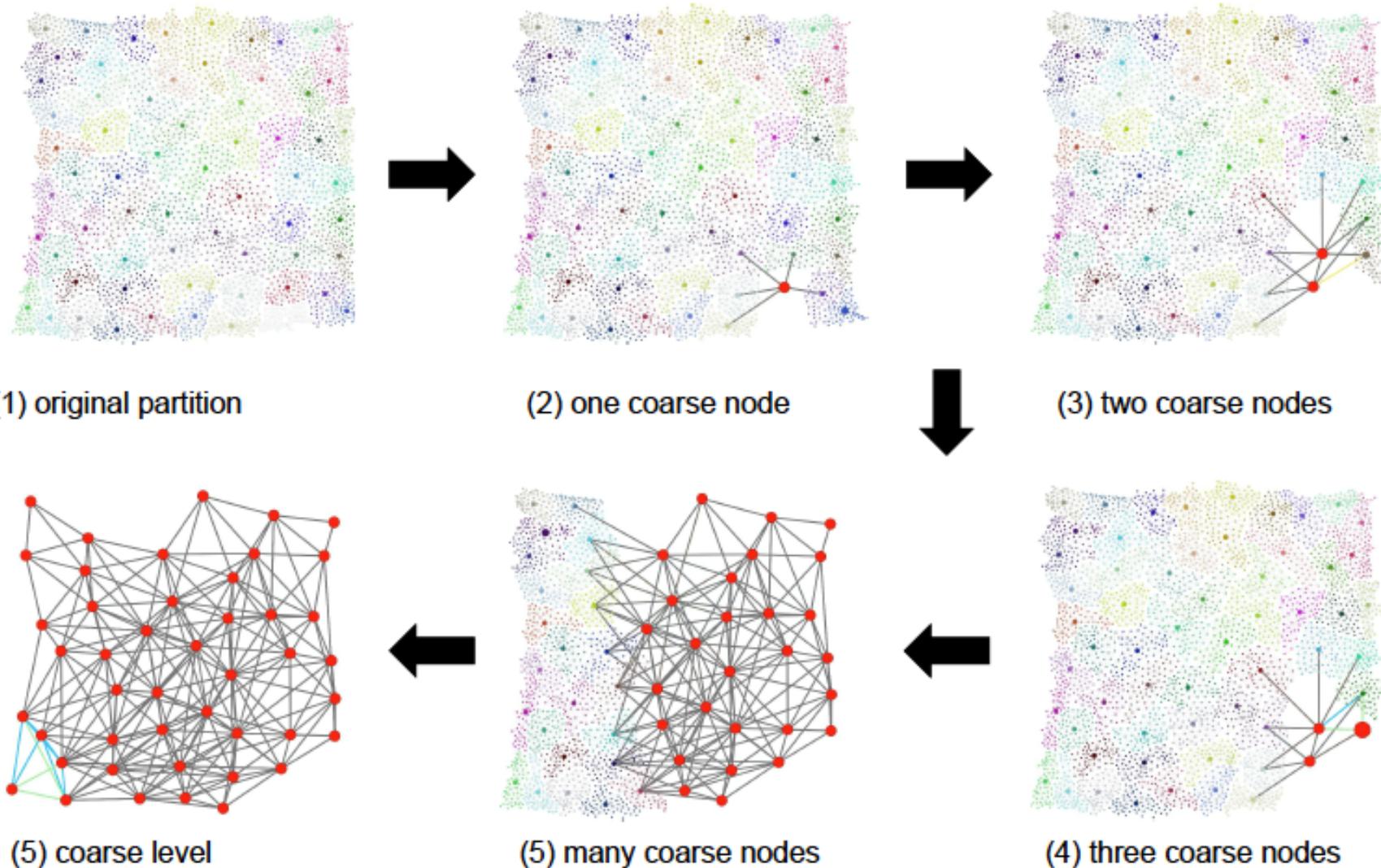
The LoRaSp/H2 Method

- Pouransari, Coulier, Darve, SISC 2017
- Partition graph via recursive bisection, construct tree
- Eliminate “clusters” (blocks) starting at leaf level
 - Approximate block LU factorization
 - New “coarse” dof via *extended sparsification*
- Merge neighbors, repeat for each level in the hierarchy (bottom up)



Figures courtesy Chen et al., and Pouransari et al.

Algorithm: Fine to Coarse Level



Multilevel Block Incomplete Factorization

- My Interpretation (algebraic):
 - LoRaSp/H2 solver is really a Block ILU(0) factorization where the “dropped” blocks are approximated using low-rank method
 - $A = LU+E$, where E has blocks that we approximate by low rank
 - We compensate for the dropped blocks by adding new rows/columns to the matrix (*extended sparsification*)
 - The Schur complement for *coarse* vertices is a smaller matrix we can solve recursively
 - Can eliminate the *black* vertices with little fill
- Low-rank approximation is different from earlier ILU work

Extended Sparsification

- For simplicity, assume symmetric A (can be extended)
- Suppose the off-diagonal blocks are (approx) low-rank:

$$\begin{pmatrix} A_1 & UV^T \\ VU^T & A_2 \end{pmatrix}$$

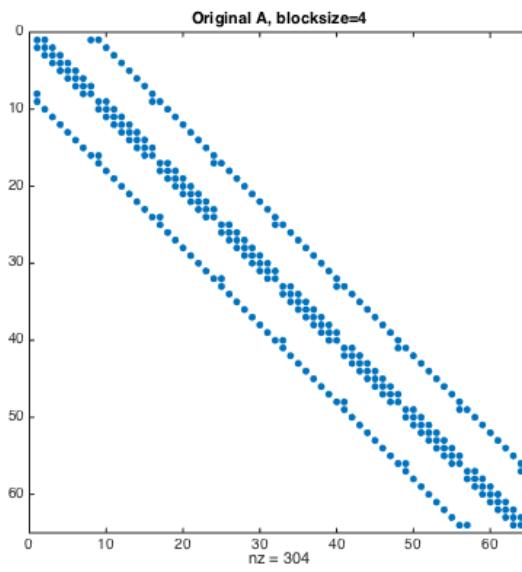
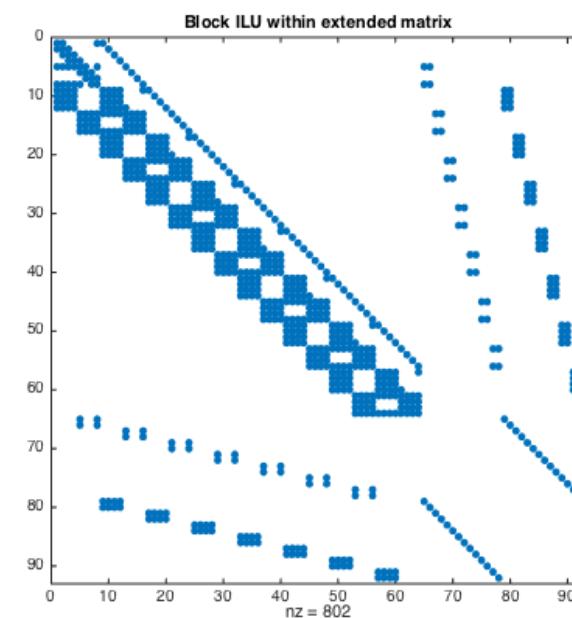
- We solve the equivalent extended system

$$\begin{pmatrix} A_1 & 0 & U & 0 \\ 0 & A_2 & 0 & V \\ U^T & 0 & 0 & -I \\ 0 & V^T & -I & 0 \end{pmatrix}$$

- We sparsify the original matrix, but add extra rows/cols that also need to be factored.
- The lower the ranks of U, V , the smaller extended system

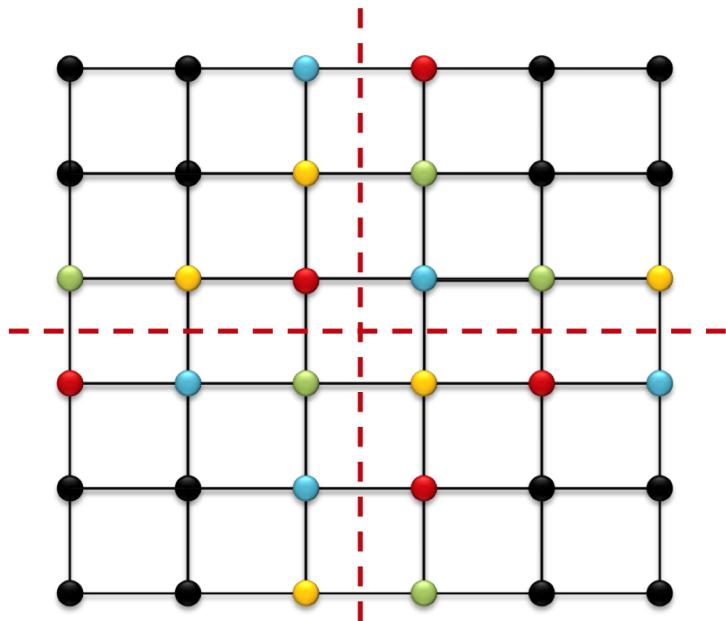
ILU and Extended Sparsification

- Note: Fill blocks in the block LU factors often have low rank
 - Schur complements in the Gaussian elimination
- Approach: Compute blocks in ILU(0) exactly, and
 - Approximate blocks in ILU(1) (not in ILU(0)) using low-rank
 - Extend matrix with new rows/cols



Our Parallel Algorithm

- Data parallel: Each processor works on a subgraph (subdomain).
- Consider the cluster graph:
 - Only boundary vertices need communication.
 - Interior vertices can be eliminated independently in parallel.
- Use graph coloring on the boundary to find concurrent work.
- $\#\text{synchronization points} = \#\text{colors}$
- Can overlap communication and computation.
- Repeat for each level.
- Future: Task-based; dynamic sched.



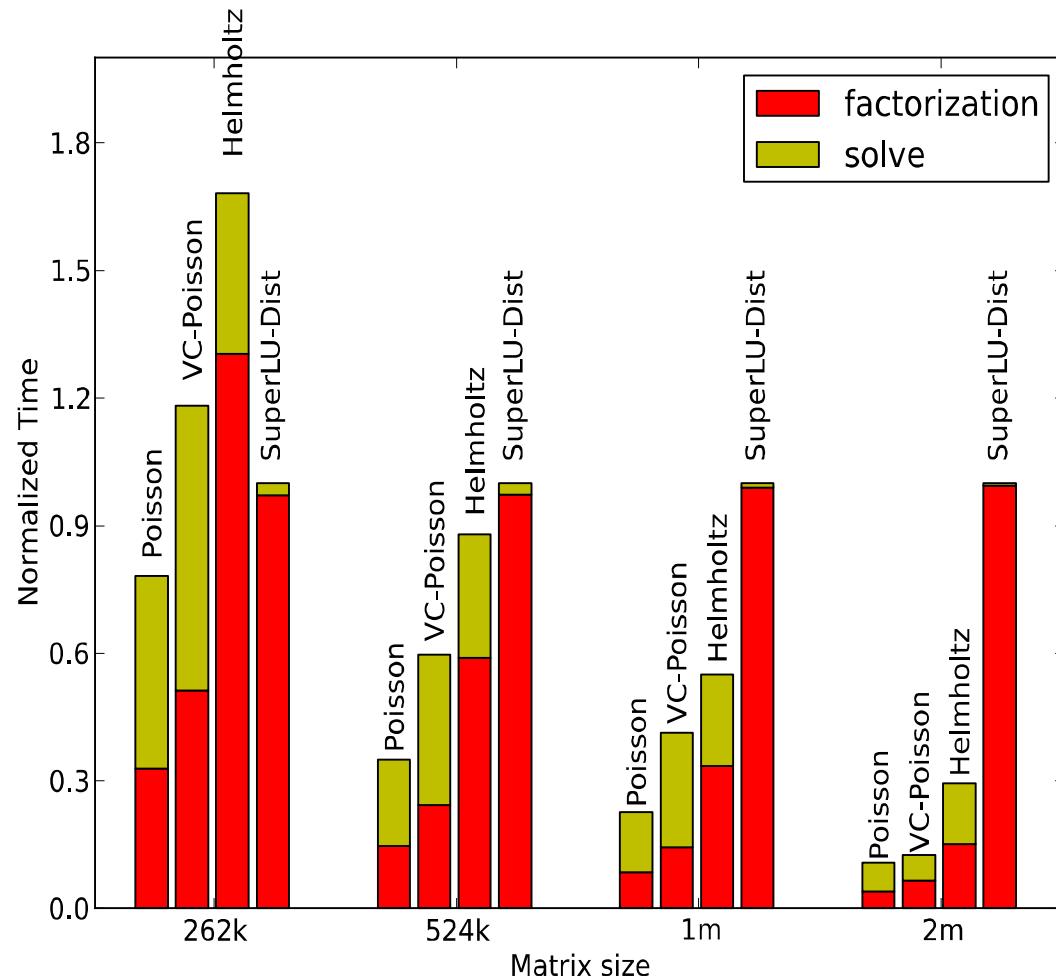
Example: 4 processors. Each vertex (node) corresponds to a cluster of variables.

Experiments

- Parallel H2 solver (and results) by Chao Chen
 - Parallel extension of LoRaSp serial code
 - MPI everywhere
 - Eigen library for dense linear algebra (on node)
- SVD for low-rank compression
 - a) Fixed eps in matrix approx. (ranks vary)
 - b) Fixed rank in matrix approx. (quality varies)
 - used in most of the experiments
- Platform: Cray XC30 (Edison/NERSC)
 - Used 16 (out of 24) cores per node
 - Used up to 16 nodes (256 cores)

Results: Structured Mesh Case

Compare hierarchical solver as preconditioner vs. SuperLU-Dist direct solver on three 3D PDE model problems. 16 processors (MPI ranks).



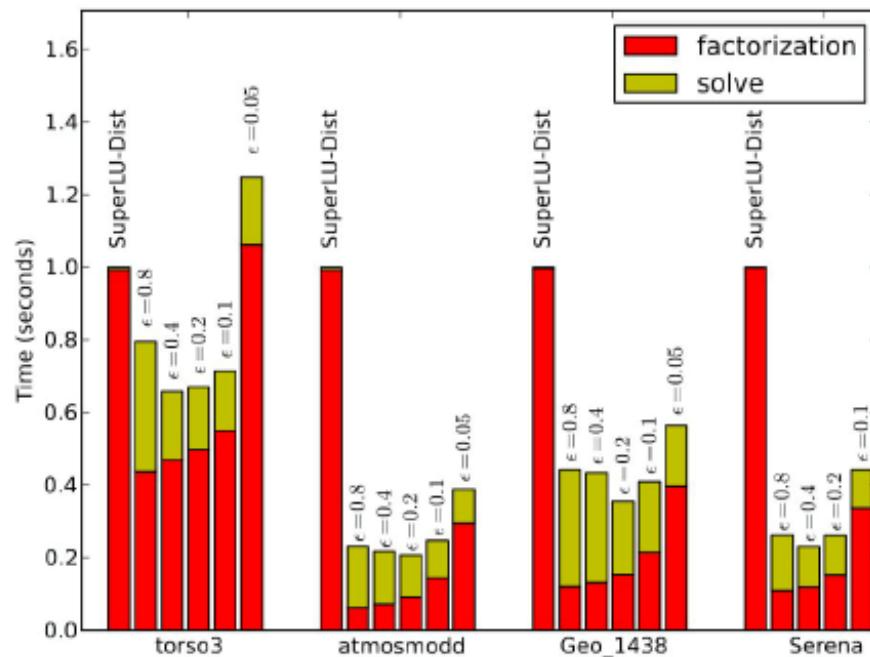
(a) Total time

Results: Unstructured Case

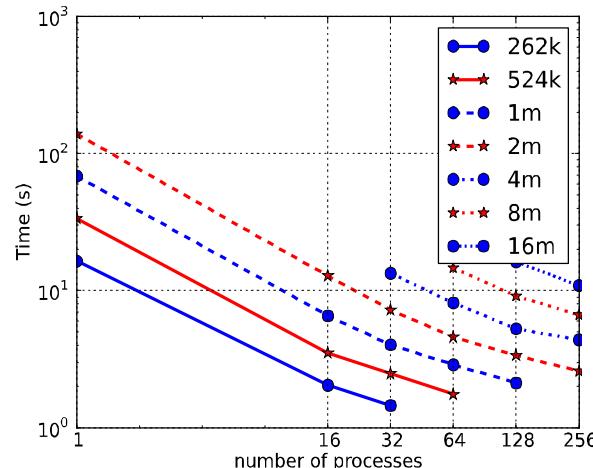
Compare hierarchical solver as preconditioner vs. SuperLU-Dist on unstructured matrices, including nonsymmetric cases.

Table 1: General matrices from the University of Florida Sparse Matrix Collection

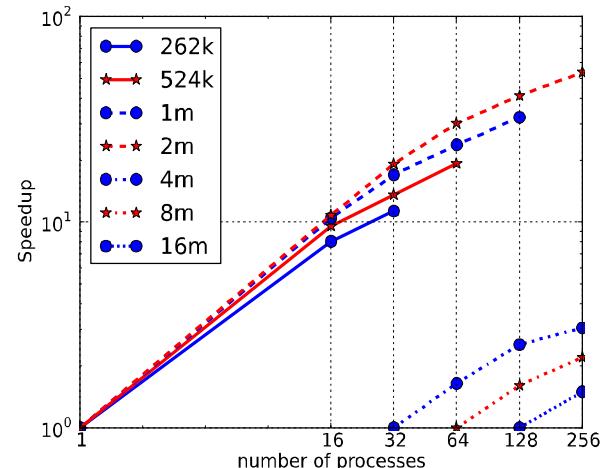
Matrices	size	# nonzero	symbolic pattern symmetry	numeric value symmetry	positive definite
torso3	0.26M	4.4M	no	no	no
atmosmodd	1.3M	8.8M	yes	no	no
Geo_1438	1.4M	60.2M	yes	yes	yes
Serena	1.4M	64.1M	yes	yes	yes



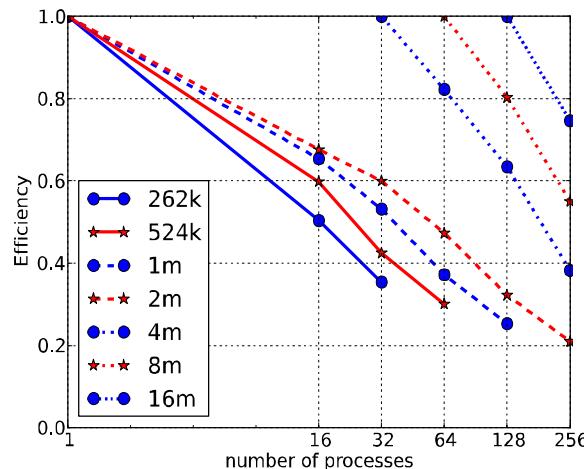
Results: 3D Poisson Eqn.



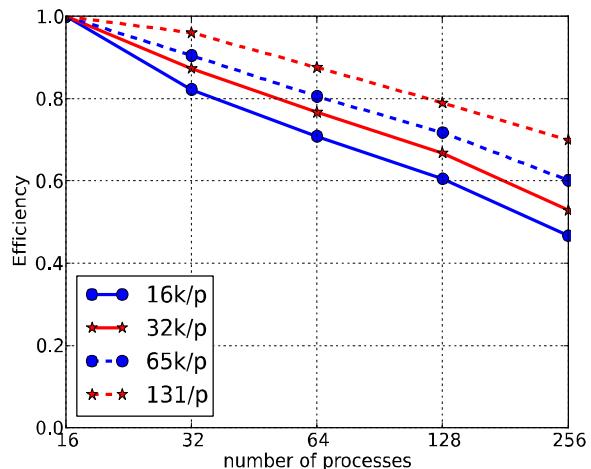
(a) Factorization time



(b) Factorization speedup

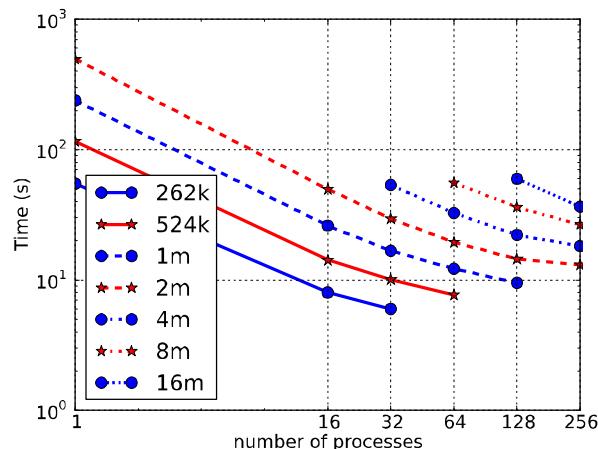


(c) Fixed total problem size

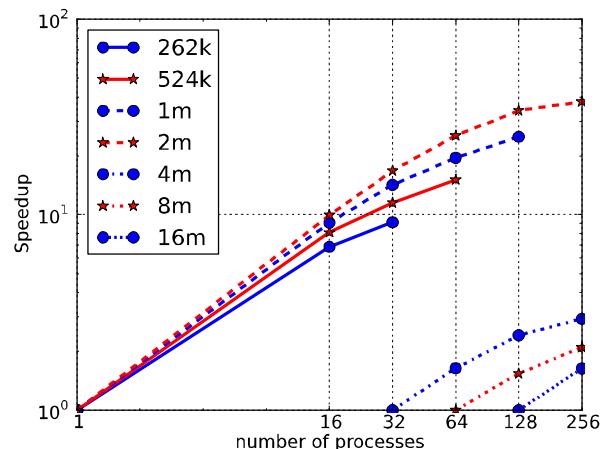


(d) Fixed problem size per processor

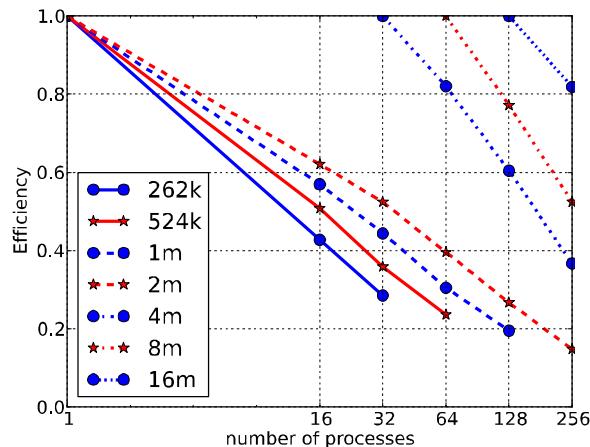
Results: Helmholtz eqn.



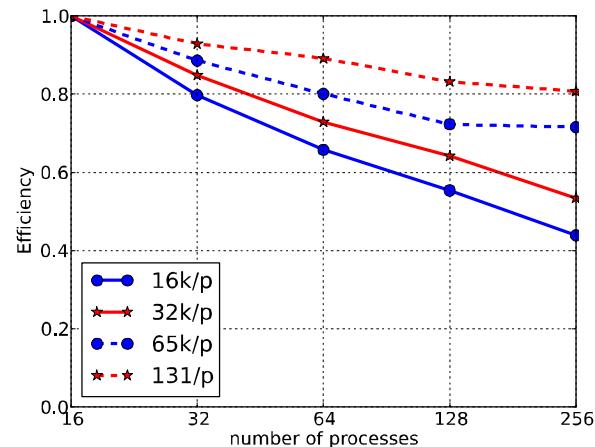
(a) Time



(b) Speedup



(c) Fixed total problem size



(d) Fixed problem size per processor

In Progress: Preserve Near-Null-Space

Laplace with Neumann bc's
except Robin on bottom with
 $\beta = 100$ on $\frac{1}{4}$ of surface &
 $\beta = 0$ on the rest

standard method with
vertical clusters

modified so 1st level
compression accounts
for constant

- Credit: Tuminaro (Matlab)
- Based on idea by Yang
- Only 1st level implemented so far

<i>mesh</i>	<i>its</i>	<i>nnz/n</i>
$16 \times 16 \times 8$	9	133.4
$32 \times 32 \times 8$	11	156.0
$64 \times 64 \times 8$	17	167.7
$128 \times 128 \times 8$	26	173.6

<i>mesh</i>	<i>its</i>	<i>nnz/n</i>
$16 \times 16 \times 8$	6	146.5
$32 \times 32 \times 8$	9	187.4
$64 \times 64 \times 8$	11	208.9
$128 \times 128 \times 8$	17	219.9
$256 \times 256 \times 8$	28	225.5

Conclusions (1)

- Hierarchical low-rank methods (HLR) augment the current solver/preconditioner ecosystem.
- Faster than sparse direct
- Most useful as preconditioner
- User must choose accuracy (input arg.)
- Setup phase can be expensive.
 - Can often amortize this cost over multiple rhs
- Theory promises near-linear complexity for many PDE problems
 - Potentially more robust than multigrid/AMG (at a cost)

Conclusions (2)

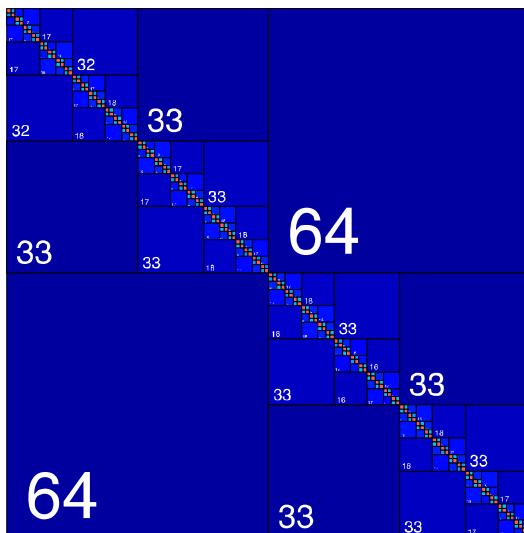
- Well suited for modern architectures
 - Most work is in dense linear algebra (even for sparse problems)
 - High arithmetic intensity
 - Many small dense matrices at same time
 - Could use batched BLAS/LAPACK
- Our hierarchical solver
 - Is motivated by H2 but can also be interpreted as multilevel ILU
 - Many options/variations still to explore
 - Low rank: SVD, RRQR, RRLU, ACA, ID, ...
- Early days:
 - Several algorithm options, best choice unclear
 - Codes are still immature but rapidly improving

Backup Slides

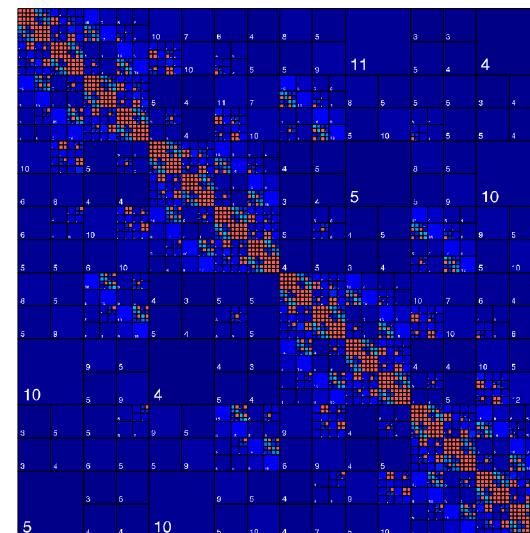
Hierarchical Matrix Formats

	Simple basis	Nested basis
Weak admissibility	HODLR	HSS
Any admissibility	H	H^2

- HSS is perhaps most popular but has drawbacks
 - Weak admissibility may require high ranks (esp. 3D problems)
- Example: Inverse of 2D Poisson eqn. (*Courtesy G. Chavez et al.*)



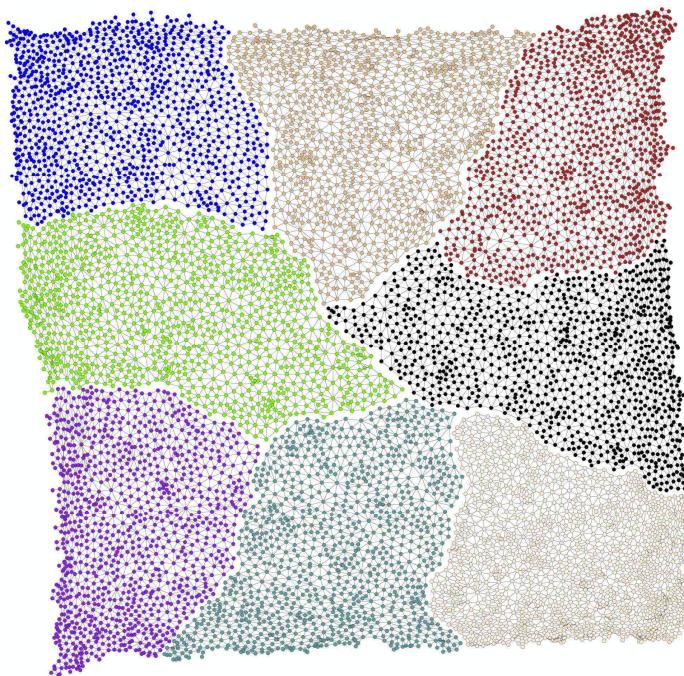
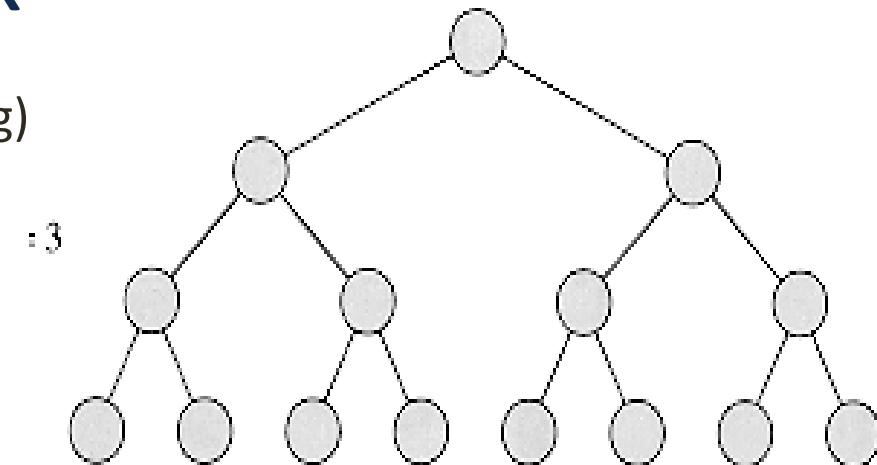
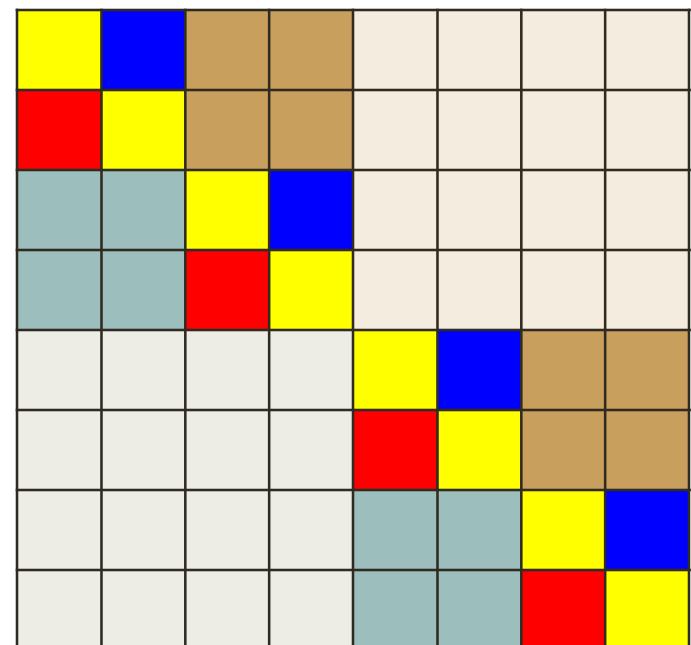
(a) Weak admissibility.



(b) Standard admissibility.

HLR: Tree and Matrix

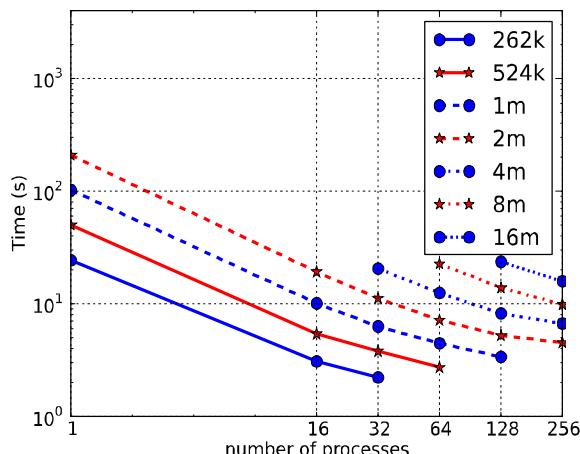
- Recursively bisect the vertices (clustering)
- Corresponds to a binary tree
- Matrix: Low-rank approximation of off-diagonal blocks
 - Only if “well-separated”
 - How to choose ranks?
 - Use SVD, ACA, ULV, or RRQR?



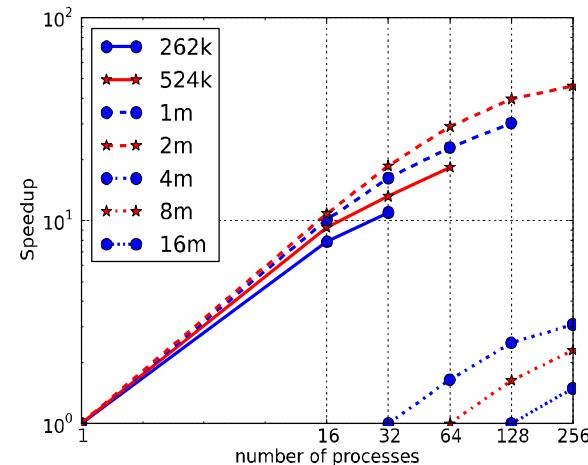
Our Hierarchical Low-Rank Sparse Solver

- Collaboration Darve (Stanford) & Sandia
- Solver based on recent H^2 methods by Darve et al.
 - IFMM (dense), LoRaSp (sparse)
- Uses block approximate LU factorization with low-rank compression for “well separated” interactions
 - Partition matrix, build H-tree, factor approximately
 - Leaves are subdomains, internal vertices correspond to approximate Schur complements (low rank)
 - Tree implicitly gives approximate LU factorization
- New method, differs from multifrontal HSS
 - Simpler, no trees within trees

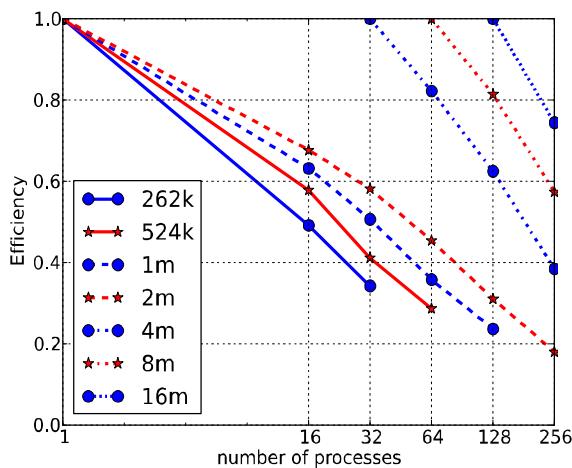
Results: Variable coeff. Poisson



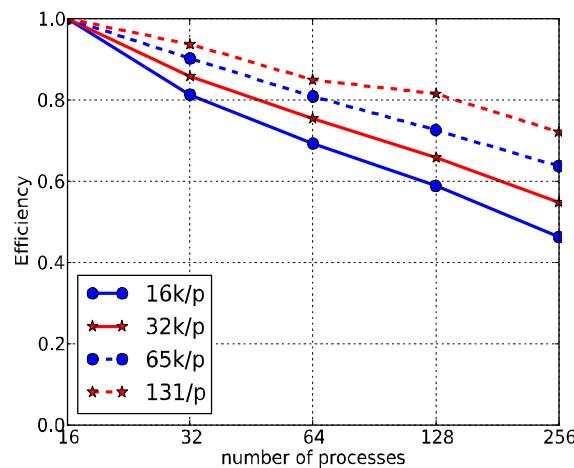
(a) Time



(b) Speedup

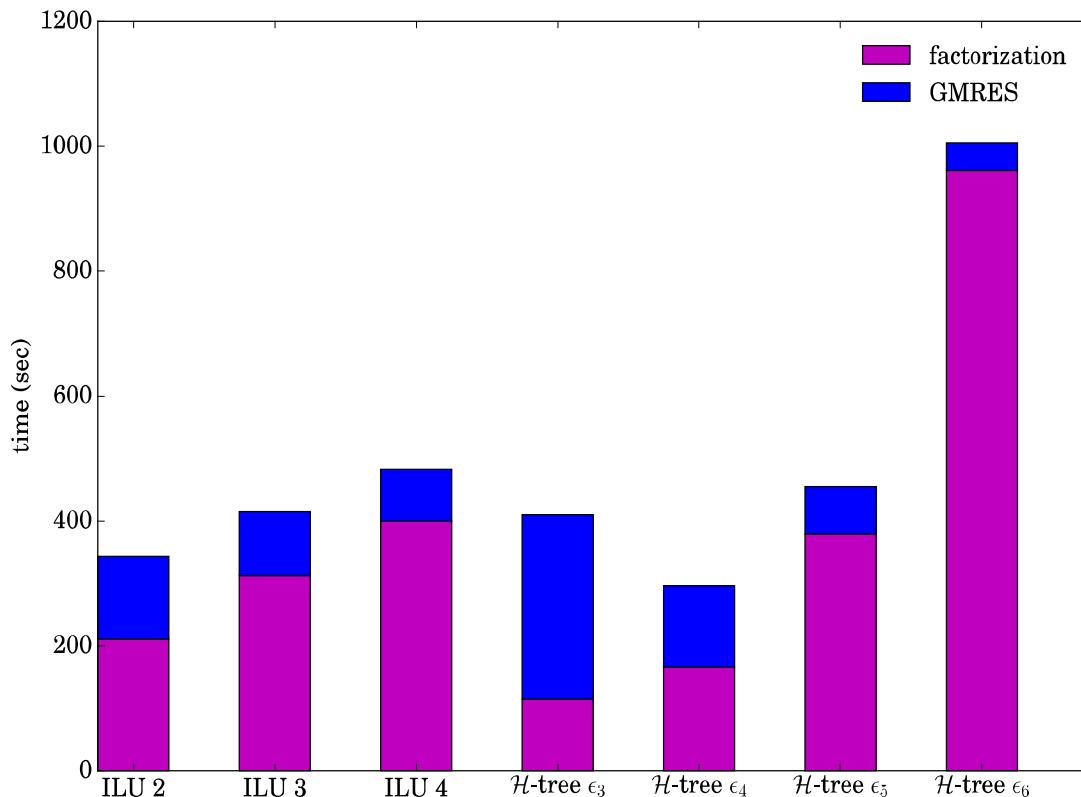


(c) Fixed total problem size



(d) Fixed problem size per processor

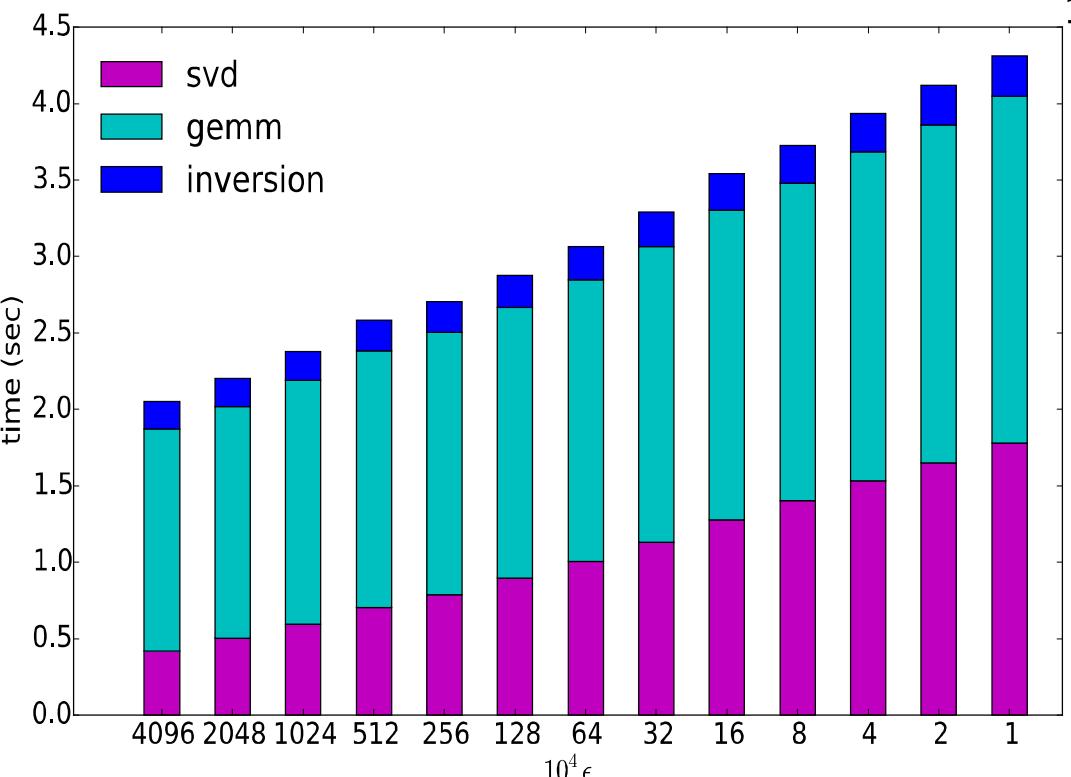
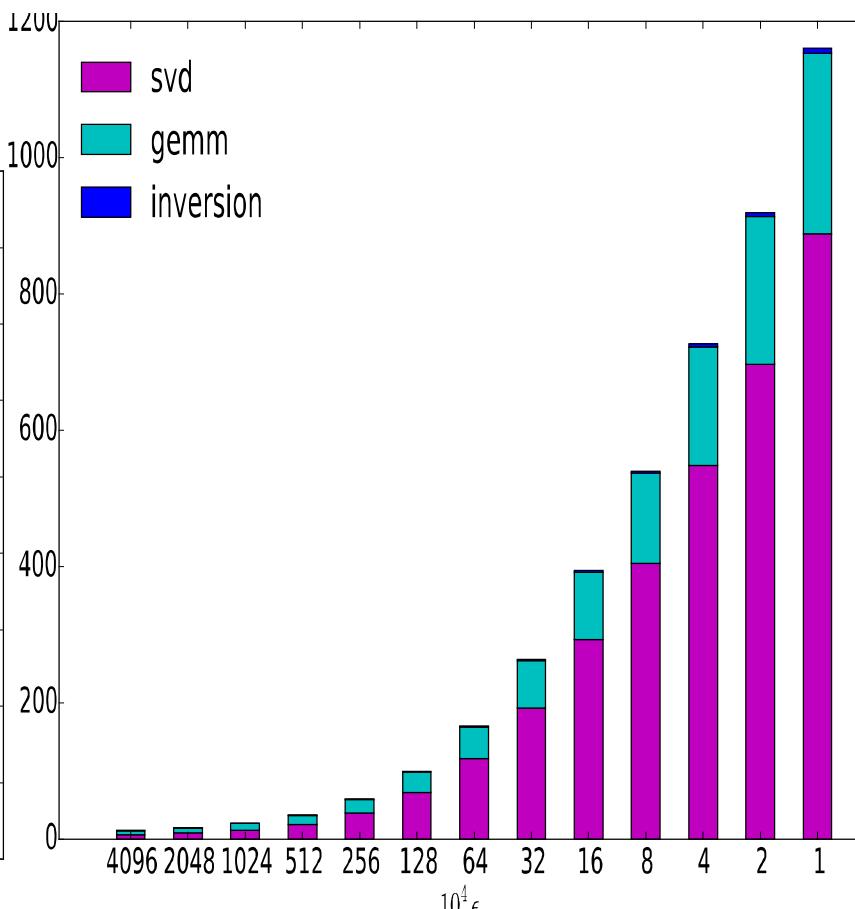
Accuracy Trade-Off



LoRaSp code (Pouransari et al); Poisson 3D

Timing Breakdown

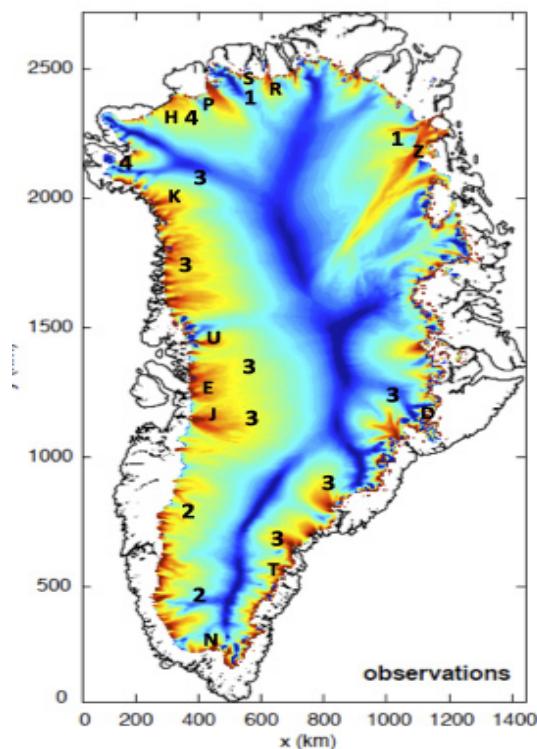
LoRaSp code (Pouransari et al.)



Ice Sheet Modeling: Greenland

We simulate ice sheet flow using Stokes' eqn. Use Albany/Felix software, Trilinos solvers for linear systems. 2.5D geometry is challenging as the z dimension is very different.

Precond.	8km mesh	4km mesh
ML	-	-
ML/custom	18	17
ILU (custom order)	12	21
H2(1e-1)	141	423
H2(1e-2)	36	153
H2(1e-1)*	19	21
H2(1e-2)*	14	13



* This version uses x-y mesh partitioning and treats "diagonal" grid points as neighbors (not well sep.)

Related Preconditioners

- LoRaSp/H2 method has similarities to several methods we already know:

Method	How LoRaSp/H2 differs
Block ILU	Low-rank compensation for dropped fill
	Extended sparsification
ARMS	Partially factors all blocks, no indep. sets
	Low-rank, extended sparsification
DD	“Coarse grid” represents dropped ILU fill
	Low-rank, extended sparsification
AMG	Coarse grid represents dropped ILU fill
	No smoother