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Abstract

The motivation for transitioning away from zirconium-based fuel cladding in light
water reactors to significantly more oxidation-resistant materials, thereby
enhancing safety margins during severe accidents, is laid out. A review of the
development status for three accident tolerant fuel cladding technologies, namely
coated zirconium-based cladding, ferritic alumina-forming alloy cladding, and
silicon carbide fiber—reinforced silicon carbide matrix composite cladding, is
offered. Technical challenges and data gaps for each of these cladding
technologies are highlighted. Full development towards commercial deployment
of these technologies is identified as a high priority for the nuclear industry.

1. Introduction

1.1.  Origins of Zr-based fuel cladding

Within 18 months of Admiral Hyman Rickover’s initial visit to Clinton Engineer Works (Oak
Ridge, TN) in June 1946 to discuss the possibility of nuclear-powered naval propulsion, he had
made the decision to proceed with zirconium as the fuel cladding in these systems [1]. This
decision was facilitated early on by the discovery of the low thermal neutron absorption cross
section in Zr once hafnium was separated [2]. A few years later his decision was vindicated
through the unintentional, and yet serendipitous, contamination of a batch of Zr-based alloy
with stainless steel residue, later named Zircaloy-2, that resolved the poor high temperature
water corrosion of this alloy system [3].

After adoption in the 1950s of the light water reactor (LWR) as the main industrial design for
commercial electricity production, Zr-based alloys were widely used as the cladding for urania
fuel pellets. Various austenitic stainless steels were also sporadically used for this purpose into
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the mid-1980s [4], after which they were discontinued because they offered lower uranium
resource utilization and exhibited similar failure rates as the Zr-based alloys [5]. In the 1990s
the nuclear power industry systematically drove up its capacity factors to achieve an
unprecedented near 90% by the end of that decade, a feat that remains unmatched by any
other electricity generation source to this day [6,7]. This was achieved by implementing an
excellent operational culture and increasing the fuel burnup [8] while greatly reducing the
failure rates of Zr-based fuel cladding [9,10]. In the first decade of the 21° century, fuel
reliability programs widely adopted by the nuclear industry achieved impressive results [11,12].
New Zr-based alloys with better performance were also adopted during the past quarter
century [13], particularly in pressurized water reactors (PWRs). Most of the Zr-based alloys
utilized today are the result of a combination of historic Western (Fe, Cr, Sn addition [14]) and
Eastern (Nb addition [15]) alloying strategies with impressive performance during normal
operation when compared to their predecessors [16].

1.2.  Severe LWR accidents and their impact

Given the awesome power density of LWR cores, ~150 W/cm?, coupled with the potential for
reactivity insertion, or loss of cooling in these complex systems, the engineers who designed
these plants recognized the need for safety systems early on. To devise a mitigation strategy,
two extreme bounding accidents were postulated and prescriptively defined as a reactivity
insertion accident (RIA) and a loss-of-coolant accident (LOCA). The active safety system
(emergency core cooling system, ECCS) was then designed specifically to respond to these
postulated or design basis accidents (DBAs) by maintaining a controllable and coolable core in
case either occurred. In other words, these prescriptively defined accident scenarios were the
basis of the ECCS design. Upon review of the regulatory guidance on the requirements for ECCS
[17], it quickly becomes clear that they were defined to avoid severe Zr-based cladding
degradation under these DBAs [18].

Taleb defines black swan events as those that are deemed highly improbable but, when they
occur, are of major consequence [19]. One may point to “beyond DBAs” as an example of black
swan events. Such accident scenarios, also referred to as severe accidents, were deemed too
improbable (with an assessed probability of <10 reactor-year [20]) and were not considered in
the basis of design for the ECCS. Yet they occurred at the Three Mile Island (1979) and the
Fukushima Daiichi (2011) nuclear power stations, totaling to an occurrence rate of >2 x 10™
reactor-year. Note that a large-break LOCA or RIA, the so-called DBA events, has yet to occur in
Western LWRs.

The heat equation in its simple form (Equation (1)) is sufficient to grasp the nature of accident
progression inside a reactor core. The left-hand side of the equation describes the temperature
(T) variation as a function of time (t) that is dampened by the heat capacity (pC,) of the
materials in the core. The first term on the right-hand side generically represents, in this
simplistic form, heat transfer processes (whether conduction [thermal conductivity, k],
convection, or radiation) to remove heat from the core. The second term on the right-hand side
is the heat generation rate (Q).



pCy o= kV2T + Q (1)
During severe accidents, core cooling is often interrupted and the decay heat in the fuel (Q in
Equation (1)) drives the core temperature upward [21]. As the core becomes uncovered (water
level decreases), the heat transfer processes become less efficient, temperatures rise further,
and the fuel elements start to experience physical and chemical degradation. Physical
degradation occurs first (700-1000°C) and involves ballooning and burst of the thin-walled
cladding tube; its extent and consequences have been extensively studied [22—-25]. Chemical
degradation is dominated by steam oxidation of Zr metal, which is highly exothermic. For
instance, the ~125 kg of Zr metal in each PWR fuel assembly produces >820 MJ of heat and
>2700 mol of hydrogen gas after it undergoes oxidation. Depending on the LWR design, the
~25-40 tonnes of this metal present in the core, if fully oxidized, would produce an excessive
amount of heat (adding to Q in Equation (1)), in turn exacerbating the course of accident
progression and furthering the burden on ECCS, Figure 1.
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Figure 1. Thermal power and cumulative energy due to radionuclide decay heat and Zr-based cladding
oxidation heat during a short-term station blackout [26] (courtesy of Kevin Robb).

1.3.  Motivation for ATF cladding

The motivation for transitioning away from Zr-based cladding to an accident tolerant fuel (ATF)
cladding alternative is straightforward: to reduce the burden on the ECCS during severe
accidents by decreasing the rate and total amount of heat generated from cladding oxidation in
high temperature steam. This reduces the Q in Equation (1), in turn lowering the rate of
temperature rise on the left-hand side of the equation. The slower temperature rise delays core
degradation processes, provides additional coping time, and reduces the threshold on the
cooling required to mitigate accident progression. These effects are now well-studied and
documented [26-29].



Since reducing the rate and total amount of heat generated as a result of steam oxidation is the
basis behind development of ATF cladding materials, it is worthwhile to ask whether there exist
materials with significantly higher steam oxidation resistance. The answer to this question was
not readily clear after the 2011 Fukushima Daiichi accident. Simply put, few technological areas
assign research interest to the oxidation behavior of materials in a high-partial-pressure steam
environment at T> 1200°C. However, soon after this accident, various research and
development (R&D) programs were launched across the globe to address this question [30—-33].
Early studies showed that although high temperature steam is a far more aggressive
environment than dry O, [34,35], the three conventional classes of protective oxide films—
namely, chromia, alumina, and silica—may be utilized to protect the underlying materials [36].
This is shown in Figure 2, the parabolic oxidation rate constant, for various cladding materials
and their resulting oxide films when they are exposed to steam at elevated temperatures.
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Figure 2. Parabolic oxidation rate for various cladding materials and
their resulting oxide in steam as a function of temperature [36—39].

To resist high temperature steam oxidation, the oxide films need to be physically and
chemically stable in steam while also acting as effective barriers against the transport of the
oxidizing species (i.e., by limiting solid state diffusion of dissolved O, OH, H,0) to reach the
underlying material. Although zirconia exhibits exceptional thermodynamic stability in steam
and excellent adherence to the underlying metal at T> 1100°C [40], it is a fast conductor of
oxygen and does not protect the underlying Zr metal. Chromia, alumina, and silica, on the other
hand, exhibit acceptable stability in steam (note that they may react with steam and volatilize
at elevated temperatures [41—-43], although slowly) while acting as effective barriers for
diffusion of oxidizing species and reaction products. As shown in Figure 2, the parabolic
oxidation rate for the materials that form and are in turn protected by these oxide films is



roughly two orders of magnitude lower. This reduction in oxidation rate directly translates to
the reduction in the rate of heat and hydrogen generation in a LWR core during the course of a
severe accident.

The three main ATF cladding technologies under active development across various
international programs consist of materials that form one of these three protective oxides. This
paper offers a review of these ATF cladding technologies. First, the design philosophy and the
desirable properties of a generic LWR fuel cladding material are discussed. Then the focus shifts
to specific concepts, development progress, and challenges. For the latter, it is intended that
fundamental material system challenges be discussed, rather than engineering and
development issues to optimize production of these technologies.

2. LWR cladding design philosophy

Nuclear fuel cladding is the first full barrier for retention of radionuclides, followed by the
reactor pressure vessel and the containment building in a typical LWR plant design. This
function, and its reliability, define the LWR fuel cladding. Fuel cladding may not be thought of as
a structural material with its associated functional requirements. These distinctions, which may
appear subtle at first glance, are profound. Although excessive dimensional change in the
cladding during the fuel lifetime is undesirable (e.g., excessive irradiation growth [44] and
assembly bowing [45]), unlike structural materials, a good degree of flexibility for deformation
is highly desirable in LWR fuel cladding.

2.1. Typical evolution

Figure 3 depicts a simplified progression of diametral evolution in LWR fuel cladding and pellet
as a function of burnup. As the fuel pin powers up, the pellet and cladding experience
immediate thermal expansion, adjusting the thickness of the initial He-filled gas gap between
them. Since the He pressure inside the rod is always lower than the coolant pressure in the
system, compressive hoop stress results in creepdown of the cladding onto the fuel pellet. The
pellet, containing ~5% porosity in the as-fabricated state, initially undergoes irradiation-induced
densification [46]. However, after reaching low burnups (<5 MWd/kgU), it experiences swelling
due to generation of fission products that manifests linearly with burnup at a rate of 0.7-1%
per 10 MWd/kgU [47,48]. Depending on the fuel pin’s power history, the gap between the
pellet and the cladding disappears at ~20 MWd/kgU due to the concomitant swelling of the
former and creepdown of the latter. After this point, the stress state in the cladding is
dominated by its mechanical interaction with the fuel pellet [49,50]. The ability of the cladding
to exhibit ductility after this point and accommodate pellet expansion is key to its integrity.
Rapid pellet expansion occurs at different rates during operational power ramps (up to 10° s
[51]) or sudden RIAs (up to 5 s [52]). Although urania itself exhibits substantial creep, >10% s™
[53-55], sufficient creep and ductility in the LWR cladding are necessary to avoid failure. Note
that while radiation damage reduces the ductility of Zr-based alloys [56,57] like most other



metals [58], the most significant loss in ductility and ability to accommodate strains in Zr-based
fuel cladding occurs due to hydrogen pickup as a result of its waterside corrosion [16,24,59-62].
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Figure 3. A simplified progression of diametral evolution in LWR fuel
cladding and pellet as a function of burnup.

The typical behavior described above is different from what most engineers are taught to deem
as superior properties for structural materials [63], where significant emphasis is placed on
strength and creep resistance. Even for sodium-cooled fast reactor cladding, the functional
requirements differ: a malleable fuel and cladding with high strength and creep resistance are
coveted [64] since any small changes in core geometry directly and significantly affect core
physics.

2.2. Desirable properties

Table 1 attempts to organize the desirable properties of LWR fuel cladding and pellet under
various normal and off-normal conditions. During normal operation, high thermal conductivity
in the pellet and cladding are desired to limit fuel centerline temperature [65]. Adequate, but
not excessive, creep in both components and high cladding strength are desired to avoid and
withstand stress buildup in the cladding. High critical heat flux for cladding heat transfer to the
coolant is desirable to avoid departure from nucleate boiling and dryout in PWRs and boiling
water reactors (BWRs), respectively [66]. Minimization of cladding corrosion to avoid thickness
loss in the load-bearing cladding tube is desirable. As noted earlier, since Zr-alloy corrosion is
accompanied by concomitant H pickup [67], reducing its rate is of further importance.

Under power ramps, high thermal conductivity and creep rates along with a low coefficient of
thermal expansion are desirable in the fuel pellet to minimize pellet—cladding mechanical
interaction (PCMI). In the cladding, high strength along with the ability to accommodate pellet
expansion via creep is highly desirable.



For a design basis LOCA, high thermal conductivity is desirable in the fuel and the cladding to
reduce the thermal energy stored in the pin. At the same time, high heat capacity is also
desirable since it will reduce the rate of temperature rise as a result of decay heat. Note that for
specific LOCA sequences in a BWR, the impact of improved fuel thermal conductivity is
negligible [68]. Of great importance during this scenario is reduction of cladding oxidation rate
to limit its degradation during accident progression and loss of post-quench ductility [24,69].
Cladding creep resistance is highly desirable to delay fuel rod burst and ballooning [70].

Under an RIA scenario, as explained by Fuchs and Nordheim [71,72] and in direct contrast to a
LOCA scenario, low heat capacity in the fuel is desirable to limit the extent of energy deposition
in the core. Since the fuel pellet’s coefficient of thermal expansion directly dictates the extent
of PCMI, a smaller value for this material property is desirable. A cladding with high heat
transfer characteristics and ductility is ideal under an RIA scenario [73,74].

Finally, for a beyond DBA scenario such as a station blackout (SBO), where core temperatures
far in excess of 1200°C are possible [75], high temperature steam oxidation resistance, as well
as overall chemical and physical stability, is of most importance [76].

Table 1. Desirable properties of LWR fuel cladding and pellet under normal operation (NO), power ramps
(PR), loss-of-coolant accident (LOCA), reactivity insertion accident (RIA), and station blackout (SBO).
Upward and downward arrows indicate that higher and lower magnitudes are desirable for a given

property, while a dash indicates insensitivity.

Cladding Fuel Pellet

NO LOCA | RIA SBO NO LOCA RIA SBO
Thermal conductivity 1 ) - - 1 ) - -
Heat capacity - ) - ) - ) l )
Oxidation rate ! ! ! ! - ! -
Coefficient of thermal ) ) ) ) ) ) ! )
expansion
Creep rate 1 l - l 1 - - -
Strength 1 ) ) ) - - l -
Critical heat flux (CHF) 1 - ) - N/A

Note that although under different scenarios lower or higher magnitudes for some of the
material properties are desired in the cladding and the fuel, slow oxidation rate and high
strength are always desirable in the cladding.

3. Coated Zr-based cladding

An immediately obvious and evolutionary approach to ATF cladding is the adoption of a
protective coating on the surface of Zr-based alloys [77]. Thin coatings are expected to have a



minimal effect on the thermomechanical behavior of Zr-based cladding, assuming sufficient
creep and limited strain mismatch are engineered into the coating [78]. Thin coatings do not
notably change the core physics in LWRs [79] and have the potential to enhance the heat
transfer characteristics of the cladding [80]. It is necessary that the coating be adherent to and
chemically stable with the Zr-based cladding substrate during normal operation and off-normal
conditions, protecting it from rapid oxidation during beyond DBAs. Coatings on the surface of
Zr-based alloys were previously considered to enhance their corrosion resistance and alleviate
susceptibility to grid-to-rod fretting failure [81,82]. As noted in Section 1.3, materials that are
capable of exhibiting high temperature steam oxidation resistance are chromia, alumina,
and/or silica formers. Therefore, any ATF coating technology needs to contain at least one of
the elements Cr, Al, or Si.

3.1.  Development status

The most widely explored coating technologies on Zr-based alloys to date are the ones that
form chromia. Specifically, Cr metal [83—85], CrAl [86], and CrN [87,88] coatings have been
studied. In the case of a metallic Cr coating with a thickness of a few to tens of micrometers,
Figure 4, the resulting chromia that forms under both aqueous or high temperature steam
conditions protects the underlying Zr metal [89,90]. Furthermore, reduced cladding ballooning
during LOCA testing and resistance to cladding post-quench ductility loss have been reported
for these coatings [91,92]. Multiple in-pile experiments to further evaluate the performance of
this technology are currently ongoing, with preliminary ion irradiation data indicating adequate
behavior [93]. As a BCC (body-centered cubic) metal, it is expected that Cr metal will exhibit
dimensional stability during neutron irradiation at LWR-relevant temperatures [94].
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Figure 4. Metallic Cr coating of thickness 12—-15 um deposited on the surface of Zr-based cladding and
characterized by a) optical microscopy, b) backscattered scanning electron microscopy, c) bright field,
and d) high resolution transmission electron microscopy. The coating appears to be fully dense and
homogeneous while the Zr—Cr interface shows good metallurgical bonding without indications of cracks
or voids (courtesy of Jean-Christoph Brachet and colleagues at CEA, SRMA, Paris-Saclay University,
France).

Excellent stability of a thin (<5 um) CrN coating on the surface of Zr-based cladding under
prototypical fuel irradiation conditions has been demonstrated [95]. Integral LOCA testing of



unirradiated CrN-coated cladding exhibited excellent coating adherence even after burst testing
but showed no improvement in oxidation or burst behavior vs. uncoated cladding, Figure 5.
Although the adverse effects of N during air oxidation of Zr-based alloys are well understood
[96], the small quantity of this element in the thin coating is not expected to cause large
degradation of the cladding during high temperature steam oxidation.

Figure 5. a) CrN-coated Zircaloy-4 cladding after pressurization to 8.3 MPa and LOCA burst testing. b)
High magnification optical image of the CrN coating on the surface. Metallographic cross sections of the
¢) CrN-coated and d) uncoated Zircaloy-4 after the LOCA test sequence conducted at ORNL’s Severe
Accident Test Station [97] with 5°C/s ramp to 1200°C in flowing steam (courtesy of Rudi Van
Nieuwenhove and Bruce Pint).

Coatings that are meant to form alumina or silica have predominantly manifested as MAX-
phase compounds [98] or FeCrAl in the case of the former, with other variants discussed in [77].
Ti,AIC [99,100], TiAIN [101,102], TisSiC, [103], and Cr,AIC [104] as MAX-phase coatings have
been examined, although none of these examinations to date have produced a complete
assessment of coating performance under normal operation, DBA, and beyond DBA conditions.
The FeCrAl coating, although adequate for normal operating conditions, forms a eutectic with
Zr at temperatures <1200°C and is not deemed a useful ATF coating [105]. Other coating
materials [77] that do not contain Cr, Al, or Si and therefore cannot produce a protective oxide
film are not considered in this review. Although these coatings may be beneficial from a normal



operational standpoint (e.g., TiN [101]), they may not be considered as ATF cladding
technologies.

It is worthwhile to review basic properties of the various proposed coatings, to decipher which
technologies among the myriad of candidates are worth further development as coated Zr-
based ATF cladding concepts. The coatings, assuming they can be reliably deposited and remain
adherent to the surface of Zr-based cladding, need to exhibit the following: corrosion resistance
in LWR coolant environments, neutron irradiation stability, and oxidation resistance to high
temperature steam. Table 2 provides a summary of these properties for select coatings. Note
that if only one of these performance characteristics is not met, the coating technology is
deemed not useful for the ATF cladding application.

Table 2. Summary of coating performance characteristics of select ATF cladding technologies. Y, N, and U
denote yes, no, and unknown, respectively.

Cr CrN CrAIN | TiAIN ;2\:{\1 Ti,AIC | TisSiC, | CrAlC
Resistant to corrosion in LWR Y Y N N Y U U N
coolant [106] [95] [107] [107] [102] [104]
Stable under neutron Y Y U U U N N U
irradiation (260—-400°C) [94] [95] [108] [109]
Increased resistant to high Y N U Y U Y N U
temperature steam oxidation [92] [110] [111] [36] [36]

A glance at Table 2 implies that Cr metal coating is the most promising technology for further
development. The same protective oxide films that protect Cr-, Al-, and Si-bearing coatings at
high temperatures also form in the agueous environment of the LWR coolant [77].
Unfortunately, only chromia is stable in this environment, while silica and alumina tend to
dissolve rapidly as silicic acid, H4SiO4, and aluminum oxy-hydroxide, AIO(OH) [112].
Incorporation of Ti, which forms a stable oxide (much like Zr), into these coatings can mitigate
dissolution (e.g., TIN/TIiAIN [102]); however (again much like Zr), Ti undergoes rapid oxidation at
elevated temperatures and its prevalence in the coating will likely compromise the protective
nature of alumina/silica (e.g., protective silica does not form during high temperature oxidation
of Ti3SiC, [36]).

3.2.  Challenges and research needs
3.2.1. Zr remains in the core

The same attribute that makes surface coatings on Zr-based alloys the most viable near-term
ATF cladding technology presents their biggest performance challenge: the ~25-40 tonnes of Zr
metal remains in the LWR core. For a coolant-limited accident, even a design basis LOCA, rod
ballooning and burst occurs at temperatures as low as 700°C [113]. This exposes at least some
fraction of the cladding’s internal surface to the oxidizing environment, even though the outer



surface may be protected by the coating. A recent and ongoing effort aims to tackle this issue
by adding an inner surface coating [114].

3.2.2. Need for elucidation of beyond DBA behavior

Except for a few studies [106,115], none of the research groups to date have exceeded the
temperature limit of the design basis LOCA scenario (1204°C [116]) during their steam oxidation
tests when examining the coatings discussed in Table 2. These environments are indeed
demanding on the coating, which needs to withstand steam oxidation on one side and chemical
reaction with the highly reactive Zr metal on the other [105].

Ultimately, owing to the R&D programs discussed above, several emerging coating technologies
hold abundant promise for improving fuel performance during normal operation (Cr, CrN, and
TiN) and should be pursued to elevate their technology readiness level towards ultimate
deployment in commercial reactors. The reader is reminded that Zr-based cladding technology
is deemed safe and adequate for normal, anticipated operational occurrence (AOO), and DBA
scenarios. However, beyond DBA testing must be conducted on ATF cladding technologies to
showcase their improvements in cladding performance; such instances are glaringly lacking for
almost all coating-based ATF technologies under development to date.

Brachet [89] provides a sound explanation of how Cr-coated Zr-based cladding improves the
peak cladding temperature limit of the design basis LOCA (by ~100°C) and extends the time at
elevated temperatures before post-quench ductility is lost (hours for coated cladding instead of
minutes for uncoated cladding). The impact of these additional safety margins on the beyond
DBA behavior of LWRs should be assessed through use of severe accident analysis codes.
Without significantly more experimental data, an assessment of this and other coating
technologies is not possible.

4. FeCrAl cladding

Fe-based alloys have been used as nuclear fuel cladding since 1951, when the Experimental
Breeder Reactor | (EBR-I) first went critical with austenitic stainless steel—-clad Mark-I fuel
assemblies [117]. Naturally, the use of these austenitic alloys was extended into commercial
LWRs [4] for decades, even though the first LWR power station in Shippingport, Pennsylvania,
started its operation with Zr-based clad fuel provided by Admiral Rickover’s navy [118].
Austenitic stainless steels (types 304, 316, and 347) used as cladding in BWRs were eventually
replaced with Zr-based cladding due to the stress corrosion cracking (SCC) failure experienced
in high-oxygen-activity coolant environments of the pre-1990s era without water chemistry
control [5]. This failure mode is distinct from a previously common mode of SCC failure in Zr-
based alloys: corrosive fission products initiated failure in the inner surface of the cladding
[119]. Although austenitic steel—clad fuel operated reliably in PWRs [5], the drive to achieve
higher burnups, and by extension better economics, also facilitated their eventual replacement
by Zr-based cladding.



Ferritic steels, having a BCC structure as opposed to the Ni-stabilized FCC (face-centered cubic)
structure of austenitic Fe-based steels, are known to exhibit better SCC resistance [120] but
were never adopted for use in commercial LWRs, although they were used in sodium-cooled
fast reactors [64]. Ferritic alloys have also been developed for other potential commercial
nuclear power applications such as the development program by General Electric in the 1960s,
which aimed to take advantage of the high temperature oxidation resistance of FeCr, FeAl, and
FeCrAl ferritic alloys, for high temperature reactor applications [121-127].

After survey tests examining a variety of candidate Fe-based alloys [34,35], reexamination of
oxidation-resistant Fe-based alloys for LWR application was proposed [5]. Once again, alloys
capable of forming protective chromia, alumina, or silica were to be examined. To form
protective chromia films, ferritic steels with Cr content >22 wt% were deemed necessary
[35,128], far surpassing the Cr content above which o’ phase separation and resulting
embrittlement occurs in the Fe-Cr binary system at LWR-relevant temperatures [129,130]. For
austenitic alloys capable of forming a protective chromia at 1200°C (e.g., 310 SS [35]), similar Cr
contents had to be accompanied by high Ni additions to preserve the FCC structure. This in turn
results in high thermal neutron absorption in the cladding (~10x higher than Zr-based cladding
[79,131]) and is deemed impractical. Additions of 2 wt% Si to Fe-12Cr did significantly improve
steam oxidation resistance, but protective scale formation in steam was limited to <1100°C
[132]. While alumina-forming austenitic alloys [133] are not oxidation resistant under these
same conditions, exceptional steam oxidation resistance was observed for ferritic FeCrAl alloys
up to near their melting point (~1500°C) [134-136].

4.1.  Development status

Dedicated R&D programs in the United States [137-139] and Japan [140-142] are pursuing
FeCrAl cladding as an ATF cladding technology. Although the main focus of the former program
is on developing wrought oxidation-resistant alloy variants [143], the Japanese effort intends to
also greatly improve on the strength by pursuing oxide dispersion strengthened (ODS) FeCrAl
alloys [144].

To avoid embrittlement of FeCrAl cladding as a result of the o’ precipitation [129,130,145-148]
that occurs after irradiation at ~300—400°C (LWR-relevant temperatures), lean (<13 wt% Cr,

<4 wt% Al) commercial FeCrAl alloys were evaluated for this application. However, these lean
compositions, although resistant to oxidation in air, were discovered to have poor resistance to
high temperature steam [35]. Accordingly, systematic studies of the critical Al and Cr contents
in the alloy system were performed to identify the necessary combination for adequate steam
oxidation resistance up to ~1500°C [134,136,141,149,150] while minimizing the potential for a’-
induced embrittlement or weld-initiated cracking [151]. Furthermore, the effects of alloy
composition on its melting point [152], oxidation beyond melting point [135], and compatibility
with other fuel assembly constituents have been examined [132,140,153].



An up-to-date review of various properties and behavioral aspects of FeCrAl alloys for the ATF
cladding application is available in [154]. Production of wrought [143,155,156] and ODS
[157,158] bar stock and thin-walled cladding has been described and demonstrated, Figure 6.
As-fabricated strength and ductility in FeCrAl alloys may be tuned by controlling alloy
composition and microstructure to achieve values comparable to or higher than Zr-based alloys
[143,158]. Mechanical properties after neutron irradiation, for dose regimes relevant to LWR
fuel cladding (Table 3), have been quantified [145,148]. It is shown that although the strength
increases and uniform elongation approaches nil at <7 dpa, the irradiated material retains
sufficient ductility as total elongation on the order of ~10% up to at least ~15 dpa. A variety of
recent welding studies [151,159,160] and limited neutron irradiation data [161] on these welds
are now available, indicating robust fusion-based welds are possible through strict control of
the process and alloy composition. Corrosion behavior of these alloys in LWR coolant
environments has been examined, and resistance to uniform corrosion via formation of Cr-rich
oxides (wholly distinct from alumina formation in high temperature steam) without a notable
dependence on alloy composition has been reported [140,162-165], Figure 7. Owing to their
BCC structure, ferritic alloys exhibit roughly 100x better SCC resistance in aqueous
environments when compared to austenitic stainless steels [120,166]. This, combined with the
strict water chemistry control of today’s LWRs, assuages the historical concern with Fe-based
clad fuel pin failure.
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Figure 6. a) Commercially fabricated, thin-walled Fe-12Cr-6Al-1Mo cladding in BWR geometry; b) optical
micrograph of the grain structure in the longitudinal and transverse directions, showing slightly
elongated grains of ~61 um; c) inverse pole figure map of grain orientation in the radial direction after a
tube drawing process in which deformation is accommodated heterogeneously [156] (courtesy of
Yukinori Yamamoto).

Table 3. Displacements per atom (dpa) per effective full-power year (EFPY) for various cladding materials
in LWRs. Calculation used the SPECTER [167] code and lifetime average neutron flux spectra tallied

within the LWR cladding (courtesy of Nicholas Brown).

Cladding Material Eg* (eV) PWR (dpa/EFPY) BWR (dpa/EFPY)
Zr 40 3.9 3.1
Cr 40 4.1 3.3
Fe-12Cr-6Al 40, 40, 27 4.0 3.3
SiC 35, 20 5.7 4.6

*E4 is the displacement energy in the NRT model [168] associated with each element.




Normal Operation Accident Scenario
Fe-10Cr-5Al after 1 y in 330°C HWC  Fe-10Cr-5Al after 1 y in 290°C NWC Fe-10Cr-8Al after 4 h in 1200°C steam
(a) (Fe,Cr)30,

Figure 7. Depending on the environment, various protective films form on the surface of FeCrAl alloys.
a,b) In low and high oxygen activity aqueous environments, and largely insensitive to the Cr content in
the alloy within a 10-18 wt% Cr window, protective Cr-rich spinel or hematite films form [162]. ¢) Under
high temperature steam oxidation, if a critical and sufficient combination of Cr and Al is present in the
alloy [134], protective alumina forms. High angle annular dark field (HAADF) transmission electron
images are courtesy of Kinga Unocic.

Fuel performance and off-normal behavior of FeCrAl-clad UO, pellets, in their optimal thin-
walled geometry, have been assessed [169-171], indicating reliable performance. Normal
operation and AOO behavior of the FeCrAl cladding is expected to be superior to that of Zr-
based cladding, given the enhanced oxidation resistance during post-CHF events and indications
of higher CHF [172]. LOCA simulation tests on low-strength wrought alloys indicate comparable
burst behavior to Zr-based cladding [173], while no loss of post-quench ductility was observed
[174,175]. Adoption of ODS FeCrAl variants with higher strength and high temperature creep
resistance [157,158], owing to the dispersion of fine oxide particles [176], is expected to greatly
enhance burst margins while preserving the oxidation resistance to near melting. Much like
unirradiated Zr-based cladding, FeCrAl cladding exhibits abundant ductility during rapid PCMI
tests [177], simulating RIA events. Since the loss of ductility after neutron irradiation is not
exacerbated by hydride precipitate formation in these alloys, better PCMI performance is also
expected at high burnups.

4.2.  Challenges
4.2.1. Poor thermal neutron utilization factor

The composition of nuclear-grade FeCrAl alloy has been optimized (10-13 wt% Cr, 5.5-6 wt%
Al, 2 wt% Mo for solid solution strengthening [143], and <0.1 wt% Y to exploit the reactive
element effect [178]) to alleviate embrittlement concerns raised early on [5] while exhibiting
robust environmental stability. However, other challenges remain with this cladding system
that are inherent to the material. The first is the magnitude of the neutron absorption cross
section of natural Fe and Cr (with known uncertainties [179]), resulting in roughly ~4—6% of



thermal neutrons being absorbed in the cladding vs. ~1% absorbed in the Zr-based cladding
[79]. To compensate for this absorption, the pellet enrichment may be increased and/or
cladding thickness reduced and pellet dimeter extended, allowing for cycle lengths comparable
to the current fuel system in PWRs [131,180] and BWRs [181]. In both cases, this is
accompanied by extra cost (i.e., cost of enrichment or cost of more LEU mass), resulting in a
~15-25% increase in fuel bundle cost [5]. This economic impact is further scrutinized in

Section 6.

4.2.2. Potential for increased tritium release

Another challenge that requires further understanding and resolution is the permeability of BCC
ferritic alloys to H isotopes [182], specifically tritium that forms as a result of ternary fission in
the fuel. In PWRs a substantial inventory of tritium is produced from the dissolved boric acid in
the coolant via the °B(n, 2a)?H reaction, which is roughly equal to the extent produced in the
fuel and is contained within the primary loop [183]. In BWRs, in the absence of dissolved B in
the coolant, the main source of tritium production is the fuel, and since the reactor system
injects steam directly from the core to the turbines, the increased >H release from the fuel is
impactful. In the current fuel system, the strong chemical affinity of Zr for H [184] traps the
tritium as it diffuses away from the fuel towards the coolant. In the case of ferritic alloys,
permeability roughly two orders of magnitude higher than that of Zr-based alloys and twice
that of austenitic Fe alloys has been reported [183]. The full impact of increased release needs
to be understood, as it previously occurred in PWR and BWR cores with austenitic stainless
steel—clad fuel pins [4]. Permeability to H may be retarded by oxide films [185-187] on the
surface of the cladding, which could be engineered during fabrication or grown in situ during
operation. Since alumina dissolves in high temperature water [112], potential candidates are
the outer (Fe,Cr)-rich oxide that forms during uniform corrosion [162] or an inner alumina that
may form, as suggested in [183], as a result of fuel-cladding chemical interaction. Evidence that
the former is an effective barrier has recently been made available [141]. Relevant to formation
of an alumina barrier in the cladding’s inner surface, a recent study of FeCrAl oxidation in air
reported formation of only 10-50 nm oxides after 100 h exposures at 300—600°C, with
crystalline alumina only forming at the highest temperature [188].

4.2.3. Need for elucidation of beyond DBA behavior

A final consideration regarding the performance of this cladding material under beyond DBA
conditions is worthwhile. Although the UO,-FeCrAl system has received the most complete
severe accident analysis assessment of any ATF fuel candidate to date [27,189], with the aim of
guantifying the gains in margins of safety and coping time during such events, additional work
is necessary. While alumina formation, inherent to the bulk material, offers remarkable
oxidation resistance up to ~1500°C, rapid oxidation occurs at temperatures near the melting
point of the alloy [135]. The integral behavior of the FeCrAl-clad pin and fuel assembly beyond
this point is not well understood. Integral fuel bundle oxidation tests up to and beyond this
point, such as the ones described in [190], are necessary to gain additional information.



The results of the previously referenced severe accident simulations show that although
significantly less H, and CO are produced, additional coping time for short-term, long-term, and
partially mitigated SBO scenarios is on the order of 1-5 h, increasing with delays in the
accident’s onset after core shutdown. The usefulness of this additional coping time, although
deemed superior to the coated cladding ATF concepts, needs to be fully assessed by reactor
operators and regulators.

5. SiC/SiC cladding

SiC fiber reinforced SiC matrix composite (SiC/SiC) technology has yielded engineering materials
used today in highly demanding applications, such as components in commercial jet engines
[191]. Remarkably, the technology originated from nuclear-energy-related R&D in 1970s, when
Yajima first produced high strength SiC fibers [192,193]. Application of bulk SiC in fission energy
systems dates back even further and persists to this day, with its use as a constituent of coated
fuel particles in high temperature gas-cooled reactors [194].

Today, new generations of SiC fiber and methods of composite production that yield nuclear-
grade SiC/SiC are available [195]. Nuclear-grade SiC/SiC is defined here as composites utilizing
Generation Ill SiC fibers [196] with chemical vapor infiltrated (CVI) [195] or nano-infiltration
transient eutectic phase (NITE) [197] SiC matrices. CVI consists of chemical vapor deposition of
SiC using methyltrichlorosilane (MTS) or ethyltrichlorosilane (ETS) onto the SiC fiber skeleton to
form a dense composite [198]. The NITE process forms a sintered SiC matrix with high
crystallinity from nanopowder feedstock to avoid damaging the fibers during forming [199].
Other SiC-matrix-forming methods such as melt infiltration (or liquid silicon infiltration) [200],
reaction sintering [201], or polymer impregnation and pyrolysis [202], yielding large fractions of
secondary phases or amorphous pockets in the material, are not deemed radiation stable [203].

Owing to their exceptional oxidation resistance [204] and high temperature strength [205,206],
far surpassing Cr-coated Zr-based or FeCrAl cladding materials, SiC/SiC composites are deemed
the ideal ATF cladding material.

5.1.  Development status

Sauder provides a complete summary of SiC/SiC development and properties for nuclear
applications [207], and many other useful reviews focusing on application of these materials in
fusion energy systems are also available [208-210]. With the high temperature strength and
oxidation resistance of SiC-based materials recognized, their application as LWR fuel cladding
was proposed early on [211-213].

Two distinct production routes for SiC/SiC cladding are in use today, conforming to the two
radiation-stable methods described earlier. The isothermal CVI methodology is the most
common approach for cladding production used in the United States [214,215], France [216],
South Korea [217], and Japan [218]. This method results in a highly pure and crystalline, and
therefore highly radiation-stable [219], composite of relatively low density (with 10-25%



porosity) [195]. Note that other viable and potentially attractive CVI techniques (e.g., forced-
flow, thermal-gradient CVI [220]) yielding higher density are not in use today for SiC/SiC
cladding production. The second route for production of SiC/SiC cladding, primarily pursued in
Japan [221], involves the NITE process, with utilization of hot pressing for production of
cladding also demonstrated elsewhere [222]. This methodology delivers a dense material with
improved mechanical properties [223]. A combination of the CVI and NITE techniques for
nuclear-grade SiC/SiC production has also been suggested [224].

Besides establishing a robust production methodology, the focus of the past decade’s
development efforts has been fixated on understanding and quantifying the mechanical
behavior of SiC/SiC composite tube structures [217,225,226], developing radiation-stable
joining methods [227], and neutron irradiation testing of these composites [228,229].
Multitechnigue mechanical characterization studies with application of digital image correlation
[230] and orchestration of round robin tests [231] have provided good understanding regarding
mechanical response of SiC/SiC cladding structures. A variety of joints were demonstrated [232]
and irradiated under LWR-relevant temperatures, resulting in identification of SiC-based joints
as the most appropriate [233]. Neutron irradiation tests at LWR-relevant temperatures showed
that the mechanical behavior of SiC/SiC does not degrade within the dose regimes applicable
for LWR cladding applications (Table 3) [234,235]. Fuel-cladding chemical compatibility tests
indicate no notable interaction (at least in the absence of irradiation) between SiC and urania
below 1200°C [236,237].

Finally, within the same timeframe, a number of high temperature steam oxidation and quench
tests were conducted on SiC-based materials to evaluate their performance under beyond DBA
scenarios [39,238-240]. An example is presented in Figure 8, showing chemical vapor
deposition (CVD-SiC) and NITE-SiC specimens after 1700°C steam oxidation tests. Even though
the silica film on the surface is molten at this temperature, oxidation progresses far slower than
in metallic cladding materials. All these tests clearly indicate that owing to its superior
performance under these extreme conditions, if successfully deployed, SiC-based cladding is
the most impactful ATF technology under beyond DBA scenarios.

It is worth noting that for roughly as long as SiC/SiC has been considered for LWR fuel cladding
technology, it has also been deemed a potential replacement for the Zr channelbox in BWR fuel
assemblies [241]. Since thermal neutron absorption is even lower in SiC than in Zr, such a
transition is accompanied by an immediate advantage towards better fuel utilization in LWRs
[181]. This author deems the channelbox application as the appropriate immediate deployment
target for SiC/SiC in LWRs to precede SiC-based cladding deployment.
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Figure 8. Scanning electron microscopy image from cross sections of a) CVD-SiC and b) NITE-SiC oxidized
in 1700°C steam for 2 and 0.5 h, respectively, showing previously molten silica on the surface containing
trapped reaction product gas bubbles. c) Characteristic X-ray map of O from the NITE-SiC specimen
showing that unlike CVD-SiC, corrosion progresses nonuniformly and faster. Tests were conducted in
flowing steam at ORNL’s Severe Accident Test Station [97]. Although not shown here, if the NITE-SiC
specimens are coated with a thin layer of CVD-SiC, they experience slower oxidation and behave in a
manner similar to bulk CVD-SiC [242].

5.2.  Challenges

Critical examinations of SiC/SiC technology for LWR cladding application have been codified in
[243,244]. Two critical feasibility issues, namely aqueous corrosion and fuel cladding failure due
to microcracking during normal operating conditions, were identified as key areas requiring
further examination.

5.2.1. SiCdissolution in aqueous environments

Corrosion of SiC-based materials in high-temperature high-pressure water, henceforth referred
to as hydrothermal corrosion, received attention as early as the 1980s [245], when mass loss as
a function of time was reported. Studies specific to LWR coolant chemistry have emerged since
the 2000s, indicating the superior behavior of high purity SiC (i.e., CVD) [246,247]. Similar to
high temperature steam environments, the corrosion process is initiated with oxidation of Si in
SiC to form silica while the C, except for a narrow window of conditions [248], volatilizes as CO,,
CO, or CHy, depending on the oxygen activity in the system [249]. However, unlike the flowing



steam environments where SiO;, undergoes slow (mass-transport limited [204]) volatilization as
Si(OH)a(g), the newly formed silica rapidly dissolves in the aqueous environment as silicic acid
[250,251]. Since there exists abundant solubility of silica in high temperature water [252], and
the rate of silica dissolution is much faster than the rate of its formation, the latter determines
the rate-limiting step for hydrothermal corrosion of SiC. Hence the strong effect of oxygen
activity in the water on the corrosion rate of SiC that was determined in recent years is not
surprising [249,253]. Essentially, dissolved hydrogen reduces the oxygen activity and redox
potential in the system, slowing the rate of silica formation. Hydrogen water chemistry (HWC)
was always a characteristic of PWR primary loop coolant (owing to the H; gas in the pressurizer)
[254] and is now routinely used in BWRs to reduce the oxygen activity in these systems and
alleviate a host of agueous corrosion concerns [255], primarily SCC of core internals.

A number of out-of-pile and in-pile corrosion tests to quantify the recession rate of CVD-SiC and
NITE-SiC have been conducted to date and are summarized in Table 4. Similar tests on joined
SiC specimens indicate that the SiC-based joining technologies that exhibit superior radiation
stability are also the ones that are most corrosion resistant [256]. For a SiC-based fuel cladding,
a recession rate of 0.1 mg/cm?-month results in thickness loss of ~3.7 um/year (assuming fully
dense cladding) while ~55 kg of silica is expected to be dissolved and deposited in the primary
coolant annually. During out-of-pile tests, depending on the composition of the sintering
additives, the corrosion rate of NITE-SiC is ~1-2 orders of magnitude faster than CVD-SiC [257].
Radiation is known to exacerbate the hydrothermal corrosion rate of SiC due to increasing
oxygen activity in the system as a result of radiolysis [258] and introduction of radiation
damage in SiC that renders it a more corrosion-susceptible material [259]. Substantial
dissolution during in-pile corrosion tests with NWC coolant conditions has been reported for
CVI SiC/SiC specimens [260]. Utilization of HWC is known to greatly reduce the oxygen activity
as radiolysis takes place [261] while also, as shown recently [262], largely mitigating the
susceptibility of irradiated CVD-SiC to faster corrosion. It should be noted that even when HWC
is utilized, selective migration of H to the gas phase as boiling takes place in BWR fuel bundles
results in an increase in oxygen activity in the liquid phase [261].

Table 4. SiC recession rate in mg/cm?-month from various out-of-pile and in-pile tests.

Out-of-pile In-pile
HWC NWC HWC NWC
CVD-SiC 0.01-0.03 [249,253] | 0.1-1.5[246,249,253,263] | 0.15-0.3 [260,264] 1-5 [260]
NITE-SiC 0.5-5 [257] 10 [257] 2-30 [265] >30

Only recently has systematic in-pile corrosion testing of SiC in a well-characterized water
chemistry environment been initiated to produce high quality data [266]. However, to mitigate
SiC dissolution entirely, the use of aqueous corrosion-resistant coatings has been proposed
[267-269]. As noted earlier in Table 2, Cr, CrN, and TiN are such coatings. Preliminary results
from coated SiC, neutron irradiated to 0.5 dpa, are promising, indicating that these coatings are
able to accommodate swelling strain (saturating at ~0.1 dpa [203]) in the SiC substrate after 0.5



dpa and remain adherent and crack-free [270]. This is likely due to abundant irradiation creep
in the coating layer.

5.2.2. Potential for radionuclide release due to microcracking

The potential for SiC/SiC fuel cladding failure due to microcracking is another area that merits
deeper understanding. Note that failure in this instance is not defined by a catastrophic break
in the material; rather it is characterized by formation of a pathway, likely a network of
microcracks, that allows for release of radionuclides from the cladding internals to the coolant.
SiC/SiC composites have been brilliantly engineered to exhibit macroscopic ductility and
therefore are robust structural materials. However, the mechanism that facilitates this
macroscopic ductility consists of microcracking of the SiC matrix (since matrix modulus is higher
than the fiber [195], it cracks first) followed by fiber bridging and pullout. It is therefore
postulated that matrix microcracking may provide a path for release of radionuclides when the
fuel cladding application is considered.

While catastrophic failure in SiC/SiC composites occurs at an ultimate tensile stress (UTS) of
~200 to ~400 MPa and a total strain of ~0.5%, the microcracking in the matrix develops when
proportional limit strength (PLS), manifesting at ~90 MPa (CVI) to ~200 MPa (NITE) stress or
~0.05% strain, is reached [195,231,271], Figure 9. The UTS and PLS of SiC/SiC may be described
by certain statistical distribution functions such as a two-parameter Weibull distribution [195],
with lower scale and shape parameters for the latter, facilitating the possibility of microcracking
at stresses well below 90 MPa. In fact, the onset of microcracking has been attributed to stress
levels at ~80% of PLS [272].

This modest level of stress, as shown by numerous thermomechanical analyses in recent years
by various research groups [273—277], is expected to be present in SiC/SiC cladding during
normal LWR fuel operation. Although the pioneering analyses [278,279] failed to capture this
effect, the large swelling gradient [280] across the cladding thickness, itself a result of a large
temperature gradient due to the low thermal conductivity of SiC/SiC cladding [281], presents a
stress profile conspicuously distinct from that of the metal cladding. The result is that prior to
pellet—cladding contact, unlike metallic cladding, the maximum tensile stress is on the inner
surface of the SiC-based cladding [273]. This stress is increased further upon core shutdown
[275] and PCMI [282]. Furthermore, the strong sensitivity of SiC swelling to temperature for the
regime relevant to LWRs may result in large deflections when nonuniform pellet power profiles
are considered [282].

The ability of SiC/SiC cladding to remain hermetic under irradiation and high heat flux is the
subject of ongoing research [283]. Early experimental results appear to confirm the model
predictions of high tensile stress on the inner surface of the cladding [284]. It is conceivable that
microcracking initiated in the inner surface may come to rest as it propagates across the
cladding thickness towards the region experiencing strong compressive stress; this hypothesis
will be experimentally verified with a sensitive leak detection apparatus such as the one
described in [285]. At the same time, the potential for microcracking in SiC/SiC further



underlines the usefulness of an outer coating layer that may serve the dual purpose of

protecting SiC from hydrothermal corrosion while serving as an additional barrier to
radionuclide release.
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Figure 9. a) Typical stress—strain curve during axial tensile testing of a CVI SiC/SiC tube [286].
b,c,d) Fracture surface of composite at different magnifications.

5.2.3. Need for material standard and design architecture definition

SiC/SiC is a fundamentally different material than the various metal fuel claddings used since
the inception of nuclear energy: its constituents are brittle ceramics and it is heterogeneous.
Although, and as noted earlier, SiC/SiC has been engineered to exhibit pseudo-ductility, its
treatment as a qualified material requires well-defined design rules. Although such rules and
standards readily exist for metallic materials, they are currently being defined and developed
for ceramic matrix composites [287]. This activity is of paramount importance and needs to be
supported fully and broadly by and within the nuclear SiC/SiC community.

The heterogeneous nature of SiC/SiC (i.e., fiber inside the matrix) may manifest in a myriad of
architectures, facilitating the opportunity to produce a composite tuned for a specific
application. For instance, fully composite (woven or braided) [225], woven composite with an
inner monolith [214,217,288], braided composite with an outer monolith [214], and metal-
composite hybrid [289] concepts have all been produced and examined for the nuclear fuel
cladding application. This implies that a unanimous understanding on an optimal architecture



for SiC/SiC cladding is lacking. Defining a standard and optimal SiC/SiC fuel cladding architecture
for adoption across the nuclear community should be deemed a high priority.

5.2.4. Need for elucidation of beyond DBA behavior

SiC undergoes oxidation—volatilization in flowing steam, best described by paralinear kinetics
[290,291]. Furthermore, high steam pressures, which may be present during severe accidents,
may increase the oxidation rate of the cladding by causing pore formation in the protective
silica [39,292,293]. Recent studies indicate that pore formation can manifest even at
atmospheric pressures when a high partial pressure of oxidation product gases (i.e., H,, CO,
Si(OH)4) are present in the system [294]. Except for Avincola et al. [239], the temperature range
of all other studies has been limited to < 1700°C. Additional separate effects and integral tests
are necessary to examine the behavior of SiC/SiC cladding technologies under beyond DBA
scenarios.

6. Discussion

This section presents arguments in support of full development and deployment of ATF
cladding concepts. The technical challenges discussed in the previous sections are not deemed
insurmountable with focused R&D. Also, a brief attempt at presenting the fuel cycle cost is
made here with the intention of showing that the overall benefits of ATF cladding concepts
outweigh their higher cost. Finally, the need for additional R&D to generate data in support of
informed deployment of these technologies is highlighted.

6.1. Zr is approaching its performance limit

It is clear to the readers of this journal that a broad range of advanced reactor concepts [295]
are under active development across the globe. These advanced concepts aim to offer higher
performance (efficiency and resource utilization) and enhanced safety, and thereby better
economics than the current fleet of LWRs. Almost none of these advanced reactor concepts
intend to utilize Zr-based alloys as fuel cladding or as any structural component. Aside from its
low strength at elevated temperatures [296], as an HCP (hexagonal close-packed) metal,
application of Zr to high dose, >30 dpa, and high temperature, >450°C, is not viable given its
susceptibility to runaway irradiation growth [44].

Regarding the LWR application of Zr, any substantial further gains in fuel burnup are limited by
zirconium’s inherent affinity for hydrogen [8]. Material-specific challenges with Zr-based alloys
under beyond DBA scenarios were discussed in Section 1.3, and real limitations under DBAs
have been previously elaborated upon in [5]. The susceptibility of Zr-based alloys to severe
degradation during post-CHF events is well-documented [297,298], imposing strict limits to
core loading possibilities as well as the reactor’s operational flexibility.

6.2. Partial gains provide additional coping time



In Section 1.3 the stated motivation for transitioning away from Zr-based alloys to ATF cladding
materials is to reduce the rate of heat generation, Q in Equation (1), in the core. Note that this
transition does not resolve the ultimate susceptibility of LWR cores with active safety systems
to degradation under beyond DBAs. If the first term on the right-hand side of Equation (1),
which represents heat removal from the core, is smaller than Q, the temperature in the core
will rise. When loss of cooling capability is severe, adiabatic conditions best describe core
temperature evolution. Under such a scenario, a smaller Q only delays the onset of core
degradation. However, this smaller Q will positively impact accident progression in the core in
two important ways.

First, additional coping time will be available to interfere with the core and to provide cooling,
Figure 1. Depending on the accident scenario and the type of ATF cladding, this additional
coping time will be on the order of minutes to tens of hours [189]. Although not substantial, the
additional time may be exploited to facilitate injecting coolant to the core to mitigate the
accident’s progression. Given the physics of a LWR core, none of the ATF cladding concepts
allow for a “walkaway safe” core. However, their utilization will delay the core’s degradation
processes, by prolonging the period during which active safety systems can be brought on line
to cool the core.

Second, the rate and total magnitude of heat and hydrogen generated in the core are smaller
[28] for ATF cladding concepts because their oxidation rate is lower. This implies that the
threshold cooling capability necessary to stabilize the temperatures or cool the core is lower.
This highlights the importance of partial cooling capability and the lower burden on ECCS
capacity.

6.3. ATF cladding should not be deemed cost prohibitive

LWR fuel constitutes ~20% of nuclear electricity generation cost today, Figure 10. The fuel cost
itself is dominated (>75%) by the cost of uranium, its conversion, and enrichment (note that
SWU [separative work unit] prices have dropped in recent years to their lowest levels in
decades [299], lowering the fuel price). At roughly $30/m Zr-based cladding itself constitutes
<3% of the fuel assembly cost, Table 5. In the case of coated Zr-based and SiC/SiC cladding
materials, where thermal neutron absorption in the cladding is negligible [79], only the
remaining fuel fabrication cost should be considered. Coating deposition on the surface of the
cladding is not expected to increase the fuel cost notably. In the case of SiC-based cladding, the
cladding cost today is high (>$1000 per tube), dominated by the nuclear-grade (Gen Ill) SiC
fibers at ~$15,000/kg. These fibers are ~50x more expensive than the early generation ceramic-
grade fibers. The current price of certain Gen Il fibers does not necessarily reflect their actual
production cost and is a result of low demand due to lack of large industrial application (much
like the Zr price in its early days was too high). Once industrial demand for Gen IlI SiC fibers
takes off, the fiber price is expected to drop greatly. Although the cladding cost itself is
expected to be less compared to Zr-based cladding, the higher thermal neutron absorption in
FeCrAl will require additional fissile loading (more uranium and enrichment) that will result in
an additional cost of the fuel assembly on the order of 15-25% [5,131].



Note that in all cases in Table 5, the fuel pellet is considered to consist of urania that is stable in
the highly oxidizing LWR coolant environments, whether high pressure water during normal
operation [300,301] or steam to >2400°C under accidents [76,302]. Urania remains stable since
H, is always present at very small quantities, retarding its further oxidation to UsOs. High
density monolithic non-oxide fuels (>9.5 gU/cm?), as they manifest today, are not considered
safe for LWR application since they are highly reactive in O, and H,O environments of >400°C
[303-305], defeating the motivation discussed in Section 1.3.
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Figure 10. Fuel, operating, and capital costs as a fraction of the average total generating
cost in 2016 for US-generated nuclear electricity, 534 per MWh [306,307].

Table 5. Price estimate in kS for a PWR fuel bundle with various cladding materials (assuming the same
fabrication cost).

Cladding cost | Fuel pellet cost | Fabrication Difference from
per bundle per bundle cost Total cost base case (%)
Zr-based (base case) 30 950 140 1120 -
Coated Zr-based <40 950 140 <1130 <1
FeCrAl <30 1140 140 <1310 <17
SiC/SiC >300* 950 140 >1390 224

*The cost is dominated by fiber and may be greatly reduced once fibers are produced in large volumes.

In today’s electricity market, at least in the deregulated regions of the United States, price
competition is fierce. Most prominently, owing to hydraulic fracturing, natural gas is available in
abundance; priced at <$3/MMBtu in the United States, 2—3 times cheaper than in the European
Union and Asia, it is a cheap source of electricity. Given this pressure, there exists a strong
sensitivity to any increase in nuclear fuel price. However, there are a number of opportunities
to reduce the overall fuel cycle cost [308]. These opportunities are real and include the
following:
e Expanded fuel operational window (higher CHF limits and resistance to degradation
during post-CHF events as well as the absence of a cladding ductility loss mechanism
due to hydride precipitates)



e Increased fuel burnup, no longer limited by cladding performance (although >5% %*°U
enrichment will likely be necessary)

e Increased limits on peak cladding temperature and exposure duration under DBA
scenarios

e Application of risk-informed categorization and treatment of structures, systems, and
components for nuclear power reactors (i.e., 10 CFR 50.69) and regulatory guidelines, to
change operational models and reduce maintenance costs [309]

e Enhanced back-end performance of used fuel and less susceptibility to degradation
during storage and transport

Most important, the nuclear industry, unlike other heavily regulated industries (e.g.,
aerospace), has failed to adopt advanced materials over the past decades [310]. This failure is a
recipe for obsolescence, and it is imperative that the community moves forward with adoption
of ATF cladding materials to break this trend. Also, these materials are often the same ones
being considered for advanced (non-LWR) systems, and their successful deployment in LWRs
will greatly facilitate their adoption in future nuclear energy systems.

6.4. Experimental data remains a critical need

Large datasets of high quality are necessary to support predictive understanding of fuel
behavior under all the scenarios listed in Table 1. This body of data, as it pertains to Zr-based
alloys, was collected over the decades and needs to be replicated for the ATF cladding
technologies. Note that over two-thirds of the references cited in this article were published
since the Fukushima Daiichi accidents in 2011. This highlights the level of effort directed at
developing these technologies internationally and the resulting technical output from those
studies. However, the need for complete datasets remains critical, as they are key facilitators of
furthering the technology readiness level for these advanced fuel systems [311]. Particular
focus should be placed on in-pile testing of these fuel concepts in prototypical environments
[312] as well as experimental data to inform fuel degradation behavior during severe accidents
[313].

7. Summary

The motivation for developing alternative fuel cladding materials with significantly enhanced
oxidation resistance to replace Zr-based alloys in LWRs is to delay and reduce the heat and
hydrogen generated during severe accidents as a result of cladding oxidation. Three leading
concepts under active development are Cr-coated Zr-based cladding, FeCrAl cladding, and
SiC/SiC cladding, with improved severe accident performance in that order. A review of
development status, challenges, and data gaps for these concepts shows promise without
identifying any insurmountable technical challenges. Additional R&D in key areas and
generation of high quality experimental data to explain their properties and integral
performance behavior are necessary to further the technology readiness level of these cladding
concepts toward commercial-scale deployment and realization of their safety benefits. Full
development and adoption of ATF cladding technologies will likely improve the economics of



the overall fuel cycle and will showcase the nuclear industry as adopting new materials and
technologies, paving the way for other advanced nuclear systems.
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