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Abstract	
	

The	motivation	for	transitioning	away	from	zirconium-based	fuel	cladding	in	light	
water	 reactors	 to	 significantly	 more	 oxidation-resistant	 materials,	 thereby	
enhancing	 safety	margins	 during	 severe	 accidents,	 is	 laid	 out.	 A	 review	 of	 the	
development	status	for	three	accident	tolerant	fuel	cladding	technologies,	namely	
coated	 zirconium-based	 cladding,	 ferritic	 alumina-forming	 alloy	 cladding,	 and	
silicon	 carbide	 fiber–reinforced	 silicon	 carbide	 matrix	 composite	 cladding,	 is	
offered.	 Technical	 challenges	 and	 data	 gaps	 for	 each	 of	 these	 cladding	
technologies	are	highlighted.	Full	development	towards	commercial	deployment	
of	these	technologies	is	identified	as	a	high	priority	for	the	nuclear	industry.	

	
	
	

1. Introduction		
	

1.1. Origins	of	Zr-based	fuel	cladding	
Within	18	months	of	Admiral	Hyman	Rickover’s	initial	visit	to	Clinton	Engineer	Works	(Oak	
Ridge,	TN)	in	June	1946	to	discuss	the	possibility	of	nuclear-powered	naval	propulsion,	he	had	
made	the	decision	to	proceed	with	zirconium	as	the	fuel	cladding	in	these	systems	[1].	This	
decision	was	facilitated	early	on	by	the	discovery	of	the	low	thermal	neutron	absorption	cross	
section	in	Zr	once	hafnium	was	separated	[2].	A	few	years	later	his	decision	was	vindicated	
through	the	unintentional,	and	yet	serendipitous,	contamination	of	a	batch	of	Zr-based	alloy	
with	stainless	steel	residue,	later	named	Zircaloy-2,	that	resolved	the	poor	high	temperature	
water	corrosion	of	this	alloy	system	[3].		
	
After	adoption	in	the	1950s	of	the	light	water	reactor	(LWR)	as	the	main	industrial	design	for	
commercial	electricity	production,	Zr-based	alloys	were	widely	used	as	the	cladding	for	urania	
fuel	pellets.	Various	austenitic	stainless	steels	were	also	sporadically	used	for	this	purpose	into	
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the	mid-1980s	[4],	after	which	they	were	discontinued	because	they	offered	lower	uranium	
resource	utilization	and	exhibited	similar	failure	rates	as	the	Zr-based	alloys	[5].	In	the	1990s	
the	nuclear	power	industry	systematically	drove	up	its	capacity	factors	to	achieve	an	
unprecedented	near	90%	by	the	end	of	that	decade,	a	feat	that	remains	unmatched	by	any	
other	electricity	generation	source	to	this	day	[6,7].	This	was	achieved	by	implementing	an	
excellent	operational	culture	and	increasing	the	fuel	burnup	[8]	while	greatly	reducing	the	
failure	rates	of	Zr-based	fuel	cladding	[9,10].	In	the	first	decade	of	the	21st	century,	fuel	
reliability	programs	widely	adopted	by	the	nuclear	industry	achieved	impressive	results	[11,12].	
New	Zr-based	alloys	with	better	performance	were	also	adopted	during	the	past	quarter	
century	[13],	particularly	in	pressurized	water	reactors	(PWRs).	Most	of	the	Zr-based	alloys	
utilized	today	are	the	result	of	a	combination	of	historic	Western	(Fe,	Cr,	Sn	addition	[14])	and	
Eastern	(Nb	addition	[15])	alloying	strategies	with	impressive	performance	during	normal	
operation	when	compared	to	their	predecessors	[16].		
	
1.2. Severe	LWR	accidents	and	their	impact	
Given	the	awesome	power	density	of	LWR	cores,	~150	W/cm3,	coupled	with	the	potential	for	
reactivity	insertion,	or	loss	of	cooling	in	these	complex	systems,	the	engineers	who	designed	
these	plants	recognized	the	need	for	safety	systems	early	on.	To	devise	a	mitigation	strategy,	
two	extreme	bounding	accidents	were	postulated	and	prescriptively	defined	as	a	reactivity	
insertion	accident	(RIA)	and	a	loss-of-coolant	accident	(LOCA).	The	active	safety	system	
(emergency	core	cooling	system,	ECCS)	was	then	designed	specifically	to	respond	to	these	
postulated	or	design	basis	accidents	(DBAs)	by	maintaining	a	controllable	and	coolable	core	in	
case	either	occurred.	In	other	words,	these	prescriptively	defined	accident	scenarios	were	the	
basis	of	the	ECCS	design.	Upon	review	of	the	regulatory	guidance	on	the	requirements	for	ECCS	
[17],	it	quickly	becomes	clear	that	they	were	defined	to	avoid	severe	Zr-based	cladding	
degradation	under	these	DBAs	[18].		
	
Taleb	defines	black	swan	events	as	those	that	are	deemed	highly	improbable	but,	when	they	
occur,	are	of	major	consequence	[19].	One	may	point	to	“beyond	DBAs”	as	an	example	of	black	
swan	events.	Such	accident	scenarios,	also	referred	to	as	severe	accidents,	were	deemed	too	
improbable	(with	an	assessed	probability	of	<10-5	reactor-year	[20])	and	were	not	considered	in	
the	basis	of	design	for	the	ECCS.	Yet	they	occurred	at	the	Three	Mile	Island	(1979)	and	the	
Fukushima	Daiichi	(2011)	nuclear	power	stations,	totaling	to	an	occurrence	rate	of	>2	×	10-4	
reactor-year.	Note	that	a	large-break	LOCA	or	RIA,	the	so-called	DBA	events,	has	yet	to	occur	in	
Western	LWRs.		
	
The	heat	equation	in	its	simple	form	(Equation	(1))	is	sufficient	to	grasp	the	nature	of	accident	
progression	inside	a	reactor	core.	The	left-hand	side	of	the	equation	describes	the	temperature	
(T)	variation	as	a	function	of	time	(t)	that	is	dampened	by	the	heat	capacity	(𝜌𝐶#)	of	the	
materials	in	the	core.	The	first	term	on	the	right-hand	side	generically	represents,	in	this	
simplistic	form,	heat	transfer	processes	(whether	conduction	[thermal	conductivity,	𝑘],	
convection,	or	radiation)	to	remove	heat	from	the	core.	The	second	term	on	the	right-hand	side	
is	the	heat	generation	rate	(Q).	
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During	severe	accidents,	core	cooling	is	often	interrupted	and	the	decay	heat	in	the	fuel	(Q	in	
Equation	(1))	drives	the	core	temperature	upward	[21].	As	the	core	becomes	uncovered	(water	
level	decreases),	the	heat	transfer	processes	become	less	efficient,	temperatures	rise	further,	
and	the	fuel	elements	start	to	experience	physical	and	chemical	degradation.	Physical	
degradation	occurs	first	(700–1000°C)	and	involves	ballooning	and	burst	of	the	thin-walled	
cladding	tube;	its	extent	and	consequences	have	been	extensively	studied	[22–25].	Chemical	
degradation	is	dominated	by	steam	oxidation	of	Zr	metal,	which	is	highly	exothermic.	For	
instance,	the	~125	kg	of	Zr	metal	in	each	PWR	fuel	assembly	produces	>820	MJ	of	heat	and	
>2700	mol	of	hydrogen	gas	after	it	undergoes	oxidation.	Depending	on	the	LWR	design,	the	
~25–40	tonnes	of	this	metal	present	in	the	core,	if	fully	oxidized,	would	produce	an	excessive	
amount	of	heat	(adding	to	Q	in	Equation	(1)),	in	turn	exacerbating	the	course	of	accident	
progression	and	furthering	the	burden	on	ECCS,	Figure	1.	
		
	

	
Figure	1.	Thermal	power	and	cumulative	energy	due	to	radionuclide	decay	heat	and	Zr-based	cladding	

oxidation	heat	during	a	short-term	station	blackout	[26]	(courtesy	of	Kevin	Robb).	
		
1.3. Motivation	for	ATF	cladding	
The	motivation	for	transitioning	away	from	Zr-based	cladding	to	an	accident	tolerant	fuel	(ATF)	
cladding	alternative	is	straightforward:	to	reduce	the	burden	on	the	ECCS	during	severe	
accidents	by	decreasing	the	rate	and	total	amount	of	heat	generated	from	cladding	oxidation	in	
high	temperature	steam.	This	reduces	the	Q	in	Equation	(1),	in	turn	lowering	the	rate	of	
temperature	rise	on	the	left-hand	side	of	the	equation.	The	slower	temperature	rise	delays	core	
degradation	processes,	provides	additional	coping	time,	and	reduces	the	threshold	on	the	
cooling	required	to	mitigate	accident	progression.	These	effects	are	now	well-studied	and	
documented	[26–29].	
	

0 1 2 3 4 5 6 7 8 9 10
1

2

4

8

16

32

64

128

256

512

Th
er

m
al

 P
ow

er
 [M

W
]

Time after Shutdown [h]

 Decay Heat
 Oxidation Heat

heat generation due to Zr oxidation 
is >10x the decay heat power of the fuel,
resulting in rapid temperature increase 

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

1000

the motivation for ATF cladding is 
to delay the onset and reduce the 
magnitude of oxidation heat

H
ea

t [
G

J]

Time after Shutdown [h]

 Total Heat
 Decay Heat
 Oxidation Heat

Cumulative

extra heat due to Zr oxidation that 

needs to be removed by the ECCS



Since	reducing	the	rate	and	total	amount	of	heat	generated	as	a	result	of	steam	oxidation	is	the	
basis	behind	development	of	ATF	cladding	materials,	it	is	worthwhile	to	ask	whether	there	exist	
materials	with	significantly	higher	steam	oxidation	resistance.	The	answer	to	this	question	was	
not	readily	clear	after	the	2011	Fukushima	Daiichi	accident.	Simply	put,	few	technological	areas	
assign	research	interest	to	the	oxidation	behavior	of	materials	in	a	high-partial-pressure	steam	
environment	at	T	>	1200°C.	However,	soon	after	this	accident,	various	research	and	
development	(R&D)	programs	were	launched	across	the	globe	to	address	this	question	[30–33].	
Early	studies	showed	that	although	high	temperature	steam	is	a	far	more	aggressive	
environment	than	dry	O2	[34,35],	the	three	conventional	classes	of	protective	oxide	films—
namely,	chromia,	alumina,	and	silica—may	be	utilized	to	protect	the	underlying	materials	[36].	
This	is	shown	in	Figure	2,	the	parabolic	oxidation	rate	constant,	for	various	cladding	materials	
and	their	resulting	oxide	films	when	they	are	exposed	to	steam	at	elevated	temperatures.		
	

	
Figure	2.	Parabolic	oxidation	rate	for	various	cladding	materials	and	
their	resulting	oxide	in	steam	as	a	function	of	temperature	[36–39].	

To	resist	high	temperature	steam	oxidation,	the	oxide	films	need	to	be	physically	and	
chemically	stable	in	steam	while	also	acting	as	effective	barriers	against	the	transport	of	the	
oxidizing	species	(i.e.,	by	limiting	solid	state	diffusion	of	dissolved	O,	OH,	H2O)	to	reach	the	
underlying	material.	Although	zirconia	exhibits	exceptional	thermodynamic	stability	in	steam	
and	excellent	adherence	to	the	underlying	metal	at	T	>	1100°C	[40],	it	is	a	fast	conductor	of	
oxygen	and	does	not	protect	the	underlying	Zr	metal.	Chromia,	alumina,	and	silica,	on	the	other	
hand,	exhibit	acceptable	stability	in	steam	(note	that	they	may	react	with	steam	and	volatilize	
at	elevated	temperatures	[41–43],	although	slowly)	while	acting	as	effective	barriers	for	
diffusion	of	oxidizing	species	and	reaction	products.	As	shown	in	Figure	2,	the	parabolic	
oxidation	rate	for	the	materials	that	form	and	are	in	turn	protected	by	these	oxide	films	is	
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roughly	two	orders	of	magnitude	lower.	This	reduction	in	oxidation	rate	directly	translates	to	
the	reduction	in	the	rate	of	heat	and	hydrogen	generation	in	a	LWR	core	during	the	course	of	a	
severe	accident.	
	
The	three	main	ATF	cladding	technologies	under	active	development	across	various	
international	programs	consist	of	materials	that	form	one	of	these	three	protective	oxides.	This	
paper	offers	a	review	of	these	ATF	cladding	technologies.	First,	the	design	philosophy	and	the	
desirable	properties	of	a	generic	LWR	fuel	cladding	material	are	discussed.	Then	the	focus	shifts	
to	specific	concepts,	development	progress,	and	challenges.	For	the	latter,	it	is	intended	that	
fundamental	material	system	challenges	be	discussed,	rather	than	engineering	and	
development	issues	to	optimize	production	of	these	technologies.		
	
	

2. LWR	cladding	design	philosophy		
	
Nuclear	fuel	cladding	is	the	first	full	barrier	for	retention	of	radionuclides,	followed	by	the	
reactor	pressure	vessel	and	the	containment	building	in	a	typical	LWR	plant	design.	This	
function,	and	its	reliability,	define	the	LWR	fuel	cladding.	Fuel	cladding	may	not	be	thought	of	as	
a	structural	material	with	its	associated	functional	requirements.	These	distinctions,	which	may	
appear	subtle	at	first	glance,	are	profound.	Although	excessive	dimensional	change	in	the	
cladding	during	the	fuel	lifetime	is	undesirable	(e.g.,	excessive	irradiation	growth	[44]	and	
assembly	bowing	[45]),	unlike	structural	materials,	a	good	degree	of	flexibility	for	deformation	
is	highly	desirable	in	LWR	fuel	cladding.		
	
2.1.	Typical	evolution	
	
Figure	3	depicts	a	simplified	progression	of	diametral	evolution	in	LWR	fuel	cladding	and	pellet	
as	a	function	of	burnup.	As	the	fuel	pin	powers	up,	the	pellet	and	cladding	experience	
immediate	thermal	expansion,	adjusting	the	thickness	of	the	initial	He-filled	gas	gap	between	
them.	Since	the	He	pressure	inside	the	rod	is	always	lower	than	the	coolant	pressure	in	the	
system,	compressive	hoop	stress	results	in	creepdown	of	the	cladding	onto	the	fuel	pellet.	The	
pellet,	containing	~5%	porosity	in	the	as-fabricated	state,	initially	undergoes	irradiation-induced	
densification	[46].	However,	after	reaching	low	burnups	(<5	MWd/kgU),	it	experiences	swelling	
due	to	generation	of	fission	products	that	manifests	linearly	with	burnup	at	a	rate	of	0.7–1%	
per	10	MWd/kgU	[47,48].	Depending	on	the	fuel	pin’s	power	history,	the	gap	between	the	
pellet	and	the	cladding	disappears	at	~20	MWd/kgU	due	to	the	concomitant	swelling	of	the	
former	and	creepdown	of	the	latter.	After	this	point,	the	stress	state	in	the	cladding	is	
dominated	by	its	mechanical	interaction	with	the	fuel	pellet	[49,50].	The	ability	of	the	cladding	
to	exhibit	ductility	after	this	point	and	accommodate	pellet	expansion	is	key	to	its	integrity.	
Rapid	pellet	expansion	occurs	at	different	rates	during	operational	power	ramps	(up	to	10-5	s-1	
[51])	or	sudden	RIAs	(up	to	5	s-1	[52]).	Although	urania	itself	exhibits	substantial	creep,	>10-10	s-1	
[53–55],	sufficient	creep	and	ductility	in	the	LWR	cladding	are	necessary	to	avoid	failure.	Note	
that	while	radiation	damage	reduces	the	ductility	of	Zr-based	alloys	[56,57]	like	most	other	



metals	[58],	the	most	significant	loss	in	ductility	and	ability	to	accommodate	strains	in	Zr-based	
fuel	cladding	occurs	due	to	hydrogen	pickup	as	a	result	of	its	waterside	corrosion	[16,24,59–62].		
	

	
Figure	3.	A	simplified	progression	of	diametral	evolution	in	LWR	fuel	

cladding	and	pellet	as	a	function	of	burnup.	
	

The	typical	behavior	described	above	is	different	from	what	most	engineers	are	taught	to	deem	
as	superior	properties	for	structural	materials	[63],	where	significant	emphasis	is	placed	on	
strength	and	creep	resistance.	Even	for	sodium-cooled	fast	reactor	cladding,	the	functional	
requirements	differ:	a	malleable	fuel	and	cladding	with	high	strength	and	creep	resistance	are	
coveted	[64]	since	any	small	changes	in	core	geometry	directly	and	significantly	affect	core	
physics.	
	
2.2.	Desirable	properties	
	
Table	1	attempts	to	organize	the	desirable	properties	of	LWR	fuel	cladding	and	pellet	under	
various	normal	and	off-normal	conditions.	During	normal	operation,	high	thermal	conductivity	
in	the	pellet	and	cladding	are	desired	to	limit	fuel	centerline	temperature	[65].	Adequate,	but	
not	excessive,	creep	in	both	components	and	high	cladding	strength	are	desired	to	avoid	and	
withstand	stress	buildup	in	the	cladding.	High	critical	heat	flux	for	cladding	heat	transfer	to	the	
coolant	is	desirable	to	avoid	departure	from	nucleate	boiling	and	dryout	in	PWRs	and	boiling	
water	reactors	(BWRs),	respectively	[66].	Minimization	of	cladding	corrosion	to	avoid	thickness	
loss	in	the	load-bearing	cladding	tube	is	desirable.	As	noted	earlier,	since	Zr-alloy	corrosion	is	
accompanied	by	concomitant	H	pickup	[67],	reducing	its	rate	is	of	further	importance.	
	
Under	power	ramps,	high	thermal	conductivity	and	creep	rates	along	with	a	low	coefficient	of	
thermal	expansion	are	desirable	in	the	fuel	pellet	to	minimize	pellet–cladding	mechanical	
interaction	(PCMI).	In	the	cladding,	high	strength	along	with	the	ability	to	accommodate	pellet	
expansion	via	creep	is	highly	desirable.	
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For	a	design	basis	LOCA,	high	thermal	conductivity	is	desirable	in	the	fuel	and	the	cladding	to	
reduce	the	thermal	energy	stored	in	the	pin.	At	the	same	time,	high	heat	capacity	is	also	
desirable	since	it	will	reduce	the	rate	of	temperature	rise	as	a	result	of	decay	heat.	Note	that	for	
specific	LOCA	sequences	in	a	BWR,	the	impact	of	improved	fuel	thermal	conductivity	is	
negligible	[68].	Of	great	importance	during	this	scenario	is	reduction	of	cladding	oxidation	rate	
to	limit	its	degradation	during	accident	progression	and	loss	of	post-quench	ductility	[24,69].	
Cladding	creep	resistance	is	highly	desirable	to	delay	fuel	rod	burst	and	ballooning	[70].	
	
Under	an	RIA	scenario,	as	explained	by	Fuchs	and	Nordheim	[71,72]	and	in	direct	contrast	to	a	
LOCA	scenario,	low	heat	capacity	in	the	fuel	is	desirable	to	limit	the	extent	of	energy	deposition	
in	the	core.	Since	the	fuel	pellet’s	coefficient	of	thermal	expansion	directly	dictates	the	extent	
of	PCMI,	a	smaller	value	for	this	material	property	is	desirable.	A	cladding	with	high	heat	
transfer	characteristics	and	ductility	is	ideal	under	an	RIA	scenario	[73,74].	
	
Finally,	for	a	beyond	DBA	scenario	such	as	a	station	blackout	(SBO),	where	core	temperatures	
far	in	excess	of	1200°C	are	possible	[75],	high	temperature	steam	oxidation	resistance,	as	well	
as	overall	chemical	and	physical	stability,	is	of	most	importance	[76].	
	
Table	1.	Desirable	properties	of	LWR	fuel	cladding	and	pellet	under	normal	operation	(NO),	power	ramps	

(PR),	loss-of-coolant	accident	(LOCA),	reactivity	insertion	accident	(RIA),	and	station	blackout	(SBO).	
Upward	and	downward	arrows	indicate	that	higher	and	lower	magnitudes	are	desirable	for	a	given	

property,	while	a	dash	indicates	insensitivity.	
	 Cladding	 Fuel	Pellet	

	 NO	 PR	 LOCA	 RIA	 SBO	 NO	 PR	 LOCA	 RIA	 SBO	
Thermal	conductivity		 ⬆	 ⬆	 ⬆	 -	 -	 ⬆	 ⬆	 ⬆	 -	 -	
Heat	capacity	 -	 -	 ⬆	 -	 ⬆	 -	 -	 ⬆	 ⬇	 ⬆	
Oxidation	rate	 ⬇	 ⬇	 ⬇	 ⬇	 ⬇	 -	 -	 ⬇	 -	 ⬇	
Coefficient	of	thermal	
expansion	

-	 -	 -	 -	 -	 -	 ⬇	 -	 ⬇	 -	

Creep	rate	 ⬆	 ⬆	 ⬇	 -	 ⬇	 ⬆	 ⬆	 -	 -	 -	
Strength	 ⬆	 ⬆	 ⬆	 ⬆	 ⬆	 -	 ⬇	 -	 ⬇	 -	
Critical	heat	flux	(CHF)	 ⬆	 ⬆	 -	 ⬆	 -	 N/A	
	
Note	that	although	under	different	scenarios	lower	or	higher	magnitudes	for	some	of	the	
material	properties	are	desired	in	the	cladding	and	the	fuel,	slow	oxidation	rate	and	high	
strength	are	always	desirable	in	the	cladding.	
	
	

3. Coated	Zr-based	cladding		
	
An	immediately	obvious	and	evolutionary	approach	to	ATF	cladding	is	the	adoption	of	a	
protective	coating	on	the	surface	of	Zr-based	alloys	[77].	Thin	coatings	are	expected	to	have	a	



minimal	effect	on	the	thermomechanical	behavior	of	Zr-based	cladding,	assuming	sufficient	
creep	and	limited	strain	mismatch	are	engineered	into	the	coating	[78].	Thin	coatings	do	not	
notably	change	the	core	physics	in	LWRs	[79]	and	have	the	potential	to	enhance	the	heat	
transfer	characteristics	of	the	cladding	[80].	It	is	necessary	that	the	coating	be	adherent	to	and	
chemically	stable	with	the	Zr-based	cladding	substrate	during	normal	operation	and	off-normal	
conditions,	protecting	it	from	rapid	oxidation	during	beyond	DBAs.	Coatings	on	the	surface	of	
Zr-based	alloys	were	previously	considered	to	enhance	their	corrosion	resistance	and	alleviate	
susceptibility	to	grid-to-rod	fretting	failure	[81,82].	As	noted	in	Section	1.3,	materials	that	are	
capable	of	exhibiting	high	temperature	steam	oxidation	resistance	are	chromia,	alumina,	
and/or	silica	formers.	Therefore,	any	ATF	coating	technology	needs	to	contain	at	least	one	of	
the	elements	Cr,	Al,	or	Si.		
	
3.1.	 Development	status	
	
The	most	widely	explored	coating	technologies	on	Zr-based	alloys	to	date	are	the	ones	that	
form	chromia.	Specifically,	Cr	metal	[83–85],	CrAl	[86],	and	CrN	[87,88]	coatings	have	been	
studied.	In	the	case	of	a	metallic	Cr	coating	with	a	thickness	of	a	few	to	tens	of	micrometers,	
Figure	4,	the	resulting	chromia	that	forms	under	both	aqueous	or	high	temperature	steam	
conditions	protects	the	underlying	Zr	metal	[89,90].	Furthermore,	reduced	cladding	ballooning	
during	LOCA	testing	and	resistance	to	cladding	post-quench	ductility	loss	have	been	reported	
for	these	coatings	[91,92].	Multiple	in-pile	experiments	to	further	evaluate	the	performance	of	
this	technology	are	currently	ongoing,	with	preliminary	ion	irradiation	data	indicating	adequate	
behavior	[93].	As	a	BCC	(body-centered	cubic)	metal,	it	is	expected	that	Cr	metal	will	exhibit	
dimensional	stability	during	neutron	irradiation	at	LWR-relevant	temperatures	[94].	
	

	
Figure	4.	Metallic	Cr	coating	of	thickness	12–15	µm	deposited	on	the	surface	of	Zr-based	cladding	and	
characterized	by	a)	optical	microscopy,	b)	backscattered	scanning	electron	microscopy,	c)	bright	field,	
and	d)	high	resolution	transmission	electron	microscopy.	The	coating	appears	to	be	fully	dense	and	

homogeneous	while	the	Zr–Cr	interface	shows	good	metallurgical	bonding	without	indications	of	cracks	
or	voids	(courtesy	of	Jean-Christoph	Brachet	and	colleagues	at	CEA,	SRMA,	Paris-Saclay	University,	

France).	
	
Excellent	stability	of	a	thin	(<5	μm)	CrN	coating	on	the	surface	of	Zr-based	cladding	under	
prototypical	fuel	irradiation	conditions	has	been	demonstrated	[95].	Integral	LOCA	testing	of	
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unirradiated	CrN-coated	cladding	exhibited	excellent	coating	adherence	even	after	burst	testing	
but	showed	no	improvement	in	oxidation	or	burst	behavior	vs.	uncoated	cladding,	Figure	5.	
Although	the	adverse	effects	of	N	during	air	oxidation	of	Zr-based	alloys	are	well	understood	
[96],	the	small	quantity	of	this	element	in	the	thin	coating	is	not	expected	to	cause	large	
degradation	of	the	cladding	during	high	temperature	steam	oxidation.	
	

	
Figure	5.	a)	CrN-coated	Zircaloy-4	cladding	after	pressurization	to	8.3	MPa	and	LOCA	burst	testing.	b)	

High	magnification	optical	image	of	the	CrN	coating	on	the	surface.	Metallographic	cross	sections	of	the	
c)	CrN-coated	and	d)	uncoated	Zircaloy-4	after	the	LOCA	test	sequence	conducted	at	ORNL’s	Severe	

Accident	Test	Station	[97]	with	5°C/s	ramp	to	1200°C	in	flowing	steam	(courtesy	of	Rudi	Van	
Nieuwenhove	and	Bruce	Pint).	

	
Coatings	that	are	meant	to	form	alumina	or	silica	have	predominantly	manifested	as	MAX-
phase	compounds	[98]	or	FeCrAl	in	the	case	of	the	former,	with	other	variants	discussed	in	[77].	
Ti2AlC	[99,100],	TiAlN	[101,102],	Ti3SiC2	[103],	and	Cr2AlC	[104]	as	MAX-phase	coatings	have	
been	examined,	although	none	of	these	examinations	to	date	have	produced	a	complete	
assessment	of	coating	performance	under	normal	operation,	DBA,	and	beyond	DBA	conditions.	
The	FeCrAl	coating,	although	adequate	for	normal	operating	conditions,	forms	a	eutectic	with	
Zr	at	temperatures	<1200°C	and	is	not	deemed	a	useful	ATF	coating	[105].	Other	coating	
materials	[77]	that	do	not	contain	Cr,	Al,	or	Si	and	therefore	cannot	produce	a	protective	oxide	
film	are	not	considered	in	this	review.	Although	these	coatings	may	be	beneficial	from	a	normal	
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operational	standpoint	(e.g.,	TiN	[101]),	they	may	not	be	considered	as	ATF	cladding	
technologies.	
	
It	is	worthwhile	to	review	basic	properties	of	the	various	proposed	coatings,	to	decipher	which	
technologies	among	the	myriad	of	candidates	are	worth	further	development	as	coated	Zr-
based	ATF	cladding	concepts.	The	coatings,	assuming	they	can	be	reliably	deposited	and	remain	
adherent	to	the	surface	of	Zr-based	cladding,	need	to	exhibit	the	following:	corrosion	resistance	
in	LWR	coolant	environments,	neutron	irradiation	stability,	and	oxidation	resistance	to	high	
temperature	steam.	Table	2	provides	a	summary	of	these	properties	for	select	coatings.	Note	
that	if	only	one	of	these	performance	characteristics	is	not	met,	the	coating	technology	is	
deemed	not	useful	for	the	ATF	cladding	application.	
	
Table	2.	Summary	of	coating	performance	characteristics	of	select	ATF	cladding	technologies.	Y,	N,	and	U	

denote	yes,	no,	and	unknown,	respectively.	

	 Cr	 CrN	 CrAlN	 TiAlN	 TiN/	
TiAlN	 Ti2AlC	 Ti3SiC2	 CrAlC	

Resistant	to	corrosion	in	LWR	
coolant	

Y	
[106]	

Y		
[95]		

N	
[107]	

N	
[107]	

Y		
[102]	 U	 U	 N	

[104]	
Stable	under	neutron	
irradiation	(260–400°C)	

Y		
[94]	

Y			
[95]	 U	 U	 U	 N	

[108]	
N	

[109]	 U	

Increased	resistant	to	high	
temperature	steam	oxidation		

Y		
[92]	

N	
[110]	 U	 Y	

[111]	 U	 Y		
[36]	

N		
[36]	 U	

	
A	glance	at	Table	2	implies	that	Cr	metal	coating	is	the	most	promising	technology	for	further	
development.	The	same	protective	oxide	films	that	protect	Cr-,	Al-,	and	Si-bearing	coatings	at	
high	temperatures	also	form	in	the	aqueous	environment	of	the	LWR	coolant	[77].	
Unfortunately,	only	chromia	is	stable	in	this	environment,	while	silica	and	alumina	tend	to	
dissolve	rapidly	as	silicic	acid,	H4SiO4,	and	aluminum	oxy-hydroxide,	AlO(OH)	[112].	
Incorporation	of	Ti,	which	forms	a	stable	oxide	(much	like	Zr),	into	these	coatings	can	mitigate	
dissolution	(e.g.,	TiN/TiAlN	[102]);	however	(again	much	like	Zr),	Ti	undergoes	rapid	oxidation	at	
elevated	temperatures	and	its	prevalence	in	the	coating	will	likely	compromise	the	protective	
nature	of	alumina/silica	(e.g.,	protective	silica	does	not	form	during	high	temperature	oxidation	
of	Ti3SiC2	[36]).	
	
3.2.	 Challenges	and	research	needs		
	
3.2.1.	Zr	remains	in	the	core	
	
The	same	attribute	that	makes	surface	coatings	on	Zr-based	alloys	the	most	viable	near-term	
ATF	cladding	technology	presents	their	biggest	performance	challenge:	the	~25-40	tonnes	of	Zr	
metal	remains	in	the	LWR	core.	For	a	coolant-limited	accident,	even	a	design	basis	LOCA,	rod	
ballooning	and	burst	occurs	at	temperatures	as	low	as	700°C	[113].	This	exposes	at	least	some	
fraction	of	the	cladding’s	internal	surface	to	the	oxidizing	environment,	even	though	the	outer	



surface	may	be	protected	by	the	coating.	A	recent	and	ongoing	effort	aims	to	tackle	this	issue	
by	adding	an	inner	surface	coating	[114].		
	
3.2.2.	Need	for	elucidation	of	beyond	DBA	behavior		
	
Except	for	a	few	studies	[106,115],	none	of	the	research	groups	to	date	have	exceeded	the	
temperature	limit	of	the	design	basis	LOCA	scenario	(1204°C	[116])	during	their	steam	oxidation	
tests	when	examining	the	coatings	discussed	in	Table	2.	These	environments	are	indeed	
demanding	on	the	coating,	which	needs	to	withstand	steam	oxidation	on	one	side	and	chemical	
reaction	with	the	highly	reactive	Zr	metal	on	the	other	[105].		
	
Ultimately,	owing	to	the	R&D	programs	discussed	above,	several	emerging	coating	technologies	
hold	abundant	promise	for	improving	fuel	performance	during	normal	operation	(Cr,	CrN,	and	
TiN)	and	should	be	pursued	to	elevate	their	technology	readiness	level	towards	ultimate	
deployment	in	commercial	reactors.	The	reader	is	reminded	that	Zr-based	cladding	technology	
is	deemed	safe	and	adequate	for	normal,	anticipated	operational	occurrence	(AOO),	and	DBA	
scenarios.	However,	beyond	DBA	testing	must	be	conducted	on	ATF	cladding	technologies	to	
showcase	their	improvements	in	cladding	performance;	such	instances	are	glaringly	lacking	for	
almost	all	coating-based	ATF	technologies	under	development	to	date.	
	
Brachet	[89]	provides	a	sound	explanation	of	how	Cr-coated	Zr-based	cladding	improves	the	
peak	cladding	temperature	limit	of	the	design	basis	LOCA	(by	~100°C)	and	extends	the	time	at	
elevated	temperatures	before	post-quench	ductility	is	lost	(hours	for	coated	cladding	instead	of	
minutes	for	uncoated	cladding).	The	impact	of	these	additional	safety	margins	on	the	beyond	
DBA	behavior	of	LWRs	should	be	assessed	through	use	of	severe	accident	analysis	codes.	
Without	significantly	more	experimental	data,	an	assessment	of	this	and	other	coating	
technologies	is	not	possible.		
	

	
4. FeCrAl	cladding		

	
Fe-based	alloys	have	been	used	as	nuclear	fuel	cladding	since	1951,	when	the	Experimental	
Breeder	Reactor	I	(EBR-I)	first	went	critical	with	austenitic	stainless	steel–clad	Mark-I	fuel	
assemblies	[117].	Naturally,	the	use	of	these	austenitic	alloys	was	extended	into	commercial	
LWRs	[4]	for	decades,	even	though	the	first	LWR	power	station	in	Shippingport,	Pennsylvania,	
started	its	operation	with	Zr-based	clad	fuel	provided	by	Admiral	Rickover’s	navy	[118].	
Austenitic	stainless	steels	(types	304,	316,	and	347)	used	as	cladding	in	BWRs	were	eventually	
replaced	with	Zr-based	cladding	due	to	the	stress	corrosion	cracking	(SCC)	failure	experienced	
in	high-oxygen-activity	coolant	environments	of	the	pre-1990s	era	without	water	chemistry	
control	[5].	This	failure	mode	is	distinct	from	a	previously	common	mode	of	SCC	failure	in	Zr-
based	alloys:	corrosive	fission	products	initiated	failure	in	the	inner	surface	of	the	cladding	
[119].	Although	austenitic	steel–clad	fuel	operated	reliably	in	PWRs	[5],	the	drive	to	achieve	
higher	burnups,	and	by	extension	better	economics,	also	facilitated	their	eventual	replacement	
by	Zr-based	cladding.	



	
Ferritic	steels,	having	a	BCC	structure	as	opposed	to	the	Ni-stabilized	FCC	(face-centered	cubic)	
structure	of	austenitic	Fe-based	steels,	are	known	to	exhibit	better	SCC	resistance	[120]	but	
were	never	adopted	for	use	in	commercial	LWRs,	although	they	were	used	in	sodium-cooled	
fast	reactors	[64].	Ferritic	alloys	have	also	been	developed	for	other	potential	commercial	
nuclear	power	applications	such	as	the	development	program	by	General	Electric	in	the	1960s,	
which	aimed	to	take	advantage	of	the	high	temperature	oxidation	resistance	of	FeCr,	FeAl,	and	
FeCrAl	ferritic	alloys,	for	high	temperature	reactor	applications	[121–127].	
	
After	survey	tests	examining	a	variety	of	candidate	Fe-based	alloys	[34,35],	reexamination	of	
oxidation-resistant	Fe-based	alloys	for	LWR	application	was	proposed	[5].	Once	again,	alloys	
capable	of	forming	protective	chromia,	alumina,	or	silica	were	to	be	examined.	To	form	
protective	chromia	films,	ferritic	steels	with	Cr	content	>22	wt%	were	deemed	necessary	
[35,128],	far	surpassing	the	Cr	content	above	which	a’	phase	separation	and	resulting	
embrittlement	occurs	in	the	Fe-Cr	binary	system	at	LWR-relevant	temperatures	[129,130].	For	
austenitic	alloys	capable	of	forming	a	protective	chromia	at	1200°C	(e.g.,	310	SS	[35]),	similar	Cr	
contents	had	to	be	accompanied	by	high	Ni	additions	to	preserve	the	FCC	structure.	This	in	turn	
results	in	high	thermal	neutron	absorption	in	the	cladding	(~10×	higher	than	Zr-based	cladding	
[79,131])	and	is	deemed	impractical.	Additions	of	2	wt%	Si	to	Fe-12Cr	did	significantly	improve	
steam	oxidation	resistance,	but	protective	scale	formation	in	steam	was	limited	to	<1100°C	
[132].	While	alumina-forming	austenitic	alloys	[133]	are	not	oxidation	resistant	under	these	
same	conditions,	exceptional	steam	oxidation	resistance	was	observed	for	ferritic	FeCrAl	alloys	
up	to	near	their	melting	point	(~1500°C)	[134–136].		
	
4.1.	 Development	status	
	
Dedicated	R&D	programs	in	the	United	States	[137–139]	and	Japan	[140–142]	are	pursuing	
FeCrAl	cladding	as	an	ATF	cladding	technology.	Although	the	main	focus	of	the	former	program	
is	on	developing	wrought	oxidation-resistant	alloy	variants	[143],	the	Japanese	effort	intends	to	
also	greatly	improve	on	the	strength	by	pursuing	oxide	dispersion	strengthened	(ODS)	FeCrAl	
alloys	[144].	
	
To	avoid	embrittlement	of	FeCrAl	cladding	as	a	result	of	the	a’	precipitation	[129,130,145–148]	
that	occurs	after	irradiation	at	~300–400°C	(LWR-relevant	temperatures),	lean	(≤13	wt%	Cr,	
≤4	wt%	Al)	commercial	FeCrAl	alloys	were	evaluated	for	this	application.	However,	these	lean	
compositions,	although	resistant	to	oxidation	in	air,	were	discovered	to	have	poor	resistance	to	
high	temperature	steam	[35].	Accordingly,	systematic	studies	of	the	critical	Al	and	Cr	contents	
in	the	alloy	system	were	performed	to	identify	the	necessary	combination	for	adequate	steam	
oxidation	resistance	up	to	~1500°C	[134,136,141,149,150]	while	minimizing	the	potential	for	𝛼’-
induced	embrittlement	or	weld-initiated	cracking	[151].	Furthermore,	the	effects	of	alloy	
composition	on	its	melting	point	[152],	oxidation	beyond	melting	point	[135],	and	compatibility	
with	other	fuel	assembly	constituents	have	been	examined	[132,140,153].	
	



An	up-to-date	review	of	various	properties	and	behavioral	aspects	of	FeCrAl	alloys	for	the	ATF	
cladding	application	is	available	in	[154].	Production	of	wrought	[143,155,156]	and	ODS	
[157,158]	bar	stock	and	thin-walled	cladding	has	been	described	and	demonstrated,	Figure	6.	
As-fabricated	strength	and	ductility	in	FeCrAl	alloys	may	be	tuned	by	controlling	alloy	
composition	and	microstructure	to	achieve	values	comparable	to	or	higher	than	Zr-based	alloys	
[143,158].	Mechanical	properties	after	neutron	irradiation,	for	dose	regimes	relevant	to	LWR	
fuel	cladding	(Table	3),	have	been	quantified	[145,148].	It	is	shown	that	although	the	strength	
increases	and	uniform	elongation	approaches	nil	at	<7	dpa,	the	irradiated	material	retains	
sufficient	ductility	as	total	elongation	on	the	order	of	~10%	up	to	at	least	~15	dpa.	A	variety	of	
recent	welding	studies	[151,159,160]	and	limited	neutron	irradiation	data	[161]	on	these	welds	
are	now	available,	indicating	robust	fusion-based	welds	are	possible	through	strict	control	of	
the	process	and	alloy	composition.	Corrosion	behavior	of	these	alloys	in	LWR	coolant	
environments	has	been	examined,	and	resistance	to	uniform	corrosion	via	formation	of	Cr-rich	
oxides	(wholly	distinct	from	alumina	formation	in	high	temperature	steam)	without	a	notable	
dependence	on	alloy	composition	has	been	reported	[140,162–165],	Figure	7.	Owing	to	their	
BCC	structure,	ferritic	alloys	exhibit	roughly	100×	better	SCC	resistance	in	aqueous	
environments	when	compared	to	austenitic	stainless	steels	[120,166].	This,	combined	with	the	
strict	water	chemistry	control	of	today’s	LWRs,	assuages	the	historical	concern	with	Fe-based	
clad	fuel	pin	failure.		
	



	
Figure	6.	a)	Commercially	fabricated,	thin-walled	Fe-12Cr-6Al-1Mo	cladding	in	BWR	geometry;	b)	optical	

micrograph	of	the	grain	structure	in	the	longitudinal	and	transverse	directions,	showing	slightly	
elongated	grains	of	~61	μm;	c)	inverse	pole	figure	map	of	grain	orientation	in	the	radial	direction	after	a	

tube	drawing	process	in	which	deformation	is	accommodated	heterogeneously	[156]	(courtesy	of	
Yukinori	Yamamoto).	

	
	
Table	3.	Displacements	per	atom	(dpa)	per	effective	full-power	year	(EFPY)	for	various	cladding	materials	

in	LWRs.	Calculation	used	the	SPECTER	[167]	code	and	lifetime	average	neutron	flux	spectra	tallied	
within	the	LWR	cladding	(courtesy	of	Nicholas	Brown).	

Cladding	Material	 Ed*	(eV)	 PWR	(dpa/EFPY)	 BWR	(dpa/EFPY)	
Zr	 40	 3.9	 3.1	
Cr	 40	 4.1	 3.3	
Fe-12Cr-6Al	 40,	40,	27	 4.0	 3.3	
SiC	 35,	20	 5.7	 4.6	

*Ed	is	the	displacement	energy	in	the	NRT	model	[168]	associated	with	each	element.	
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Figure	7.	Depending	on	the	environment,	various	protective	films	form	on	the	surface	of	FeCrAl	alloys.	
a,b)	In	low	and	high	oxygen	activity	aqueous	environments,	and	largely	insensitive	to	the	Cr	content	in	
the	alloy	within	a	10–18	wt%	Cr	window,	protective	Cr-rich	spinel	or	hematite	films	form	[162].	c)	Under	
high	temperature	steam	oxidation,	if	a	critical	and	sufficient	combination	of	Cr	and	Al	is	present	in	the	
alloy	[134],	protective	alumina	forms.	High	angle	annular	dark	field	(HAADF)	transmission	electron	

images	are	courtesy	of	Kinga	Unocic.		
	
	
Fuel	performance	and	off-normal	behavior	of	FeCrAl-clad	UO2	pellets,	in	their	optimal	thin-
walled	geometry,	have	been	assessed	[169–171],	indicating	reliable	performance.	Normal	
operation	and	AOO	behavior	of	the	FeCrAl	cladding	is	expected	to	be	superior	to	that	of	Zr-
based	cladding,	given	the	enhanced	oxidation	resistance	during	post-CHF	events	and	indications	
of	higher	CHF	[172].	LOCA	simulation	tests	on	low-strength	wrought	alloys	indicate	comparable	
burst	behavior	to	Zr-based	cladding	[173],	while	no	loss	of	post-quench	ductility	was	observed	
[174,175].	Adoption	of	ODS	FeCrAl	variants	with	higher	strength	and	high	temperature	creep	
resistance	[157,158],	owing	to	the	dispersion	of	fine	oxide	particles	[176],	is	expected	to	greatly	
enhance	burst	margins	while	preserving	the	oxidation	resistance	to	near	melting.	Much	like	
unirradiated	Zr-based	cladding,	FeCrAl	cladding	exhibits	abundant	ductility	during	rapid	PCMI	
tests	[177],	simulating	RIA	events.	Since	the	loss	of	ductility	after	neutron	irradiation	is	not	
exacerbated	by	hydride	precipitate	formation	in	these	alloys,	better	PCMI	performance	is	also	
expected	at	high	burnups.		
	
4.2.	 Challenges	
	
4.2.1.	Poor	thermal	neutron	utilization	factor	
	
The	composition	of	nuclear-grade	FeCrAl	alloy	has	been	optimized	(10–13	wt%	Cr,	5.5–6	wt%	
Al,	2	wt%	Mo	for	solid	solution	strengthening	[143],	and	<0.1	wt%	Y	to	exploit	the	reactive	
element	effect	[178])	to	alleviate	embrittlement	concerns	raised	early	on	[5]	while	exhibiting	
robust	environmental	stability.	However,	other	challenges	remain	with	this	cladding	system	
that	are	inherent	to	the	material.	The	first	is	the	magnitude	of	the	neutron	absorption	cross	
section	of	natural	Fe	and	Cr	(with	known	uncertainties	[179]),	resulting	in	roughly	~4–6%	of	
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thermal	neutrons	being	absorbed	in	the	cladding	vs.	~1%	absorbed	in	the	Zr-based	cladding	
[79].	To	compensate	for	this	absorption,	the	pellet	enrichment	may	be	increased	and/or	
cladding	thickness	reduced	and	pellet	dimeter	extended,	allowing	for	cycle	lengths	comparable	
to	the	current	fuel	system	in	PWRs	[131,180]	and	BWRs	[181].	In	both	cases,	this	is	
accompanied	by	extra	cost	(i.e.,	cost	of	enrichment	or	cost	of	more	LEU	mass),	resulting	in	a	
~15–25%	increase	in	fuel	bundle	cost	[5].	This	economic	impact	is	further	scrutinized	in	
Section	6.		
	
4.2.2.	Potential	for	increased	tritium	release	
	
Another	challenge	that	requires	further	understanding	and	resolution	is	the	permeability	of	BCC	
ferritic	alloys	to	H	isotopes	[182],	specifically	tritium	that	forms	as	a	result	of	ternary	fission	in	
the	fuel.	In	PWRs	a	substantial	inventory	of	tritium	is	produced	from	the	dissolved	boric	acid	in	
the	coolant	via	the	10B(n,	2𝛼)3H	reaction,	which	is	roughly	equal	to	the	extent	produced	in	the	
fuel	and	is	contained	within	the	primary	loop	[183].	In	BWRs,	in	the	absence	of	dissolved	B	in	
the	coolant,	the	main	source	of	tritium	production	is	the	fuel,	and	since	the	reactor	system	
injects	steam	directly	from	the	core	to	the	turbines,	the	increased	3H	release	from	the	fuel	is	
impactful.	In	the	current	fuel	system,	the	strong	chemical	affinity	of	Zr	for	H	[184]	traps	the	
tritium	as	it	diffuses	away	from	the	fuel	towards	the	coolant.	In	the	case	of	ferritic	alloys,	
permeability	roughly	two	orders	of	magnitude	higher	than	that	of	Zr-based	alloys	and	twice	
that	of	austenitic	Fe	alloys	has	been	reported	[183].	The	full	impact	of	increased	release	needs	
to	be	understood,	as	it	previously	occurred	in	PWR	and	BWR	cores	with	austenitic	stainless	
steel–clad	fuel	pins	[4].	Permeability	to	H	may	be	retarded	by	oxide	films	[185–187]	on	the	
surface	of	the	cladding,	which	could	be	engineered	during	fabrication	or	grown	in	situ	during	
operation.	Since	alumina	dissolves	in	high	temperature	water	[112],	potential	candidates	are	
the	outer	(Fe,Cr)-rich	oxide	that	forms	during	uniform	corrosion	[162]	or	an	inner	alumina	that	
may	form,	as	suggested	in	[183],	as	a	result	of	fuel–cladding	chemical	interaction.	Evidence	that	
the	former	is	an	effective	barrier	has	recently	been	made	available	[141].	Relevant	to	formation	
of	an	alumina	barrier	in	the	cladding’s	inner	surface,	a	recent	study	of	FeCrAl	oxidation	in	air	
reported	formation	of	only	10–50	nm	oxides	after	100	h	exposures	at	300–600°C,	with	
crystalline	alumina	only	forming	at	the	highest	temperature	[188].	
	
4.2.3.	Need	for	elucidation	of	beyond	DBA	behavior		
	
A	final	consideration	regarding	the	performance	of	this	cladding	material	under	beyond	DBA	
conditions	is	worthwhile.	Although	the	UO2-FeCrAl	system	has	received	the	most	complete	
severe	accident	analysis	assessment	of	any	ATF	fuel	candidate	to	date	[27,189],	with	the	aim	of	
quantifying	the	gains	in	margins	of	safety	and	coping	time	during	such	events,	additional	work	
is	necessary.	While	alumina	formation,	inherent	to	the	bulk	material,	offers	remarkable	
oxidation	resistance	up	to	~1500°C,	rapid	oxidation	occurs	at	temperatures	near	the	melting	
point	of	the	alloy	[135].	The	integral	behavior	of	the	FeCrAl-clad	pin	and	fuel	assembly	beyond	
this	point	is	not	well	understood.	Integral	fuel	bundle	oxidation	tests	up	to	and	beyond	this	
point,	such	as	the	ones	described	in	[190],	are	necessary	to	gain	additional	information.		
	



The	results	of	the	previously	referenced	severe	accident	simulations	show	that	although	
significantly	less	H2	and	CO	are	produced,	additional	coping	time	for	short-term,	long-term,	and	
partially	mitigated	SBO	scenarios	is	on	the	order	of	1–5	h,	increasing	with	delays	in	the	
accident’s	onset	after	core	shutdown.	The	usefulness	of	this	additional	coping	time,	although	
deemed	superior	to	the	coated	cladding	ATF	concepts,	needs	to	be	fully	assessed	by	reactor	
operators	and	regulators.	

	
5. SiC/SiC	cladding		

	
SiC	fiber	reinforced	SiC	matrix	composite	(SiC/SiC)	technology	has	yielded	engineering	materials	
used	today	in	highly	demanding	applications,	such	as	components	in	commercial	jet	engines	
[191].	Remarkably,	the	technology	originated	from	nuclear-energy-related	R&D	in	1970s,	when	
Yajima	first	produced	high	strength	SiC	fibers	[192,193].	Application	of	bulk	SiC	in	fission	energy	
systems	dates	back	even	further	and	persists	to	this	day,	with	its	use	as	a	constituent	of	coated	
fuel	particles	in	high	temperature	gas-cooled	reactors	[194].		
	
Today,	new	generations	of	SiC	fiber	and	methods	of	composite	production	that	yield	nuclear-
grade	SiC/SiC	are	available	[195].	Nuclear-grade	SiC/SiC	is	defined	here	as	composites	utilizing	
Generation	III	SiC	fibers	[196]	with	chemical	vapor	infiltrated	(CVI)	[195]	or	nano-infiltration	
transient	eutectic	phase	(NITE)	[197]	SiC	matrices.	CVI	consists	of	chemical	vapor	deposition	of	
SiC	using	methyltrichlorosilane	(MTS)	or	ethyltrichlorosilane	(ETS)	onto	the	SiC	fiber	skeleton	to	
form	a	dense	composite	[198].	The	NITE	process	forms	a	sintered	SiC	matrix	with	high	
crystallinity	from	nanopowder	feedstock	to	avoid	damaging	the	fibers	during	forming	[199].	
Other	SiC-matrix-forming	methods	such	as	melt	infiltration	(or	liquid	silicon	infiltration)	[200],	
reaction	sintering	[201],	or	polymer	impregnation	and	pyrolysis	[202],	yielding	large	fractions	of	
secondary	phases	or	amorphous	pockets	in	the	material,	are	not	deemed	radiation	stable	[203].	
	
Owing	to	their	exceptional	oxidation	resistance	[204]	and	high	temperature	strength	[205,206],	
far	surpassing	Cr-coated	Zr-based	or	FeCrAl	cladding	materials,	SiC/SiC	composites	are	deemed	
the	ideal	ATF	cladding	material.		
	
5.1.	 Development	status	
	
Sauder	provides	a	complete	summary	of	SiC/SiC	development	and	properties	for	nuclear	
applications	[207],	and	many	other	useful	reviews	focusing	on	application	of	these	materials	in	
fusion	energy	systems	are	also	available	[208–210].	With	the	high	temperature	strength	and	
oxidation	resistance	of	SiC-based	materials	recognized,	their	application	as	LWR	fuel	cladding	
was	proposed	early	on	[211–213].		
	
Two	distinct	production	routes	for	SiC/SiC	cladding	are	in	use	today,	conforming	to	the	two	
radiation-stable	methods	described	earlier.	The	isothermal	CVI	methodology	is	the	most	
common	approach	for	cladding	production	used	in	the	United	States	[214,215],	France	[216],	
South	Korea	[217],	and	Japan	[218].	This	method	results	in	a	highly	pure	and	crystalline,	and	
therefore	highly	radiation-stable	[219],	composite	of	relatively	low	density	(with	10–25%	



porosity)	[195].	Note	that	other	viable	and	potentially	attractive	CVI	techniques	(e.g.,	forced-
flow,	thermal-gradient	CVI	[220])	yielding	higher	density	are	not	in	use	today	for	SiC/SiC	
cladding	production.	The	second	route	for	production	of	SiC/SiC	cladding,	primarily	pursued	in	
Japan	[221],	involves	the	NITE	process,	with	utilization	of	hot	pressing	for	production	of	
cladding	also	demonstrated	elsewhere	[222].	This	methodology	delivers	a	dense	material	with	
improved	mechanical	properties	[223].	A	combination	of	the	CVI	and	NITE	techniques	for	
nuclear-grade	SiC/SiC	production	has	also	been	suggested	[224].		
	
Besides	establishing	a	robust	production	methodology,	the	focus	of	the	past	decade’s	
development	efforts	has	been	fixated	on	understanding	and	quantifying	the	mechanical	
behavior	of	SiC/SiC	composite	tube	structures	[217,225,226],	developing	radiation-stable	
joining	methods	[227],	and	neutron	irradiation	testing	of	these	composites	[228,229].	
Multitechnique	mechanical	characterization	studies	with	application	of	digital	image	correlation	
[230]	and	orchestration	of	round	robin	tests	[231]	have	provided	good	understanding	regarding	
mechanical	response	of	SiC/SiC	cladding	structures.	A	variety	of	joints	were	demonstrated	[232]	
and	irradiated	under	LWR-relevant	temperatures,	resulting	in	identification	of	SiC-based	joints	
as	the	most	appropriate	[233].	Neutron	irradiation	tests	at	LWR-relevant	temperatures	showed	
that	the	mechanical	behavior	of	SiC/SiC	does	not	degrade	within	the	dose	regimes	applicable	
for	LWR	cladding	applications	(Table	3)	[234,235].	Fuel–cladding	chemical	compatibility	tests	
indicate	no	notable	interaction	(at	least	in	the	absence	of	irradiation)	between	SiC	and	urania	
below	1200°C	[236,237].		
	
Finally,	within	the	same	timeframe,	a	number	of	high	temperature	steam	oxidation	and	quench	
tests	were	conducted	on	SiC-based	materials	to	evaluate	their	performance	under	beyond	DBA	
scenarios	[39,238–240].	An	example	is	presented	in	Figure	8,	showing	chemical	vapor	
deposition	(CVD-SiC)	and	NITE-SiC	specimens	after	1700°C	steam	oxidation	tests.	Even	though	
the	silica	film	on	the	surface	is	molten	at	this	temperature,	oxidation	progresses	far	slower	than	
in	metallic	cladding	materials.	All	these	tests	clearly	indicate	that	owing	to	its	superior	
performance	under	these	extreme	conditions,	if	successfully	deployed,	SiC-based	cladding	is	
the	most	impactful	ATF	technology	under	beyond	DBA	scenarios.		
	
It	is	worth	noting	that	for	roughly	as	long	as	SiC/SiC	has	been	considered	for	LWR	fuel	cladding	
technology,	it	has	also	been	deemed	a	potential	replacement	for	the	Zr	channelbox	in	BWR	fuel	
assemblies	[241].	Since	thermal	neutron	absorption	is	even	lower	in	SiC	than	in	Zr,	such	a	
transition	is	accompanied	by	an	immediate	advantage	towards	better	fuel	utilization	in	LWRs	
[181].	This	author	deems	the	channelbox	application	as	the	appropriate	immediate	deployment	
target	for	SiC/SiC	in	LWRs	to	precede	SiC-based	cladding	deployment.	
	



	
Figure	8.	Scanning	electron	microscopy	image	from	cross	sections	of	a)	CVD-SiC	and	b)	NITE-SiC	oxidized	
in	1700°C	steam	for	2	and	0.5	h,	respectively,	showing	previously	molten	silica	on	the	surface	containing	

trapped	reaction	product	gas	bubbles.	c)	Characteristic	X-ray	map	of	O	from	the	NITE-SiC	specimen	
showing	that	unlike	CVD-SiC,	corrosion	progresses	nonuniformly	and	faster.	Tests	were	conducted	in	
flowing	steam	at	ORNL’s	Severe	Accident	Test	Station	[97].	Although	not	shown	here,	if	the	NITE-SiC	
specimens	are	coated	with	a	thin	layer	of	CVD-SiC,	they	experience	slower	oxidation	and	behave	in	a	

manner	similar	to	bulk	CVD-SiC	[242].	
	
	
5.2.	 Challenges	
	
Critical	examinations	of	SiC/SiC	technology	for	LWR	cladding	application	have	been	codified	in	
[243,244].	Two	critical	feasibility	issues,	namely	aqueous	corrosion	and	fuel	cladding	failure	due	
to	microcracking	during	normal	operating	conditions,	were	identified	as	key	areas	requiring	
further	examination.		
	
5.2.1.	 SiC	dissolution	in	aqueous	environments	
	
Corrosion	of	SiC-based	materials	in	high-temperature	high-pressure	water,	henceforth	referred	
to	as	hydrothermal	corrosion,	received	attention	as	early	as	the	1980s	[245],	when	mass	loss	as	
a	function	of	time	was	reported.	Studies	specific	to	LWR	coolant	chemistry	have	emerged	since	
the	2000s,	indicating	the	superior	behavior	of	high	purity	SiC	(i.e.,	CVD)	[246,247].	Similar	to	
high	temperature	steam	environments,	the	corrosion	process	is	initiated	with	oxidation	of	Si	in	
SiC	to	form	silica	while	the	C,	except	for	a	narrow	window	of	conditions	[248],	volatilizes	as	CO2,	
CO,	or	CH4,	depending	on	the	oxygen	activity	in	the	system	[249].	However,	unlike	the	flowing	
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steam	environments	where	SiO2	undergoes	slow	(mass-transport	limited	[204])	volatilization	as	
Si(OH)4(g),	the	newly	formed	silica	rapidly	dissolves	in	the	aqueous	environment	as	silicic	acid	
[250,251].	Since	there	exists	abundant	solubility	of	silica	in	high	temperature	water	[252],	and	
the	rate	of	silica	dissolution	is	much	faster	than	the	rate	of	its	formation,	the	latter	determines	
the	rate-limiting	step	for	hydrothermal	corrosion	of	SiC.	Hence	the	strong	effect	of	oxygen	
activity	in	the	water	on	the	corrosion	rate	of	SiC	that	was	determined	in	recent	years	is	not	
surprising	[249,253].	Essentially,	dissolved	hydrogen	reduces	the	oxygen	activity	and	redox	
potential	in	the	system,	slowing	the	rate	of	silica	formation.	Hydrogen	water	chemistry	(HWC)	
was	always	a	characteristic	of	PWR	primary	loop	coolant	(owing	to	the	H2	gas	in	the	pressurizer)	
[254]	and	is	now	routinely	used	in	BWRs	to	reduce	the	oxygen	activity	in	these	systems	and	
alleviate	a	host	of	aqueous	corrosion	concerns	[255],	primarily	SCC	of	core	internals.	
	
A	number	of	out-of-pile	and	in-pile	corrosion	tests	to	quantify	the	recession	rate	of	CVD-SiC	and	
NITE-SiC	have	been	conducted	to	date	and	are	summarized	in	Table	4.	Similar	tests	on	joined	
SiC	specimens	indicate	that	the	SiC-based	joining	technologies	that	exhibit	superior	radiation	
stability	are	also	the	ones	that	are	most	corrosion	resistant	[256].	For	a	SiC-based	fuel	cladding,	
a	recession	rate	of	0.1	mg/cm2-month	results	in	thickness	loss	of	~3.7	μm/year	(assuming	fully	
dense	cladding)	while	~55	kg	of	silica	is	expected	to	be	dissolved	and	deposited	in	the	primary	
coolant	annually.	During	out-of-pile	tests,	depending	on	the	composition	of	the	sintering	
additives,	the	corrosion	rate	of	NITE-SiC	is	~1–2	orders	of	magnitude	faster	than	CVD-SiC	[257].	
Radiation	is	known	to	exacerbate	the	hydrothermal	corrosion	rate	of	SiC	due	to	increasing	
oxygen	activity	in	the	system	as	a	result	of	radiolysis	[258]	and	introduction	of	radiation	
damage	in	SiC	that	renders	it	a	more	corrosion-susceptible	material	[259].	Substantial	
dissolution	during	in-pile	corrosion	tests	with	NWC	coolant	conditions	has	been	reported	for	
CVI	SiC/SiC	specimens	[260].	Utilization	of	HWC	is	known	to	greatly	reduce	the	oxygen	activity	
as	radiolysis	takes	place	[261]	while	also,	as	shown	recently	[262],	largely	mitigating	the	
susceptibility	of	irradiated	CVD-SiC	to	faster	corrosion.	It	should	be	noted	that	even	when	HWC	
is	utilized,	selective	migration	of	H	to	the	gas	phase	as	boiling	takes	place	in	BWR	fuel	bundles	
results	in	an	increase	in	oxygen	activity	in	the	liquid	phase	[261].		
	

Table	4.	SiC	recession	rate	in	mg/cm2-month	from	various	out-of-pile	and	in-pile	tests.	
		 Out-of-pile	 In-pile	
		 HWC	 NWC	 HWC	 NWC	
CVD-SiC	 0.01–0.03	[249,253]	 0.1–1.5	[246,249,253,263]	 0.15–0.3	[260,264]	 1–5	[260]	
NITE-SiC	 0.5–5	[257]	 10	[257]	 2–30	[265]	 ≥30	
	
	
Only	recently	has	systematic	in-pile	corrosion	testing	of	SiC	in	a	well-characterized	water	
chemistry	environment	been	initiated	to	produce	high	quality	data	[266].	However,	to	mitigate	
SiC	dissolution	entirely,	the	use	of	aqueous	corrosion-resistant	coatings	has	been	proposed	
[267–269].	As	noted	earlier	in	Table	2,	Cr,	CrN,	and	TiN	are	such	coatings.	Preliminary	results	
from	coated	SiC,	neutron	irradiated	to	0.5	dpa,	are	promising,	indicating	that	these	coatings	are	
able	to	accommodate	swelling	strain	(saturating	at	~0.1	dpa	[203])	in	the	SiC	substrate	after	0.5	



dpa	and	remain	adherent	and	crack-free	[270].	This	is	likely	due	to	abundant	irradiation	creep	
in	the	coating	layer.	
	
5.2.2.	 Potential	for	radionuclide	release	due	to	microcracking	
	
The	potential	for	SiC/SiC	fuel	cladding	failure	due	to	microcracking	is	another	area	that	merits	
deeper	understanding.	Note	that	failure	in	this	instance	is	not	defined	by	a	catastrophic	break	
in	the	material;	rather	it	is	characterized	by	formation	of	a	pathway,	likely	a	network	of	
microcracks,	that	allows	for	release	of	radionuclides	from	the	cladding	internals	to	the	coolant.	
SiC/SiC	composites	have	been	brilliantly	engineered	to	exhibit	macroscopic	ductility	and	
therefore	are	robust	structural	materials.	However,	the	mechanism	that	facilitates	this	
macroscopic	ductility	consists	of	microcracking	of	the	SiC	matrix	(since	matrix	modulus	is	higher	
than	the	fiber	[195],	it	cracks	first)	followed	by	fiber	bridging	and	pullout.	It	is	therefore	
postulated	that	matrix	microcracking	may	provide	a	path	for	release	of	radionuclides	when	the	
fuel	cladding	application	is	considered.		
	
While	catastrophic	failure	in	SiC/SiC	composites	occurs	at	an	ultimate	tensile	stress	(UTS)	of	
~200	to	~400	MPa	and	a	total	strain	of	~0.5%,	the	microcracking	in	the	matrix	develops	when	
proportional	limit	strength	(PLS),	manifesting	at	~90	MPa	(CVI)	to	~200	MPa	(NITE)	stress	or	
~0.05%	strain,	is	reached	[195,231,271],	Figure	9.	The	UTS	and	PLS	of	SiC/SiC	may	be	described	
by	certain	statistical	distribution	functions	such	as	a	two-parameter	Weibull	distribution	[195],	
with	lower	scale	and	shape	parameters	for	the	latter,	facilitating	the	possibility	of	microcracking	
at	stresses	well	below	90	MPa.	In	fact,	the	onset	of	microcracking	has	been	attributed	to	stress	
levels	at	~80%	of	PLS	[272].		
	
This	modest	level	of	stress,	as	shown	by	numerous	thermomechanical	analyses	in	recent	years	
by	various	research	groups	[273–277],	is	expected	to	be	present	in	SiC/SiC	cladding	during	
normal	LWR	fuel	operation.	Although	the	pioneering	analyses	[278,279]	failed	to	capture	this	
effect,	the	large	swelling	gradient	[280]	across	the	cladding	thickness,	itself	a	result	of	a	large	
temperature	gradient	due	to	the	low	thermal	conductivity	of	SiC/SiC	cladding	[281],	presents	a	
stress	profile	conspicuously	distinct	from	that	of	the	metal	cladding.	The	result	is	that	prior	to	
pellet–cladding	contact,	unlike	metallic	cladding,	the	maximum	tensile	stress	is	on	the	inner	
surface	of	the	SiC-based	cladding	[273].	This	stress	is	increased	further	upon	core	shutdown	
[275]	and	PCMI	[282].	Furthermore,	the	strong	sensitivity	of	SiC	swelling	to	temperature	for	the	
regime	relevant	to	LWRs	may	result	in	large	deflections	when	nonuniform	pellet	power	profiles	
are	considered	[282].	
	
The	ability	of	SiC/SiC	cladding	to	remain	hermetic	under	irradiation	and	high	heat	flux	is	the	
subject	of	ongoing	research	[283].	Early	experimental	results	appear	to	confirm	the	model	
predictions	of	high	tensile	stress	on	the	inner	surface	of	the	cladding	[284].	It	is	conceivable	that	
microcracking	initiated	in	the	inner	surface	may	come	to	rest	as	it	propagates	across	the	
cladding	thickness	towards	the	region	experiencing	strong	compressive	stress;	this	hypothesis	
will	be	experimentally	verified	with	a	sensitive	leak	detection	apparatus	such	as	the	one	
described	in	[285].	At	the	same	time,	the	potential	for	microcracking	in	SiC/SiC	further	



underlines	the	usefulness	of	an	outer	coating	layer	that	may	serve	the	dual	purpose	of	
protecting	SiC	from	hydrothermal	corrosion	while	serving	as	an	additional	barrier	to	
radionuclide	release.		
	

	
Figure	9.	a)	Typical	stress–strain	curve	during	axial	tensile	testing	of	a	CVI	SiC/SiC	tube	[286].	

b,c,d)	Fracture	surface	of	composite	at	different	magnifications.		
	
5.2.3.	Need	for	material	standard	and	design	architecture	definition		
	
SiC/SiC	is	a	fundamentally	different	material	than	the	various	metal	fuel	claddings	used	since	
the	inception	of	nuclear	energy:	its	constituents	are	brittle	ceramics	and	it	is	heterogeneous.	
Although,	and	as	noted	earlier,	SiC/SiC	has	been	engineered	to	exhibit	pseudo-ductility,	its	
treatment	as	a	qualified	material	requires	well-defined	design	rules.	Although	such	rules	and	
standards	readily	exist	for	metallic	materials,	they	are	currently	being	defined	and	developed	
for	ceramic	matrix	composites	[287].	This	activity	is	of	paramount	importance	and	needs	to	be	
supported	fully	and	broadly	by	and	within	the	nuclear	SiC/SiC	community.		
	
The	heterogeneous	nature	of	SiC/SiC	(i.e.,	fiber	inside	the	matrix)	may	manifest	in	a	myriad	of	
architectures,	facilitating	the	opportunity	to	produce	a	composite	tuned	for	a	specific	
application.	For	instance,	fully	composite	(woven	or	braided)	[225],	woven	composite	with	an	
inner	monolith	[214,217,288],	braided	composite	with	an	outer	monolith	[214],	and	metal–
composite	hybrid	[289]	concepts	have	all	been	produced	and	examined	for	the	nuclear	fuel	
cladding	application.	This	implies	that	a	unanimous	understanding	on	an	optimal	architecture	
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for	SiC/SiC	cladding	is	lacking.	Defining	a	standard	and	optimal	SiC/SiC	fuel	cladding	architecture	
for	adoption	across	the	nuclear	community	should	be	deemed	a	high	priority.	
	
5.2.4.	Need	for	elucidation	of	beyond	DBA	behavior	
		
SiC	undergoes	oxidation–volatilization	in	flowing	steam,	best	described	by	paralinear	kinetics	
[290,291].	Furthermore,	high	steam	pressures,	which	may	be	present	during	severe	accidents,	
may	increase	the	oxidation	rate	of	the	cladding	by	causing	pore	formation	in	the	protective	
silica	[39,292,293].	Recent	studies	indicate	that	pore	formation	can	manifest	even	at	
atmospheric	pressures	when	a	high	partial	pressure	of	oxidation	product	gases	(i.e.,	H2,	CO,	
Si(OH)4)	are	present	in	the	system	[294].	Except	for	Avincola	et	al.	[239],	the	temperature	range	
of	all	other	studies	has	been	limited	to	≤	1700°C.	Additional	separate	effects	and	integral	tests	
are	necessary	to	examine	the	behavior	of	SiC/SiC	cladding	technologies	under	beyond	DBA	
scenarios.		
	

	
6. Discussion	
	

This	section	presents	arguments	in	support	of	full	development	and	deployment	of	ATF	
cladding	concepts.	The	technical	challenges	discussed	in	the	previous	sections	are	not	deemed	
insurmountable	with	focused	R&D.	Also,	a	brief	attempt	at	presenting	the	fuel	cycle	cost	is	
made	here	with	the	intention	of	showing	that	the	overall	benefits	of	ATF	cladding	concepts	
outweigh	their	higher	cost.	Finally,	the	need	for	additional	R&D	to	generate	data	in	support	of	
informed	deployment	of	these	technologies	is	highlighted.		

	
6.1.	Zr	is	approaching	its	performance	limit	
It	is	clear	to	the	readers	of	this	journal	that	a	broad	range	of	advanced	reactor	concepts	[295]	
are	under	active	development	across	the	globe.	These	advanced	concepts	aim	to	offer	higher	
performance	(efficiency	and	resource	utilization)	and	enhanced	safety,	and	thereby	better	
economics	than	the	current	fleet	of	LWRs.	Almost	none	of	these	advanced	reactor	concepts	
intend	to	utilize	Zr-based	alloys	as	fuel	cladding	or	as	any	structural	component.	Aside	from	its	
low	strength	at	elevated	temperatures	[296],	as	an	HCP	(hexagonal	close-packed)	metal,	
application	of	Zr	to	high	dose,	>30	dpa,	and	high	temperature,	>450°C,	is	not	viable	given	its	
susceptibility	to	runaway	irradiation	growth	[44].		
	
Regarding	the	LWR	application	of	Zr,	any	substantial	further	gains	in	fuel	burnup	are	limited	by	
zirconium’s	inherent	affinity	for	hydrogen	[8].	Material-specific	challenges	with	Zr-based	alloys	
under	beyond	DBA	scenarios	were	discussed	in	Section	1.3,	and	real	limitations	under	DBAs	
have	been	previously	elaborated	upon	in	[5].	The	susceptibility	of	Zr-based	alloys	to	severe	
degradation	during	post-CHF	events	is	well-documented	[297,298],	imposing	strict	limits	to	
core	loading	possibilities	as	well	as	the	reactor’s	operational	flexibility.	
		
6.2.	Partial	gains	provide	additional	coping	time	
	



In	Section	1.3	the	stated	motivation	for	transitioning	away	from	Zr-based	alloys	to	ATF	cladding	
materials	is	to	reduce	the	rate	of	heat	generation,	Q	in	Equation	(1),	in	the	core.	Note	that	this	
transition	does	not	resolve	the	ultimate	susceptibility	of	LWR	cores	with	active	safety	systems	
to	degradation	under	beyond	DBAs.	If	the	first	term	on	the	right-hand	side	of	Equation	(1),	
which	represents	heat	removal	from	the	core,	is	smaller	than	Q,	the	temperature	in	the	core	
will	rise.	When	loss	of	cooling	capability	is	severe,	adiabatic	conditions	best	describe	core	
temperature	evolution.	Under	such	a	scenario,	a	smaller	Q	only	delays	the	onset	of	core	
degradation.	However,	this	smaller	Q	will	positively	impact	accident	progression	in	the	core	in	
two	important	ways.		
	
First,	additional	coping	time	will	be	available	to	interfere	with	the	core	and	to	provide	cooling,	
Figure	1.	Depending	on	the	accident	scenario	and	the	type	of	ATF	cladding,	this	additional	
coping	time	will	be	on	the	order	of	minutes	to	tens	of	hours	[189].	Although	not	substantial,	the	
additional	time	may	be	exploited	to	facilitate	injecting	coolant	to	the	core	to	mitigate	the	
accident’s	progression.	Given	the	physics	of	a	LWR	core,	none	of	the	ATF	cladding	concepts	
allow	for	a	“walkaway	safe”	core.	However,	their	utilization	will	delay	the	core’s	degradation	
processes,	by	prolonging	the	period	during	which	active	safety	systems	can	be	brought	on	line	
to	cool	the	core.		
	
Second,	the	rate	and	total	magnitude	of	heat	and	hydrogen	generated	in	the	core	are	smaller	
[28]	for	ATF	cladding	concepts	because	their	oxidation	rate	is	lower.	This	implies	that	the	
threshold	cooling	capability	necessary	to	stabilize	the	temperatures	or	cool	the	core	is	lower.	
This	highlights	the	importance	of	partial	cooling	capability	and	the	lower	burden	on	ECCS	
capacity.	
	
6.3.	ATF	cladding	should	not	be	deemed	cost	prohibitive	
	
LWR	fuel	constitutes	~20%	of	nuclear	electricity	generation	cost	today,	Figure	10.	The	fuel	cost	
itself	is	dominated	(>75%)	by	the	cost	of	uranium,	its	conversion,	and	enrichment	(note	that	
SWU	[separative	work	unit]	prices	have	dropped	in	recent	years	to	their	lowest	levels	in	
decades	[299],	lowering	the	fuel	price).	At	roughly	$30/m	Zr-based	cladding	itself	constitutes	
<3%	of	the	fuel	assembly	cost,	Table	5.	In	the	case	of	coated	Zr-based	and	SiC/SiC	cladding	
materials,	where	thermal	neutron	absorption	in	the	cladding	is	negligible	[79],	only	the	
remaining	fuel	fabrication	cost	should	be	considered.	Coating	deposition	on	the	surface	of	the	
cladding	is	not	expected	to	increase	the	fuel	cost	notably.	In	the	case	of	SiC-based	cladding,	the	
cladding	cost	today	is	high	(>$1000	per	tube),	dominated	by	the	nuclear-grade	(Gen	III)	SiC	
fibers	at	~$15,000/kg.	These	fibers	are	~50×	more	expensive	than	the	early	generation	ceramic-
grade	fibers.	The	current	price	of	certain	Gen	III	fibers	does	not	necessarily	reflect	their	actual	
production	cost	and	is	a	result	of	low	demand	due	to	lack	of	large	industrial	application	(much	
like	the	Zr	price	in	its	early	days	was	too	high).	Once	industrial	demand	for	Gen	III	SiC	fibers	
takes	off,	the	fiber	price	is	expected	to	drop	greatly.	Although	the	cladding	cost	itself	is	
expected	to	be	less	compared	to	Zr-based	cladding,	the	higher	thermal	neutron	absorption	in	
FeCrAl	will	require	additional	fissile	loading	(more	uranium	and	enrichment)	that	will	result	in	
an	additional	cost	of	the	fuel	assembly	on	the	order	of	15–25%	[5,131].		



	
Note	that	in	all	cases	in	Table	5,	the	fuel	pellet	is	considered	to	consist	of	urania	that	is	stable	in	
the	highly	oxidizing	LWR	coolant	environments,	whether	high	pressure	water	during	normal	
operation	[300,301]	or	steam	to	>2400°C	under	accidents	[76,302].	Urania	remains	stable	since	
H2	is	always	present	at	very	small	quantities,	retarding	its	further	oxidation	to	U3O8.	High	
density	monolithic	non-oxide	fuels	(>9.5	gU/cm3),	as	they	manifest	today,	are	not	considered	
safe	for	LWR	application	since	they	are	highly	reactive	in	O2	and	H2O	environments	of	>400°C	
[303–305],	defeating	the	motivation	discussed	in	Section	1.3.		
	

	
Figure	10.	Fuel,	operating,	and	capital	costs	as	a	fraction	of	the	average	total	generating	

cost	in	2016	for	US-generated	nuclear	electricity,	$34	per	MWh	[306,307].	
	
	

Table	5.	Price	estimate	in	k$	for	a	PWR	fuel	bundle	with	various	cladding	materials	(assuming	the	same	
fabrication	cost).	

		
Cladding	cost	
per	bundle	

Fuel	pellet	cost	
per	bundle	

Fabrication	
cost	 Total	cost	

Difference	from	
base	case	(%)	

Zr-based	(base	case)	 30	 950	 140	 1120	 -	

Coated	Zr-based		 <40	 950	 140	 <1130	 <1	

FeCrAl	 <30	 1140	 140	 ≤1310	 ≤17	
SiC/SiC	 >300*	 950	 140	 ≥1390	 ≥24	

*The	cost	is	dominated	by	fiber	and	may	be	greatly	reduced	once	fibers	are	produced	in	large	volumes.		
	
In	today’s	electricity	market,	at	least	in	the	deregulated	regions	of	the	United	States,	price	
competition	is	fierce.	Most	prominently,	owing	to	hydraulic	fracturing,	natural	gas	is	available	in	
abundance;	priced	at	<$3/MMBtu	in	the	United	States,	2–3	times	cheaper	than	in	the	European	
Union	and	Asia,	it	is	a	cheap	source	of	electricity.	Given	this	pressure,	there	exists	a	strong	
sensitivity	to	any	increase	in	nuclear	fuel	price.	However,	there	are	a	number	of	opportunities	
to	reduce	the	overall	fuel	cycle	cost	[308].	These	opportunities	are	real	and	include	the	
following:	

• Expanded	fuel	operational	window	(higher	CHF	limits	and	resistance	to	degradation	
during	post-CHF	events	as	well	as	the	absence	of	a	cladding	ductility	loss	mechanism	
due	to	hydride	precipitates)	

Fuel
20%

Capital
20%Operating

60%



• Increased	fuel	burnup,	no	longer	limited	by	cladding	performance	(although	>5%	235U	
enrichment	will	likely	be	necessary)	

• Increased	limits	on	peak	cladding	temperature	and	exposure	duration	under	DBA	
scenarios	

• Application	of	risk-informed	categorization	and	treatment	of	structures,	systems,	and	
components	for	nuclear	power	reactors	(i.e.,	10	CFR	50.69)	and	regulatory	guidelines,	to	
change	operational	models	and	reduce	maintenance	costs	[309]	

• Enhanced	back-end	performance	of	used	fuel	and	less	susceptibility	to	degradation	
during	storage	and	transport	

	
Most	important,	the	nuclear	industry,	unlike	other	heavily	regulated	industries	(e.g.,	
aerospace),	has	failed	to	adopt	advanced	materials	over	the	past	decades	[310].	This	failure	is	a	
recipe	for	obsolescence,	and	it	is	imperative	that	the	community	moves	forward	with	adoption	
of	ATF	cladding	materials	to	break	this	trend.	Also,	these	materials	are	often	the	same	ones	
being	considered	for	advanced	(non-LWR)	systems,	and	their	successful	deployment	in	LWRs	
will	greatly	facilitate	their	adoption	in	future	nuclear	energy	systems.	
	
6.4.	Experimental	data	remains	a	critical	need	
	
Large	datasets	of	high	quality	are	necessary	to	support	predictive	understanding	of	fuel	
behavior	under	all	the	scenarios	listed	in	Table	1.	This	body	of	data,	as	it	pertains	to	Zr-based	
alloys,	was	collected	over	the	decades	and	needs	to	be	replicated	for	the	ATF	cladding	
technologies.	Note	that	over	two-thirds	of	the	references	cited	in	this	article	were	published	
since	the	Fukushima	Daiichi	accidents	in	2011.	This	highlights	the	level	of	effort	directed	at	
developing	these	technologies	internationally	and	the	resulting	technical	output	from	those	
studies.	However,	the	need	for	complete	datasets	remains	critical,	as	they	are	key	facilitators	of	
furthering	the	technology	readiness	level	for	these	advanced	fuel	systems	[311].	Particular	
focus	should	be	placed	on	in-pile	testing	of	these	fuel	concepts	in	prototypical	environments	
[312]	as	well	as	experimental	data	to	inform	fuel	degradation	behavior	during	severe	accidents	
[313].	

	
7. Summary	

	
The	motivation	for	developing	alternative	fuel	cladding	materials	with	significantly	enhanced	
oxidation	resistance	to	replace	Zr-based	alloys	in	LWRs	is	to	delay	and	reduce	the	heat	and	
hydrogen	generated	during	severe	accidents	as	a	result	of	cladding	oxidation.	Three	leading	
concepts	under	active	development	are	Cr-coated	Zr-based	cladding,	FeCrAl	cladding,	and	
SiC/SiC	cladding,	with	improved	severe	accident	performance	in	that	order.	A	review	of	
development	status,	challenges,	and	data	gaps	for	these	concepts	shows	promise	without	
identifying	any	insurmountable	technical	challenges.	Additional	R&D	in	key	areas	and	
generation	of	high	quality	experimental	data	to	explain	their	properties	and	integral	
performance	behavior	are	necessary	to	further	the	technology	readiness	level	of	these	cladding	
concepts	toward	commercial-scale	deployment	and	realization	of	their	safety	benefits.	Full	
development	and	adoption	of	ATF	cladding	technologies	will	likely	improve	the	economics	of	



the	overall	fuel	cycle	and	will	showcase	the	nuclear	industry	as	adopting	new	materials	and	
technologies,	paving	the	way	for	other	advanced	nuclear	systems.	
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