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APPLICATION OF POLYNOMIAL CHAOS EXPANSION IN INVERSE TRANSPORT PROBLEMS WITH
NEUTRON MULTIPLICATION MEASUREMENTS AND MULTIPLE UNKNOWNS

Keith C. Bledsoe?!, Matthew A. Jessee?!, and Justin Knowles'™

!0ak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 USA, bledsoekc@ornl.gov

The polynomial chaos expansion technique is used to
build surrogate models of the dependences of gamma-ray
fluxes and neutron multiplication to unknown physical
parameters in radiological source/shield systems. These
surrogate models are used with the DiffeRential Evolution
Adaptive Metropolis (DREAM), a method to solve and
quantify uncertainty in inverse transport problems.
Measured data in the inverse problems includes both
passive gamma rays and neutron multiplication. The
polynomial chaos expansion approach is shown to
increase the speed of DREAM by factors of greater than 60
while not degrading the accuracy of the solution.

1. INTRODUCTION

In the problem of inverse radiation transport,
measurements of particle leakages from radioactive
source/shield systems are used to infer unknown
parameters within the systems. This reconstruction can be
accomplished by finding the physical parameters of the
unknown system that minimize the difference between
calculated detector responses and measured detector
responses. The inverse transport solver should also
propagate uncertainties from the detector responses to the
reconstructed parameter values. Recently, the DiffeRential
Evolution Adaptive Metropolis (DREAM) method, an
advanced Markov chain Monte Carlo (MCMC) approach,
was shown to be a robust method for uncertainty
quantification in inverse problems.! Although DREAM is
more efficient than traditional MCMC approaches, it still
requires thousands of transport computations to accurately
quantify uncertainty. Therefore, inverse transport problems
that require computationally intensive transport solvers
will need prohibitively long run times when using the
DREAM method. It has previously been demonstrated that
the polynomial chaos expansion method reduces by orders-
of-magnitude the number of transport calculations required
by the DREAM method for solving inverse transport
problems with passive gamma-ray measurements and a
single unknown parameter.?2 This work constitutes an
expansion of such analysis to problems with multiple
unknown parameters and to those that use neutron
multiplication as well as passive gamma-ray
measurements.

Il. DREAM METHOD AND POLYNOMIAL CHAOS
EXPANSION (PCE)

ILA. DREAM Method

MCMC  simulations provide a generalized
methodology for obtaining the posterior distribution of the
unknown parameters in an inverse transport problem. For
a vector u representing postulated values for unknown
parameters, this posterior distribution, p(u|M,),
represents the probability of a model u (), given observed
measurements M, . Following Bayes Theorem, this
distribution is proportional to the product of likelihood
function and a prior probability distribution. For this study,
a uniform prior distribution between the physical
constraints of the parameter was assumed. This indicates
that there is no a priori information about the parameter’s
value. Other distributions could be used when prior
knowledge is available. As with previous work,? the
likelihood function was defined as

D 2
p(M,l) = exp [—% (Mo =) l Y

g,
d=1 d

where D is the total number of detector measurements,
M, (u) is the calculated response for detector d for the
postulated parameter set u , M;, is the observed
measurement for detector d, and g, is the uncertainty in
the measurement for detector d. The goal of the inverse
problem is to find the regions for which p(M,|u) is at or
near its maximum.

In the traditional MCMC approach, a single Markov
chain is employed. The chain begins at some initial
parameter values u, ,for which p(u.|M,) is calculated.
After this, trial values for the unknown parameters are
created using an updating technique, several of which have
been presented in the last few decades.® These techniques
range from simple methods like sampling from Gaussian
distributions centered about the initial trial values to the use
of evolutionary algorithms. The posterior distribution
p(u..,|M,) is calculated for the trial parameter values, and
the trial set is either accepted or rejected according to the
Metropolis acceptance probability:*
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According to Eq. (2), if the trial point has a posterior
smaller than the current chain state (i.e., parameters u,.,
yield a closer match between calculated and observed
measurements), then the acceptance probability is 1, and
the chain is moved to the trial state. If parameters u,,; do
not lead to a closer match between calculated and observed
measurements, they could still be accepted, with a
probability equal to p(u.|M,)/p(u.41|M,). The chain
progresses in this way until it creates the full posterior
distribution describing the probabilities for the values of
the unknown parameters.

Traditional MCMC approaches have generally been
inefficient because many of the traditional updating
schemes create trial parameters are either too close to the
current point, leading to a high acceptance rate but slow
convergence to the posterior distribution, or they are too far
from the current point, leading to a low acceptance rate.
The issue of choosing trial parameters has been explored
for many years. The DREAM algorithm has been
particularly successful at finding appropriate trial
parameters. DREAM has been shown to greatly increase
the speed of the MCMC process and to be highly successful
for solving difficult optimization problems in the presence
of noise.* DREAM also employs simultaneous multiple
Markov chains (generally 3-5) and uses the differential
evolution (Ref. 5) algorithm to generate trial points for
each chain. In the case of multiple chains, the Metropolis
ratio [Eq. (2)] becomes

a(ul, L) uN; ul,trial' ey uN,trial)

. p(u;|M,) + -+ p(uy|M,)
= min 1

p(ul,triallMo) +- 4 p(uN,trial|Mo) ' .
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When applying MCMC algorithms, a stopping point
must be determined. This work implements the Gelman—
Rubin convergence metric (Ref. 6) to automatically detect
when the posterior distribution has been sufficiently
sampled. This diagnostic compares the estimated between-
chains and within-chain variances. When these variances
are similar, then the multiple chains have all converged to
the same region and are (ideally) sampling the posterior
distributions of the unknown parameters.

11.B. Polynomial Chaos Expansion (PCE)

Each computation of the likelihood function [Eq. (1)]
requires calculation of M, (u) the quantities of interest
(QOI) (gamma-ray flux or neutron multiplication) that
corresponds to a set of postulated values for the unknown

parameters. PCE is used to create a surrogate model for
these QOls. First consider the case where the QOI is a
function of one unknown parameter (an internal dimension,
source enrichment, etc.) that can be described by a
uniformly distributed random variable & over some
interval. This could, for example, be a source radius whose
exact location is unknown but is known to be between 0 cm
and 10cm. The QOI as a function of the unknown
parameter, ¥(&;), can be expressed as a continuous
polynomial over this interval. To do this, Legendre
polynomials {P,(¢,), P, (¢7), ... }are employed, which form
a set of basis functions for continuous polynomials on
[-1,1] and can (with linear translation) be used over other
closed intervals. The orthogonal projection can be shown
to be the best approximation of ¥ in the Legendre
polynomial basis.” The projection of (&) onto the
Legendre polynomial basis is given by

K
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where the deterministic coefficients a; are obtained by
applying the orthogonality of the Legendre polynomials

@&, PiED))
A= ()
(P;(§1), Pi(§1))
Equation (4) is called the polynomial chaos expansion of
Y.

The denominator of Eq. (5) is determined by the
orthogonality property of the Legendre polynomials, which
is

' __2 (6)
9 A& Pi(§)Pi(&) = m&j -
The numerator can be solved by performing a numerical
integration with Gauss—Legendre quadrature:

WEIP () = Z Wn P (§1,n)Pi (1) ()

where the w, are weights of the quadrature points, &, ,, is
the n'h abscissa of the quadrature set, and ¥ (&, ,,) is the
measured quantity at parameter value &;,, which is
determined by a transport calculation. Using this approach,
an approximation for the QOI in terms of the PCE of &; in
EqQ. 4 can be constructed with N transport computations.
Now consider a QOI ¥ (&,,&,) as a function of two
unknown parameters, each of which can be represented by
uniformly distributed variables. In two dimensions the
basis is the tensor product of the individual bases for the
random variables. Again using Legendre polynomials for
each variable, the individual bases are {P,(¢,), P;(&,), ...}



and {P,(&,), P;(&,) ... }. To obtain the basis functions for a
2nd-order expansion in two dimensions, the tensor product
of the two bases is computed and terms that have a total
order of 2 or less are selected: Py(&;)Py(&,), Po(é1)P1(€2),
Py(&)P,(&,), etc. Using these terms, the 2nd-order
expansion is:

Y(§1, &) = agoPo(§1)Po(&2) + aroPr(§1)Po(E2)
+ ap1Po(§1)P1($2)
+ a1 P1(§1)P1(§2) ®)
+ a0 P, (§1)Po(§2)
+ 2Py (§1)P2(&2).

The procedure can be generalized to generate 3rd-order or
higher-order expansions.

The coefficients a;; in Eq. (8) are again determined
using the orthogonality property of the Legendre
polynomials, for instance
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The denominators of the equations for a;; admit analytical
solutions by performing integrals of the form

f_lld'fl f_ lld'fz P2 (E)PH(E). (11)

The numerators can be solved numerically using Gauss—
Legendre quadrature:
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In Eg. (12), w,, and w,, are weights of the quadrature
points, &, ,, is the m*™ abscissa of the quadrature set for the
first variable, &, , is the n'™ abscissa of the quadrature set
of the second variable, and ¥ (&, ,, &) is the QOI at
unknown parameter values &; ,,, &, ,, Which is determined
by a transport calculation. An approximation for the QOI
can therefore be constructed using M X N transport
computations. Coefficients for higher-order expansions are
calculated in a similar manner.

PCE is implemented into the DREAM method by
using the surrogate model in place of M;(u) in Eq. (1).
Consequently, the DREAM method with PCE requires

only the number of transport calculations necessary to
build the surrogate model.

11l. NUMERICAL RESULTS
I111.A Background

To demonstrate the method, both one-dimensional
(spherical) and two-dimensional (cylindrical) test cases
were considered. The test cases contain a uranium source
for which neutron multiplication can be measured. The
source also emits several discrete gamma-ray lines,
including one at 1,001 keV. In the test problems, a PCE
surrogate model was constructed for neutron multiplication
and for the leakage (spherical problem) or flux (cylindrical
problem) of the 1,001-keVV gamma-ray line at the detector
point (so that there would be two unknowns and two QOIs).
Measured values were simulated using the same ray-
tracing routine used by the DREAM algorithm, meaning
there was no measurement uncertainty (the focus of this
work is on improving computational speed rather than
quantifying all sources of uncertainty).

111.B. Spherical Geometry

The first test case was performed using the spherical
geometry shown in Fig. 1. A highly enriched uranium
source with a radius of 8.741 cm was surrounded by layers
of lead and aluminum shielding. The shielding had an inner
radius of 12.40 cm. The unknown parameters were the
source radius and the inner shield radius.

124 cm
12.9cm

13.2cm

B N

Uranium Lead

Aluminum

Fig. 1. Geometry for the spherical test problem

The first test case results are provided in Table I. Fifth-
order PCE expansions were used to build surrogates for the
flux and multiplication, requiring a total of 36 transport



calculations (here “transport calculation” refers to both the
calculation of the gamma-ray flux and the neutron
multiplication). The fifth-order expansion was determined
by trial-and-error. Expansions of increasingly higher order
were tried until the DREAM with PCE results matched
standard DREAM results to better than 99.9%. The time
required to build these surrogates was 190 seconds
(DREAM itself required less than 1 second of computation
time when using the surrogates). DREAM with PCE
obtained virtually identical results to standard DREAM,
which required 9,790 transport calculations and
15,000 seconds of run time. Thus, DREAM with PCE was
a factor of 79 faster than standard DREAM.

111.C. Cylindrical Geometry

The second numerical test problem was performed
with the geometry shown in Fig. 2. A cylindrical source of
highly enriched uranium has a radius of 4.0 cm and a height
of 4.5cm; it was surrounded by layers of nickel and
aluminum shielding. Detectors at (r,z) = (10.0 cm,
4.0 cm) measured the flux of the 1,001-keV gamma-ray
line and the neutron multiplication. The unknown
parameters in this problem were the source radius and axial
location of the top of the source (actual value 6.0 cm).

—8.0cm

~6.5cm
6.0cm

~15cm
1.0cm

|

4.0cm

5.5cm
6.0cm

- Uranium . Nickel Aluminum

Fig. 2. Geometry for the cylindrical test problem

The second test case results are provided in Table II.
A 9M-order PCE expansion, requiring 100 transport
calculations, was required to produce results with the
required accuracy of 99.9%. DREAM with PCE required
84 minutes to solve the problem and obtained a solution
very similar to standard DREAM, which required 6,132
transport calculations and 5,160 minutes of run time.
DREAM with PCE was thus a factor of 54 faster than
standard DREAM.

TABLE |: DREAM Results for the Spherical Test Problem

Parameters Method DREAM Result Transport Run Time | Speedup
Calculations (s) Factor

Source Radius Standard 8.741 +0.001 cm

Inner Shield Radius DREAM 12.40 + 0.001 cm 9,790 15,000 -

Source Radius DREAM 8.742 £ 0.003 cm

Inner Shield Radius | with PCE | 12.40 + 0.002 cm 36 190 9

TABLE |I: DREAM Results for the Cylindrical Test Problem

Parameters Method DREAM Result Transport Run Time | Speedup
Calculations (min) Factor

Source Radius Standard 4.02+0.11cm 6,132 5160 _

Source Top DREAM 5.99 + 0.27 cm ’

Source Radius DREAM 3.99+£0.10cm

Source Top with PCE | 6.01 +0.29 cm 100 84 61




IV. CONCLUSIONS

The PCE method has been used to build surrogate
models of measured quantities in inverse transport
problems with measurements of passive gamma rays and
neutron multiplication. These surrogates were used in the
DREAM method to find the unknown parameters. In
numerical test cases, DREAM with PCE was shown to be
over a factor of 61 faster than standard DREAM for
problems with two unknown parameters.

Several areas of future research remain for DREAM
with PCE. In the numerical test problems, PCE expansion
orders of 5 and 9 were manually determined to be the
minimum expansion orders necessary to obtain accurate
solutions. A current area of study is to automatically
determine the optimal PCE order. Another current research
thrust is to quantify the error introduced by the surrogate
models.

For problems with more (3 or more) unknown
parameters, the cost of building the surrogate function can
become more expensive than using the standard DREAM
method. A way to reduce this cost is to use sparse grid
quadrature sets rather than Gauss—Legendre quadrature
sets in Eq. (12). This is also a current area of study.
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