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The polynomial chaos expansion technique is used to 

build surrogate models of the dependences of gamma-ray 

fluxes and neutron multiplication to unknown physical 

parameters in radiological source/shield systems. These 

surrogate models are used with the DiffeRential Evolution 

Adaptive Metropolis (DREAM), a method to solve and 

quantify uncertainty in inverse transport problems. 

Measured data in the inverse problems includes both 

passive gamma rays and neutron multiplication. The 

polynomial chaos expansion approach is shown to 

increase the speed of DREAM by factors of greater than 60 

while not degrading the accuracy of the solution. 

 

I. INTRODUCTION 

In the problem of inverse radiation transport, 

measurements of particle leakages from radioactive 

source/shield systems are used to infer unknown 

parameters within the systems. This reconstruction can be 

accomplished by finding the physical parameters of the 

unknown system that minimize the difference between 

calculated detector responses and measured detector 

responses. The inverse transport solver should also 

propagate uncertainties from the detector responses to the 

reconstructed parameter values. Recently, the DiffeRential 

Evolution Adaptive Metropolis (DREAM) method, an 

advanced Markov chain Monte Carlo (MCMC) approach, 

was shown to be a robust method for uncertainty 

quantification in inverse problems.1 Although DREAM is 

more efficient than traditional MCMC approaches, it still 

requires thousands of transport computations to accurately 

quantify uncertainty. Therefore, inverse transport problems 

that require computationally intensive transport solvers 

will need prohibitively long run times when using the 

DREAM method. It has previously been demonstrated that 

the polynomial chaos expansion method reduces by orders-

of-magnitude the number of transport calculations required 

by the DREAM method for solving inverse transport 

problems with passive gamma-ray measurements and a 

single unknown parameter.2 This work constitutes an 

expansion of such analysis to problems with multiple 

unknown parameters and to those that use neutron 

multiplication as well as passive gamma-ray 

measurements. 

II. DREAM METHOD AND POLYNOMIAL CHAOS 

EXPANSION (PCE) 

II.A. DREAM Method 

MCMC simulations provide a generalized 

methodology for obtaining the posterior distribution of the 

unknown parameters in an inverse transport problem. For 

a vector 𝐮  representing postulated values for unknown 

parameters, this posterior distribution, 𝑝(𝐮|𝑀𝑜), 
represents the probability of a model 𝐮 (), given observed 

measurements 𝑀𝑜 . Following Bayes Theorem, this 

distribution is proportional to the product of likelihood 

function and a prior probability distribution. For this study, 

a uniform prior distribution between the physical 

constraints of the parameter was assumed. This indicates 

that there is no a priori information about the parameter’s 

value. Other distributions could be used when prior 

knowledge is available. As with previous work,2 the 

likelihood function was defined as 

 

𝑝(𝑀𝑜|𝐮) = exp [−
1

2
∑ (

𝑀𝑑(𝐮) − 𝑀𝑑,𝑜

𝜎𝑑

)

2𝐷

𝑑=1

] , 

 

where 𝐷  is the total number of detector measurements, 

𝑀𝑑(𝐮)  is the calculated response for detector 𝑑  for the 

postulated parameter set 𝐮 , 𝑀𝑑,𝑜  is the observed 

measurement for detector 𝑑, and 𝜎𝑑  is the uncertainty in 

the measurement for detector 𝑑. The goal of the inverse 

problem is to find the regions for which 𝑝(𝑀𝑜|𝐮) is at or 

near its maximum. 

In the traditional MCMC approach, a single Markov 

chain is employed. The chain begins at some initial 

parameter values 𝐮𝑡 ,for which 𝑝(𝐮𝑡|𝑀𝑜)  is calculated. 

After this, trial values for the unknown parameters are 

created using an updating technique, several of which have 

been presented in the last few decades.3 These techniques 

range from simple methods like sampling from Gaussian 

distributions centered about the initial trial values to the use 

of evolutionary algorithms. The posterior distribution 

𝑝(𝐮𝑡+1|𝑀𝑜) is calculated for the trial parameter values, and 

the trial set is either accepted or rejected according to the 

Metropolis acceptance probability:4 
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 𝛼(𝐮𝑡 , 𝐮𝑡+1) = min [
𝑝(𝐮𝑡|𝑀𝑜)

 𝑝(𝐮𝑡+1|𝑀𝑜)
, 1] . 

 

According to Eq. (2), if the trial point has a posterior 

smaller than the current chain state (i.e., parameters 𝐮𝑡+1 

yield a closer match between calculated and observed 

measurements), then the acceptance probability is 1, and 

the chain is moved to the trial state. If parameters 𝐮𝑡+1 do 

not lead to a closer match between calculated and observed 

measurements, they could still be accepted, with a 

probability equal to 𝑝(𝐮𝑡|𝑀𝑜)/𝑝(𝐮𝑡+1|𝑀𝑜) . The chain 

progresses in this way until it creates the full posterior 

distribution describing the probabilities for the values of 

the unknown parameters. 

Traditional MCMC approaches have generally been 

inefficient because many of the traditional updating 

schemes create trial parameters are either too close to the 

current point, leading to a high acceptance rate but slow 

convergence to the posterior distribution, or they are too far 

from the current point, leading to a low acceptance rate. 

The issue of choosing trial parameters has been explored 

for many years. The DREAM algorithm has been 

particularly successful at finding appropriate trial 

parameters. DREAM has been shown to greatly increase 

the speed of the MCMC process and to be highly successful 

for solving difficult optimization problems in the presence 

of noise.4 DREAM also employs simultaneous multiple 

Markov chains (generally 3–5) and uses the differential 

evolution (Ref. 5) algorithm to generate trial points for 

each chain. In the case of multiple chains, the Metropolis 

ratio [Eq. (2)] becomes 

 

𝛼(𝐮1, … , 𝐮𝑁; 𝐮1,𝑡𝑟𝑖𝑎𝑙 , … , 𝐮𝑁,𝑡𝑟𝑖𝑎𝑙) 

= min [
𝑝(𝐮1|𝑀𝑜) + ⋯ + 𝑝(𝐮𝑁|𝑀𝑜)

 𝑝(𝐮1,𝑡𝑟𝑖𝑎𝑙|𝑀𝑜) + ⋯ + 𝑝(𝐮𝑁,𝑡𝑟𝑖𝑎𝑙|𝑀𝑜)
, 1] . 

 

When applying MCMC algorithms, a stopping point 

must be determined. This work implements the Gelman–

Rubin convergence metric (Ref. 6) to automatically detect 

when the posterior distribution has been sufficiently 

sampled. This diagnostic compares the estimated between-

chains and within-chain variances.  When these variances 

are similar, then the multiple chains have all converged to 

the same region and are (ideally) sampling the posterior 

distributions of the unknown parameters.      

 

II.B. Polynomial Chaos Expansion (PCE) 

Each computation of the likelihood function [Eq. (1)] 

requires calculation of 𝑀𝑑(𝐮)  the quantities of interest 

(QOI) (gamma-ray flux or neutron multiplication) that 

corresponds to a set of postulated values for the unknown 

parameters. PCE is used to create a surrogate model for 

these QOIs. First consider the case where the QOI is a 

function of one unknown parameter (an internal dimension, 

source enrichment, etc.) that can be described by a 

uniformly distributed random variable 𝜉1  over some 

interval. This could, for example, be a source radius whose 

exact location is unknown but is known to be between 0 cm 

and 10 cm. The QOI as a function of the unknown 

parameter, 𝜓(𝜉1) , can be expressed as a continuous 

polynomial over this interval. To do this, Legendre 

polynomials {𝑃0(𝜉1), 𝑃1(𝜉1), … }are employed, which form 

a set of basis functions for continuous polynomials on 

[−1,1] and can (with linear translation) be used over other 

closed intervals. The orthogonal projection can be shown 

to be the best approximation of 𝜓  in the Legendre 

polynomial basis.7 The projection of 𝜓(𝜉1)  onto the 

Legendre polynomial basis is given by 

 

𝜓(𝜉1) ≈ ∑ 𝑎𝑖𝑃𝑖(𝜉1),

𝐾

𝑖=0

 

 

where the deterministic coefficients 𝑎𝑖  are obtained by 

applying the orthogonality of the Legendre polynomials 

𝑎𝑖 =
⟨𝜓(𝜉1), 𝑃𝑖(𝜉1)⟩

⟨𝑃𝑖(𝜉1), 𝑃𝑖(𝜉1)⟩
 . 

Equation (4) is called the polynomial chaos expansion of 

𝜓. 

The denominator of Eq. (5) is determined by the 

orthogonality property of the Legendre polynomials, which 

is 

∫ 𝑑𝜉1𝑃𝑖(𝜉1)𝑃𝑗(𝜉1) =
2

2𝑖 + 1
𝛿𝑖𝑗

1

−1

 . 

The numerator can be solved by performing a numerical 

integration with Gauss–Legendre quadrature: 

⟨𝜓(𝜉1)𝑃𝑖(𝜉1)⟩ ≈ ∑ 𝑤𝑛𝜓(𝜉1,𝑛

𝑁

𝑛=1

)𝑃𝑖(𝜉1,𝑛), 

where the 𝑤𝑛 are weights of the quadrature points, 𝜉1,𝑛 is 

the 𝑛th  abscissa of the quadrature set, and 𝜓(𝜉1,𝑛) is the 

measured quantity at parameter value 𝜉1,𝑛,  which is 

determined by a transport calculation. Using this approach, 

an approximation for the QOI in terms of the PCE of 𝜉1 in 
Eq. 4 can be constructed with 𝑁 transport computations. 

Now consider a QOI 𝜓(𝜉1, 𝜉2) as a function of two 

unknown parameters, each of which can be represented by 

uniformly distributed variables. In two dimensions the 

basis is the tensor product of the individual bases for the 

random variables. Again using Legendre polynomials for 

each variable, the individual bases are {𝑃0(𝜉1), 𝑃1(𝜉1), … } 

(2) 

(4) 

(5) 

(3) 

(6) 

(7) 
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and {𝑃0(𝜉2), 𝑃1(𝜉2) … }. To obtain the basis functions for a 

2nd-order expansion in two dimensions, the tensor product 

of the two bases is computed and terms that have a total 

order of 2 or less are selected: 𝑃0(𝜉1)𝑃0(𝜉2), 𝑃0(𝜉1)𝑃1(𝜉2), 
𝑃0(𝜉1)𝑃2(𝜉2),  etc. Using these terms, the 2nd-order 

expansion is: 

 

𝜓(𝜉1, 𝜉2) ≈ 𝑎00𝑃0(𝜉1)𝑃0(𝜉2) + 𝑎10𝑃1(𝜉1)𝑃0(𝜉2)
+ 𝑎01𝑃0(𝜉1)𝑃1(𝜉2)
+ 𝑎11𝑃1(𝜉1)𝑃1(𝜉2)
+ 𝑎20𝑃2(𝜉1)𝑃0(𝜉2)
+ 𝑎02𝑃0(𝜉1)𝑃2(𝜉2). 

 

The procedure can be generalized to generate 3rd-order or 

higher-order expansions. 

The coefficients 𝑎𝑖𝑗  in Eq. (8) are again determined 

using the orthogonality property of the Legendre 

polynomials, for instance 

 

𝑎00 =
⟨𝜓(𝜉1, 𝜉2)𝑃0(𝜉1)𝑃0(𝜉2)⟩

⟨𝑃0
2(𝜉1)𝑃0

2(𝜉2)⟩
=

⟨𝜓(𝜉1, 𝜉2)⟩

⟨1⟩
 

and 

𝑎10 =
⟨𝜓(𝜉1, 𝜉2)𝑃1(𝜉1)𝑃0(𝜉2)⟩

⟨𝑃1
2(𝜉1)𝑃0

2(𝜉2)⟩
=

⟨𝜉1𝜓(𝜉1, 𝜉2)⟩

⟨𝜉1
2⟩

 . 

The denominators of the equations for 𝑎𝑖𝑗  admit analytical 

solutions by performing integrals of the form 

∫ 𝑑𝜉1

1

−1

∫ 𝑑𝜉2

1

−1

𝑃𝑖
2(𝜉1)𝑃𝑗

2(𝜉2). 

The numerators can be solved numerically using Gauss–

Legendre quadrature: 

⟨𝜓(𝜉1, 𝜉2)𝑃𝑖(𝜉1)𝑃𝑗(𝜉2)⟩

≈ ∑ ∑ 𝑤𝑚𝑤𝑛𝜓(𝜉1,𝑚

𝑁

𝑛=1

𝑀

𝑚=1

, 𝜉2,𝑛)𝑃𝑖(𝜉1,𝑚)𝑃𝑗(𝜉2,𝑛). 

 

In Eq. (12), 𝑤𝑚 and 𝑤𝑛 are weights of the quadrature 

points, 𝜉1,𝑚 is the 𝑚th abscissa of the quadrature set for the 

first variable, 𝜉2,𝑛 is the 𝑛th abscissa of the quadrature set 

of the second variable, and 𝜓(𝜉1,𝑚, 𝜉2,𝑛)  is the QOI at 

unknown parameter values 𝜉1,𝑚, 𝜉2,𝑛, which is determined 

by a transport calculation. An approximation for the QOI 

can therefore be constructed using 𝑀 × 𝑁  transport 

computations. Coefficients for higher-order expansions are 

calculated in a similar manner. 

PCE is implemented into the DREAM method by 

using the surrogate model in place of 𝑀𝑑(𝐮) in Eq. (1). 

Consequently, the DREAM method with PCE requires 

only the number of transport calculations necessary to 

build the surrogate model.  

 

III. NUMERICAL RESULTS 

III.A Background 

To demonstrate the method, both one-dimensional 

(spherical) and two-dimensional (cylindrical) test cases 

were considered. The test cases contain a uranium source 

for which neutron multiplication can be measured. The 

source also emits several discrete gamma-ray lines, 

including one at 1,001 keV. In the test problems, a PCE 

surrogate model was constructed for neutron multiplication 

and for the leakage (spherical problem) or flux (cylindrical 

problem) of the 1,001-keV gamma-ray line at the detector 

point (so that there would be two unknowns and two QOIs). 

Measured values were simulated using the same ray-

tracing routine used by the DREAM algorithm, meaning 

there was no measurement uncertainty (the focus of this 

work is on improving computational speed rather than 

quantifying all sources of uncertainty). 

III.B. Spherical Geometry 

The first test case was performed using the spherical 

geometry shown in Fig. 1. A highly enriched uranium 

source with a radius of 8.741 cm was surrounded by layers 

of lead and aluminum shielding. The shielding had an inner 

radius of 12.40 cm. The unknown parameters were the 

source radius and the inner shield radius. 

 

 

Fig. 1. Geometry for the spherical test problem 

 

The first test case results are provided in Table I. Fifth-

order PCE expansions were used to build surrogates for the 

flux and multiplication, requiring a total of 36 transport 

(8) 

(9) 

(10) 

(11) 

(12) 
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calculations (here “transport calculation” refers to both the 

calculation of the gamma-ray flux and the neutron 

multiplication). The fifth-order expansion was determined 

by trial-and-error.  Expansions of increasingly higher order 

were tried until the DREAM with PCE results matched 

standard DREAM results to better than 99.9%. The time 

required to build these surrogates was 190 seconds 

(DREAM itself required less than 1 second of computation 

time when using the surrogates). DREAM with PCE 

obtained virtually identical results to standard DREAM, 

which required 9,790 transport calculations and 

15,000 seconds of run time. Thus, DREAM with PCE was 

a factor of 79 faster than standard DREAM. 

 

III.C. Cylindrical Geometry 

The second numerical test problem was performed 

with the geometry shown in Fig. 2. A cylindrical source of 

highly enriched uranium has a radius of 4.0 cm and a height 

of 4.5 cm; it was surrounded by layers of nickel and 

aluminum shielding. Detectors at (𝑟, 𝑧) =  (10.0 cm, 

4.0 cm) measured the flux of the 1,001-keV gamma-ray 

line and the neutron multiplication. The unknown 

parameters in this problem were the source radius and axial 

location of the top of the source (actual value 6.0 cm). 

 

 

Fig. 2. Geometry for the cylindrical test problem 

 

The second test case results are provided in Table II. 

A 9th-order PCE expansion, requiring 100 transport 

calculations, was required to produce results with the 

required accuracy of 99.9%. DREAM with PCE required 

84 minutes to solve the problem and obtained a solution 

very similar to standard DREAM, which required 6,132 

transport calculations and 5,160 minutes of run time. 

DREAM with PCE was thus a factor of 54 faster than 

standard DREAM.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE I: DREAM Results for the Spherical Test Problem  

Parameters Method DREAM Result Transport 

Calculations 

Run Time 

(s) 

Speedup 

Factor 

Source Radius 

Inner Shield Radius 

Standard 

DREAM 
8.741 ± 0.001 cm 

12.40 ± 0.001 cm 
9,790 15,000 — 

Source Radius 

Inner Shield Radius 
DREAM 

with PCE 

8.742 ± 0.003 cm 

12.40 ± 0.002 cm 
36 190 79 

TABLE II: DREAM Results for the Cylindrical Test Problem  

Parameters Method DREAM Result Transport 

Calculations 

Run Time 

(min) 

Speedup 

Factor 

Source Radius 

Source Top 

Standard 

DREAM 
4.02 ± 0.11 cm 

5.99 ± 0.27 cm 
6,132 5,160 — 

Source Radius 

Source Top 
DREAM 

with PCE 

3.99 ± 0.10 cm 

6.01 ± 0.29 cm 
100 84 61 
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IV. CONCLUSIONS 

The PCE method has been used to build surrogate 

models of measured quantities in inverse transport 

problems with measurements of passive gamma rays and 

neutron multiplication. These surrogates were used in the 

DREAM method to find the unknown parameters. In 

numerical test cases, DREAM with PCE was shown to be 

over a factor of 61 faster than standard DREAM for 

problems with two unknown parameters. 

Several areas of future research remain for DREAM 

with PCE. In the numerical test problems, PCE expansion 

orders of 5 and 9 were manually determined to be the 

minimum expansion orders necessary to obtain accurate 

solutions. A current area of study is to automatically 

determine the optimal PCE order. Another current research 

thrust is to quantify the error introduced by the surrogate 

models. 

For problems with more (3 or more) unknown 

parameters, the cost of building the surrogate function can 

become more expensive than using the standard DREAM 

method. A way to reduce this cost is to use sparse grid 

quadrature sets rather than Gauss–Legendre quadrature 

sets in Eq. (12). This is also a current area of study. 
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