

# **SANDIA REPORT**

SAND2018-10266

Unlimited Release

Printed September 2018

# **Next Generation Qualification: Geotech Instruments SMART24B Digitizer Evaluation**

George W. Slad  
B. John Merchant

Prepared by  
Sandia National Laboratories  
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.



**Sandia National Laboratories**



Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology and Engineering Solutions of Sandia, LLC.

**NOTICE:** This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy  
Office of Scientific and Technical Information  
P.O. Box 62  
Oak Ridge, TN 37831

Telephone: (865) 576-8401  
Facsimile: (865) 576-5728  
E-Mail: [reports@osti.gov](mailto:reports@osti.gov)  
Online ordering: <http://www.osti.gov/scitech>

Available to the public from

U.S. Department of Commerce  
National Technical Information Service  
5301 Shawnee Rd  
Alexandria, VA 22312

Telephone: (800) 553-6847  
Facsimile: (703) 605-6900  
E-Mail: [orders@ntis.gov](mailto:orders@ntis.gov)  
Online order: <http://www.ntis.gov/search>



# **Next Generation Qualification: Geotech Instruments SMART24B Digitizer Evaluation**

George Slad  
B. John Merchant

Geophysics and  
Ground-Based Monitoring R&E Departments  
Sandia National Laboratories  
P.O. Box 5800  
Albuquerque, New Mexico 87185-MS0750

## **Abstract**

Sandia National Laboratories has tested and evaluated a digitizer, the SMART24B, manufactured by Geotech Instruments, LLC. These digitizers are used to record sensor output for seismic and infrasound monitoring applications. The purpose of the digitizer evaluation was to measure the performance characteristics in such areas as power consumption, input impedance, sensitivity, full scale, self-noise, dynamic range, system noise, response, passband, and timing. The SMART24B is Geotech's datalogger intended for borehole deployment in their digitizer product line. The SMART24B is available with either 3 or 6 channels at 24 bit resolution. The digitizer is to be deployed in boreholes, therefore are a minimum number of connections required on the digitizer case as datalogger utilizes a distribution panel, mounted up-hole, serving to breakout power, GPS, serial communications and ethernet connections.

## **ACKNOWLEDGMENTS**

The equipment was purchased and setup using funds provided by the United States Department of Defense. The evaluation and generation of the report was funded by the National Nuclear Security Administration's Office of Defense Nuclear Nonproliferation Research and Development (NA-22).

## CONTENTS

|                                          |    |
|------------------------------------------|----|
| Acknowledgments.....                     | 5  |
| Contents .....                           | 6  |
| Figures.....                             | 7  |
| Tables.....                              | 8  |
| Nomenclature.....                        | 10 |
| 1       Introduction .....               | 11 |
| 2       Test Plan .....                  | 13 |
| 2.1   Test Facility .....                | 13 |
| 2.2   Scope.....                         | 15 |
| 2.3   Timeline.....                      | 15 |
| 2.4   Evaluation Frequencies.....        | 15 |
| 3       Test Evaluation.....             | 16 |
| 3.1   Power Consumption.....             | 16 |
| 3.2   Input Impedance.....               | 19 |
| 3.3   DC Accuracy.....                   | 21 |
| 3.4   AC Accuracy.....                   | 24 |
| 3.5   Input Shorted Offset.....          | 27 |
| 3.6   AC Full Scale.....                 | 29 |
| 3.7   Self-Noise .....                   | 33 |
| 3.8   Dynamic Range.....                 | 38 |
| 3.9   System Noise .....                 | 40 |
| 3.10   Response Verification.....        | 42 |
| 3.11   Relative Transfer Function .....  | 46 |
| 3.12   Analog Bandwidth .....            | 49 |
| 3.13   Total Harmonic Distortion.....    | 51 |
| 3.14   Common Mode Rejection .....       | 56 |
| 3.15   Crosstalk .....                   | 59 |
| 3.16   Time Tag Accuracy.....            | 63 |
| 3.17   Timing Drift.....                 | 67 |
| 4       Summary .....                    | 70 |
| References.....                          | 72 |
| Appendix A: Self-Noise.....              | 73 |
| Appendix B: Response Models.....         | 74 |
| 4.1   Geotech GS-13 Response .....       | 74 |
| Appendix C: Testbed Calibrations.....    | 75 |
| Agilent 3458A # MY45048371 .....         | 75 |
| Hewlett Packard 3458A # 2823A08050 ..... | 83 |
| Hewlett Packard 3458A # 2823A10915 ..... | 91 |

## FIGURES

|                                                                                      |    |
|--------------------------------------------------------------------------------------|----|
| Figure 1 SMART24B Digitizer (photo courtesy of Geotech Instruments, LLC) .....       | 11 |
| Figure 2 Geotech Instruments, LLC, SMART24B Specifications.....                      | 12 |
| Figure 3 FACT Site Bunker.....                                                       | 13 |
| Figure 4 Partial View of Testbed in FACT Site Bunker.....                            | 13 |
| Figure 5 GPS Re-broadcaster.....                                                     | 14 |
| Figure 6 Laboratory Power Supply.....                                                | 14 |
| Figure 7 Power Consumption Configuration Diagram.....                                | 16 |
| Figure 8 Power Consumption Configuration Picture.....                                | 16 |
| Figure 9 Voltage and Current Recorded Time Series, SMART24B 2314 .....               | 17 |
| Figure 10 Voltage and Current Recorded Time Series, SMART24B 2453 .....              | 18 |
| Figure 11 Input Impedance Configuration Diagram.....                                 | 19 |
| Figure 12 Input Impedance Configuration Picture .....                                | 19 |
| Figure 13 DC Accuracy Configuration Diagram.....                                     | 21 |
| Figure 14 DC Accuracy Configuration.....                                             | 21 |
| Figure 15 DC Accuracy Test Time series, SMART24B 2314, Channel SHE (Channel 3) ..... | 23 |
| Figure 16 AC Accuracy Configuration Diagram.....                                     | 24 |
| Figure 17 AC Accuracy Configuration Picture .....                                    | 24 |
| Figure 18 AC Accuracy Time Series .....                                              | 26 |
| Figure 19 Input Shorted Offset Configuration Diagram.....                            | 27 |
| Figure 20 Input Shorted Offset Terminators Picture .....                             | 27 |
| Figure 21 Input Shorted Offset Time Series .....                                     | 28 |
| Figure 22 AC Full Scale Configuration Diagram .....                                  | 29 |
| Figure 23 AC Full Scale Configuration Picture.....                                   | 29 |
| Figure 24 AC Full Scale Time Series, SMART24B 2314.....                              | 31 |
| Figure 25 Self Noise Configuration Diagram.....                                      | 33 |
| Figure 26 Self Noise Configuration Picture.....                                      | 33 |
| Figure 27 Self Noise Time Series Example, SMART24B 2314, SHE (Channel 3).....        | 35 |
| Figure 28 Self Noise Power Spectra SMART24B 2314, 200 sps.....                       | 35 |
| Figure 29 Self Noise Power Spectra SMART24B 2453, 200 sps.....                       | 35 |
| Figure 30 Seismic System Noise SMART24B 2314 .....                                   | 40 |
| Figure 31 Seismic System Noise SMART24B 2453 .....                                   | 41 |
| Figure 32 Response Verification Configuration Diagram.....                           | 42 |
| Figure 33 Response Verification Configuration Picture.....                           | 42 |
| Figure 34 White Noise Coherence SMART24B 2314 .....                                  | 44 |
| Figure 35 Relative Magnitude and Phase SMART24B 2314.....                            | 44 |
| Figure 36 White Noise Coherence SMART24B 2453 .....                                  | 45 |
| Figure 37 Relative Magnitude and Phase SMART24B 2453.....                            | 45 |
| Figure 38 Relative Transfer Function Configuration Diagram.....                      | 46 |
| Figure 39 Relative Transfer Function, SMART24B 2314.....                             | 48 |
| Figure 40 Relative Transfer Function, SMART24B 2453.....                             | 48 |
| Figure 41 Analog Bandwidth Configuration Diagram .....                               | 49 |
| Figure 42 Analog Bandwidth, SMART24B 2314 .....                                      | 50 |
| Figure 43 Analog Bandwidth, SMART24B 2453 .....                                      | 50 |

|                                                              |    |
|--------------------------------------------------------------|----|
| Figure 44 THD Configuration Diagram .....                    | 51 |
| Figure 45 Total Harmonic Distortion Configuration .....      | 51 |
| Figure 46 THD Time Series.....                               | 54 |
| Figure 47 THD Power Spectra SMART24B 2314, 16x Gain .....    | 54 |
| Figure 48 THD Power Spectra SMART24B 2453 16x Gain .....     | 54 |
| Figure 49 Common Mode Rejection Configuration Diagram .....  | 56 |
| Figure 50 Common Mode Rejection Configuration .....          | 56 |
| Figure 51 Common Mode Rejection Time Series .....            | 58 |
| Figure 52 Crosstalk Configuration Diagram.....               | 59 |
| Figure 53 Crosstalk Configuration.....                       | 59 |
| Figure 54 Crosstalk Time Series Example, SMART24B 2453 ..... | 61 |
| Figure 55 Crosstalk Power Spectra.....                       | 61 |
| Figure 56 Time Tag Configuration Diagram.....                | 63 |
| Figure 57 Time Tag Configuration Picture.....                | 63 |
| Figure 58 Time Tag Accuracy PPM Time Series .....            | 65 |
| Figure 59 Histogram of Time Tag Errors .....                 | 66 |
| Figure 60 Timing Drift Configuration Diagram .....           | 67 |
| Figure 61 Time Tag Drift, SMART24B 2453, 23° C .....         | 68 |
| Figure 62 Time Tag Recovery SMART24B 2453, 23° C .....       | 68 |
| Figure 63 GS-13 Amplitude and Phase Response .....           | 74 |

## TABLES

|                                                                   |    |
|-------------------------------------------------------------------|----|
| Table 1 Tests Performed .....                                     | 15 |
| Table 2 Power Consumption Testbed Equipment .....                 | 17 |
| Table 3 Power Consumption Results.....                            | 18 |
| Table 4 Input Impedance Testbed Equipment .....                   | 19 |
| Table 5 Input Impedance Results, Both DWRs (Gain 16x).....        | 20 |
| Table 6 DC Accuracy Testbed Equipment .....                       | 21 |
| Table 7 Geotech-Provided Bitweights for each DWR (Gain 16x) ..... | 23 |
| Table 8 DC Accuracy Bitweight, Both DWRs (Gain 16x).....          | 23 |
| Table 9 AC Accuracy Testbed Equipment .....                       | 24 |
| Table 10 AC Accuracy Bitweight, both DWRs (Gain 16x) .....        | 26 |
| Table 11 Input Shorted Offset Testbed Equipment .....             | 27 |
| Table 12 Input Shorted Offset, both DWRs.....                     | 28 |
| Table 13 AC Full Scale Testbed Equipment.....                     | 29 |
| Table 14 AC Full Scale Positive Peak .....                        | 32 |
| Table 15 AC Full Scale Negative Peak.....                         | 32 |
| Table 16 AC Full Scale Peak-to-Peak .....                         | 32 |
| Table 17 Self Noise Testbed Equipment .....                       | 33 |
| Table 18 Self Noise RMS over 0.02 Hz – 1 Hz, both DWRs.....       | 37 |
| Table 19 Self Noise RMS over 0.5 Hz – 16 Hz, both DWRs.....       | 37 |
| Table 20 Self Noise RMS over 0.02 Hz – 16 Hz, both DWRs.....      | 37 |
| Table 21 Dynamic Range, Both DWRs.....                            | 39 |
| Table 22 Response Verification Testbed Equipment.....             | 43 |

|                                                             |    |
|-------------------------------------------------------------|----|
| Table 23 Relative Transfer Function Testbed Equipment ..... | 46 |
| Table 24 Relative Transfer Function Timing Skew.....        | 48 |
| Table 25 Analog Bandwidth Testbed Equipment.....            | 49 |
| Table 26 Analog Bandwidth, both DWRs .....                  | 50 |
| Table 27 Total Harmonic Distortion Testbed Equipment.....   | 52 |
| Table 28 Total Harmonic Distortion, both DWRs.....          | 55 |
| Table 29 Common Mode Rejection Testbed Equipment.....       | 57 |
| Table 30 Common Mode Rejection Ratio, both DWRs .....       | 58 |
| Table 31 Crosstalk Testbed Equipment .....                  | 60 |
| Table 32 Crosstalk*, both DWRs .....                        | 62 |
| Table 33 Time Tag Testbed Equipment.....                    | 64 |
| Table 34 Time Tag Accuracy, both DWRs .....                 | 65 |
| Table 35 Timing Drift Testbed Equipment.....                | 67 |
| Table 36 Time Tag Drift and Recovery.....                   | 68 |
| Table 37 SMART24B Digitizer Noise Model, 16x Gain .....     | 73 |

## **NOMENCLATURE**

|     |                              |
|-----|------------------------------|
| BB  | Broadband                    |
| dB  | Decibel                      |
| DOE | Department of Energy         |
| DWR | Digital Waveform Recorder    |
| HNM | High Noise Model             |
| Hz  | Hertz                        |
| LNM | Low Noise Model              |
| PSD | Power Spectral Density       |
| PSL | Primary Standards Laboratory |
| SNL | Sandia National Laboratories |
| SP  | Short-period                 |
| SPS | Sample Per Second            |

## 1 INTRODUCTION

The evaluation of the two Geotech SMART24B digitizers, serial numbers 2314 and 2453, was performed to determine the performance characteristics of the instruments including sensitivity, self-noise, dynamic range, frequency response, and passband.



**Figure 1 SMART24B Digitizer (photo courtesy of Geotech Instruments, LLC)**

The SMART24 is a 3 or 6 channel, 24-bit digitizer with variable sample rate and gain level suitable in form-factor for equipment in a borehole or vault style seismic monitoring system deployment.

The evaluation of the two digitizers, serial numbers 2314 and 2453, performed against the digitizer specifications below, has identified that the digitizers' performance are consistent with their manufacturer's specifications. Digitizers serial numbers 2413 and 2453 are 3 channels units, both with 24 bits of resolution.

## SMART-24 SERIES SPECIFICATIONS

### DATA ACQUISITION

|                                   |                                                                                                                     |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------|
| <b>Number of inputs</b>           | 3 or 6 channels                                                                                                     |
| <b>Input type</b>                 | Balanced differential with transient protection suitable for both passive and active sensors                        |
| <b>Input range</b>                | 5Vp-p, 20Vp-p and 40Vp-p bipolar differential, 2x1 Mohm                                                             |
| <b>Gain</b>                       | Software selectable: x1, x2, x4, x8, x16, x32, x64                                                                  |
| <b>Common mode rejection</b>      | Greater than 90 dB                                                                                                  |
| <b>Digitizer</b>                  | Over sampled 24-bit Delta Sigma ADC with digital signal processing, 1 per channel                                   |
| <b>Anti-alias filter</b>          | Brickwall digital FIR filter, cutoff at 80% of and 130 dB down at output Nyquist frequency. Causal filter optional. |
| <b>Dynamic range</b>              | Up to 138 dB @ 100 sps                                                                                              |
| <b>Intermodulation distortion</b> | Less than -110 dB                                                                                                   |
| <b>Sample rates</b>               | 1, 5, 10, 20, 40, 50, 100, 125, 200, 250, 500, 1000, 2000 sps primary sample rates                                  |
| <b>Noise</b>                      | ~1 count RMS at up to 200 sps                                                                                       |

### ACQUISITION MODES

|                          |                                                             |
|--------------------------|-------------------------------------------------------------|
| <b>Continuous</b>        | User selected start time, ring buffer or until storage full |
| <b>Timed</b>             | 16 user programmable recording windows                      |
| <b>Triggered</b>         | Threshold, STA/LTA (updating or non-updating), and external |
| <b>Pre-event length</b>  | Up to 32,768 data samples                                   |
| <b>Post-event length</b> | Up to remaining data storage                                |
| <b>On board memory</b>   | 192 MB                                                      |

### DATA STORAGE (SMART-24R® ONLY)

|                         |                                                                                                                                                                  |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Type</b>             | Up to 240 GB hard disk, up to 64 GB industrial grade Compact Flash memory, 1 or 2 partitions                                                                     |
| <b>Recording format</b> | Standard FAT32 file system, drives readable directly on a PC, format converters available for 32-bit SUDS, SAC, SEG-Y, SEISAN, MatLab, miniSEED, CSS3.0 and SEED |

### INTERNAL RECORDING (ALL VERSIONS)

Option for two PC Card slots for Compact Flash storage, non-removable, accessible by any ftp client.

### TIMING

|                       |                                                           |
|-----------------------|-----------------------------------------------------------|
| <b>Accuracy</b>       | Voltage controlled TCXO with optional external GPS synch. |
| <b>Stability</b>      | <±10 microseconds of UTC with GPS lock                    |
| <b>GPS duty cycle</b> | 0.5 PPM (when unlocked)                                   |
|                       | User programmable GPS power on/off cycle times            |

### INTERFACES

|                       |                                                                                                                                                                                                                                                            |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Indicators</b>     | Large graphic LCD, protected                                                                                                                                                                                                                               |
| <b>Communications</b> | 2xRS232, Ethernet, USB2.0 for the removable enclosure                                                                                                                                                                                                      |
| <b>GPS</b>            | Dedicated RS-422 serial port                                                                                                                                                                                                                               |
| <b>Power</b>          | Main power and external battery                                                                                                                                                                                                                            |
| <b>Other I/O</b>      | 5 or 8 12-bit analog inputs, external trigger in/out, 1 PPS in/out                                                                                                                                                                                         |
| <b>Calibration</b>    | Pulse, sine wave, white noise, random binary, step functions, and shorted input                                                                                                                                                                            |
| <b>Telemetry</b>      | <ul style="list-style-type: none"> <li>- CD1.1 protocol, 4 independent profiles to 4 different IP servers;</li> <li>- Earthworm protocol on 1 profile;</li> <li>- 64MB internal buffer for backfill;</li> <li>- continuous, events only or both</li> </ul> |

### POWER

|                          |                                                              |
|--------------------------|--------------------------------------------------------------|
| <b>Input</b>             | 10 to 16 VDC                                                 |
| <b>Power consumption</b> | ~1 watt average (3 channels @ 100 sps and GPS power cycling) |

### PHYSICAL

|                              |                                                            |
|------------------------------|------------------------------------------------------------|
| <b>Construction</b>          | Rugged machined or extruded Aluminum case, all IP67        |
| <b>Size</b>                  | 11.2 in (284 mm) w x 12.3 in (312 mm) l x 2.9 in (74 mm) h |
| <b>Weight (24D only)</b>     | 7.9 lbs (3.6 kg)                                           |
| <b>Operating temperature</b> | -20°C to +70°C                                             |
| <b>Humidity</b>              | 0 to 100% (IP67)<br>Removable enclosures                   |



**Figure 2 Geotech Instruments, LLC, SMART24B Specifications**

## 2 TEST PLAN

### 2.1 Test Facility

Testing of the Guralp Systems digitizers was performed at Sandia National Laboratories' Facility for Acceptance, Calibration and Testing (FACT) located near Albuquerque, New Mexico, USA. The FACT site is at approximately 1830 meters in elevation.

Sandia National Laboratories (SNL), Ground-based Monitoring R&E Department has the capability of evaluating the performance of preamplifiers, digitizing waveform recorders and analog-to-digital converters/high-resolution digitizers for geophysical applications.

Tests are based on the Institute of Electrical and Electronics Engineers (IEEE) Standard 1057 for Digitizing Waveform Recorders and Standard 1241 for Analog to Digital Converters. The analyses based on these standards were performed in the frequency domain or time domain as required. When appropriate, instrumentation calibration was traceable to the National Institute for Standards Technology (NIST).

The majority of the SMART24B testing, with the exception of tests performed in the temperature chamber, were performed within the FACT sites underground bunker due to the bunker's stable temperature.



Figure 3 FACT Site Bunker



Figure 4 Partial View of Testbed in FACT Site Bunker

The temperature was maintained between 22 and 27 degrees Celsius within the bunker, tending to be on the higher end of the range during the test period of these digitizers.

A GPS re-broadcaster operates within the bunker to provide the necessary timing source for the Guralp Systems digitizers and other recording and testbed equipment present.



**Figure 5 GPS Re-broadcaster**

The Guralp Systems digitizers were powered off of a Protek 3005B laboratory power supply providing approximately 13.0 Volts.



**Figure 6 Laboratory Power Supply**

## 2.2 Scope

The following table lists the tests and resulting evaluations that were performed at the various gain levels and sample rates of the Guralp Systems digitizer.

**Table 1 Tests Performed**

| Test                            | Configuration                                                                    |
|---------------------------------|----------------------------------------------------------------------------------|
| Input Impedance                 |                                                                                  |
| DC Accuracy                     |                                                                                  |
| AC Accuracy                     |                                                                                  |
| AC Full Scale                   | SMART24B digitizers:<br>serial numbers 2314 and 2453                             |
| AC Clip                         | 40 Vpp input,<br>gain 16x,                                                       |
| Total Harmonic Distortion (THD) | sample rate 200 sps                                                              |
| Input Terminated Noise          | (100 sps for Analog Band Width, Relative<br>Transfer Function, Response and THD) |
| Crosstalk                       | temperature: 23° C                                                               |
| Common Mode Rejection           |                                                                                  |
| Analog Bandwidth                |                                                                                  |
| Relative Transfer Function      |                                                                                  |
| Response                        |                                                                                  |
| Incoherent Noise                |                                                                                  |
| Time Tag Statistics             |                                                                                  |

## 2.3 Timeline

Testing of the Geotech Instruments digitizers was performed at Sandia National Laboratories between August and September 2018. Testing was performed using SMART24B digitizers, serial numbers 2314 and 2453, in the bunker.

## 2.4 Evaluation Frequencies

The frequency range of the measurements is from 0.01 Hz to 40 Hz. Specifically, the frequencies from the function below which generates standardized octave-band values in Hz (ANSI S1.6-1984) with  $F_0 = 1$  Hz:

$$F(n) = F_0 \times 10^{(n/10)}$$

For measurements taken using either broadband or tonal signals, the following frequency values shall be used for  $n = -20, -19, \dots, 16, 17$ . The nominal center frequency values, in Hz, are:

|                                                                       |                                         |
|-----------------------------------------------------------------------|-----------------------------------------|
| 0.01, 0.0125, 0.016, 0.020, 0.025, 0.0315, 0.040, 0.050, 0.063, 0.08, | 0.00315, 0.0040, 0.0050, 0.0063, 0.008, |
| 0.10, 0.125, 0.16, 0.20, 0.25, 0.315, 0.40, 0.50, 0.63, 0.8,          |                                         |
| 1.0, 1.25, 1.6, 2.0, 2.5, 3.15, 4.0, 5.0, 6.3, 8.0,                   |                                         |
| 10.0, 12.5, 16.0, 20.0, 25.0, 31.5, 40.0                              |                                         |

### 3 TEST EVALUATION

#### 3.1 Power Consumption

The Power Consumption test is used to measure the amount of power that an actively powered digitizer consumes during its operation.

##### 3.1.1 Measurand

The quantity being measured is the average watts of power consumption via the intermediary measurements of the voltage and current.

##### 3.1.2 Configuration

The digitizer is connected to a power supply, current meter, and voltage meter as shown in the diagram below.

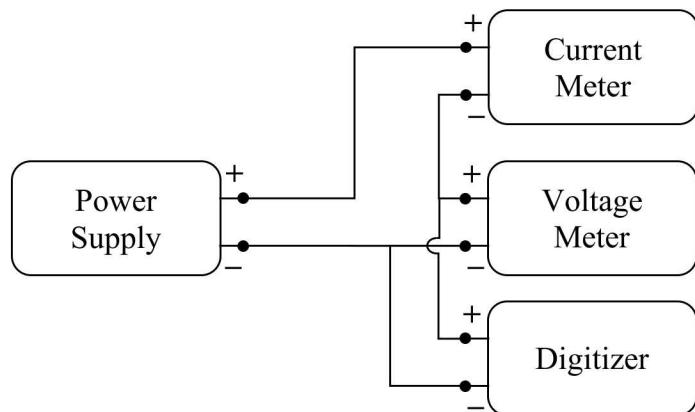



Figure 7 Power Consumption Configuration Diagram

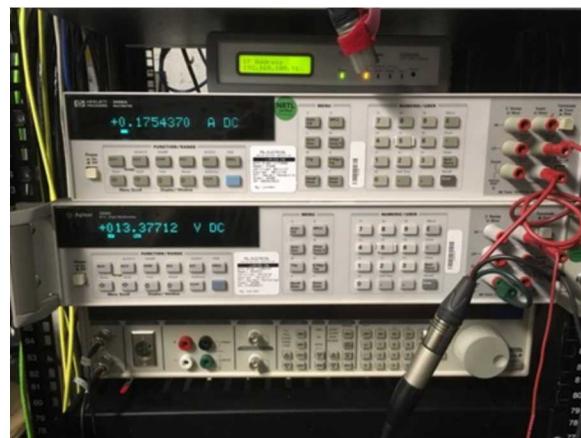



Figure 8 Power Consumption Configuration Picture

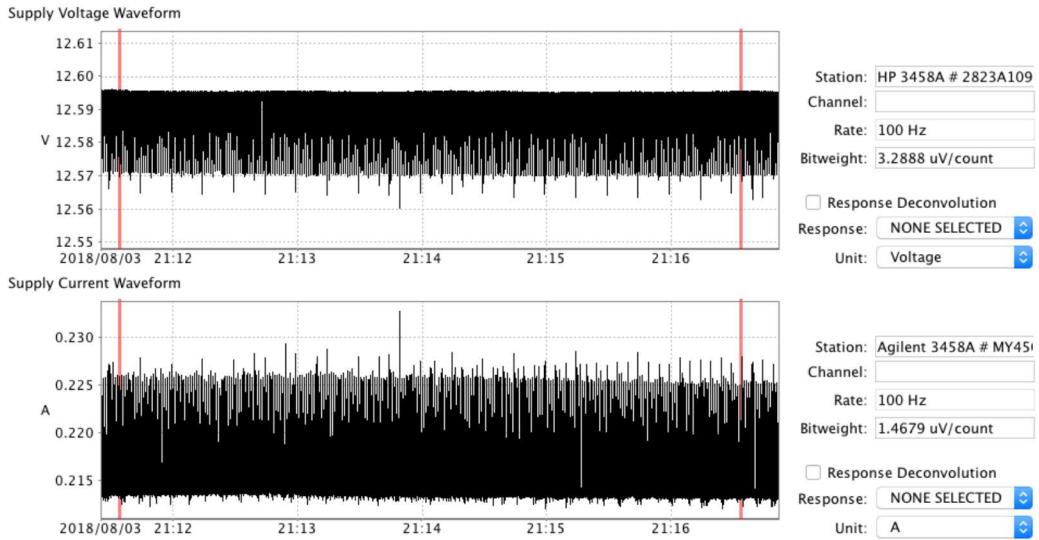
**Table 2 Power Consumption Testbed Equipment**

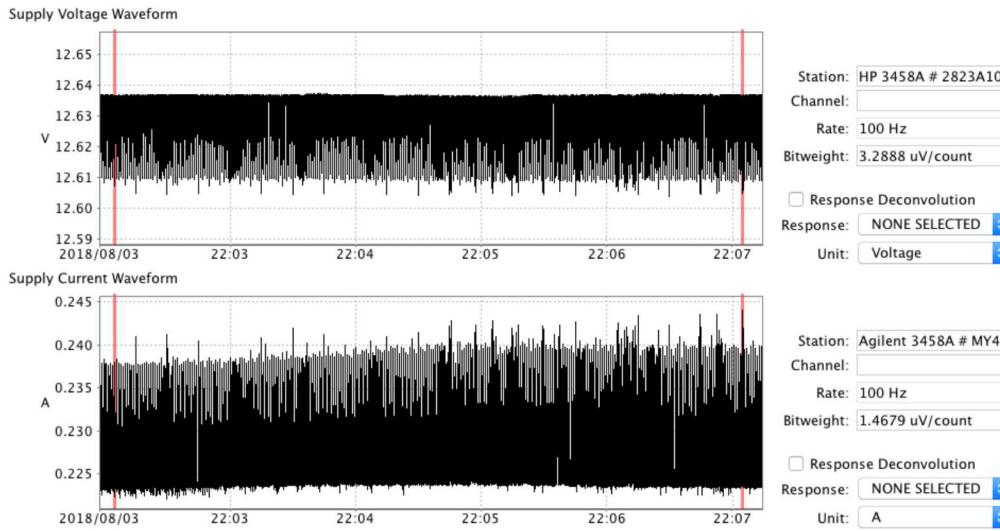
|               | Manufacturer / Model | Serial Number | Configuration    |
|---------------|----------------------|---------------|------------------|
| Power Supply  | Protek 3005B         | AC2074        | 13.0 V           |
| Current Meter | Agilent 3458A        | MY45048371    | Amps             |
| Voltage Meter | Agilent 3458A        | 2823A10915    | 100 V full scale |

The meters used to measure current and voltage have active calibrations from the Primary Standard Laboratory at Sandia.

### 3.1.3 Analysis

Measurements of the average current and voltage from the power supply are taken from the respective meters, preferably from a time-series recording:


$$V \text{ and } I$$


The average power in watts is then calculated as the product of the current and voltage:

$$P = V * I$$

### 3.1.4 Result

The resulting voltage, current, and power consumption levels are shown in the figure and table below.

**Figure 9 Voltage and Current Recorded Time Series, SMART24B 2314**



**Figure 10 Voltage and Current Recorded Time Series, SMART24B 2453**

**Table 3 Power Consumption Results**

| DWR  | Supply Voltage | Supply Voltage SD | Supply Current | Supply Current SD | Power Consumption | Power Consumption SD |
|------|----------------|-------------------|----------------|-------------------|-------------------|----------------------|
| 2453 | 12.59 V        | 5.66 mV           | 0.2149 A       | 2.796 mA          | 2.706 W           | 36.44 mW             |
| 2314 | 12.63 V        | 7.76 mV           | 0.2266 A       | 4.351 mA          | 2.863 W           | 56.75 mW             |

The SMART24B digitizers were observed to consume between 2.706 watts and 2.863 watts of power during operation. Power requirements may increase momentarily beyond that shown.

The average observed power consumption of 2.78 W is significantly higher than the ~1 W provided in the datasheet, however the manufacturer's power consumption specification is with respect to power-cycled GPS receiver operation and ethernet inactive, rather than the tested configuration where the GPS receiver is on continuously and ethernet is active as data are streamed to the SMARTGeoHub system.

## 3.2 Input Impedance

The Input Impedance Test is used to measure the real DC input impedance of a digitizer recording channel during its operation.

### 3.2.1 Measurand

The quantity being measured is ohms of impedance.

### 3.2.2 Configuration

The digitizer is connected to a meter configured to measure impedance as shown in the diagram below.

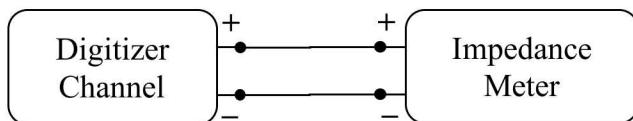



Figure 11 Input Impedance Configuration Diagram



Figure 12 Input Impedance Configuration Picture

Table 4 Input Impedance Testbed Equipment

|                          | Manufacturer / Model | Serial Number | Nominal Configuration |
|--------------------------|----------------------|---------------|-----------------------|
| Impedance Meter - Bunker | Agilent 3458A        | 2823A08050    | DC Impedance          |

The meters used to measure impedance have an active calibration from the Primary Standard Laboratory at Sandia.

### 3.2.3 Analysis

Measurements of the average impedance from each digitizer input channel are taken from the meter, preferably from a time-series recording.

### 3.2.4 Result

The measured impedance for each of the digitizer channels while operating in a 23°C environment with a gain of 16x are shown in the table below.

**Table 5 Input Impedance Results, Both DWRs (Gain 16x)**

| DWR  | Channel 1  | Channel 2  | Channel 3  |
|------|------------|------------|------------|
| 2314 | 1.168 Mohm | 2.129 Mohm | 2.129 Mohm |
| 2453 | 1.168 Mohm | 2.129 Mohm | 2.129 Mohm |

Both dataloggers remained had measured input impedances on channel 1 of 17% over the specified 1 Mohm impedance; channels 2 and 3 over twice the manufacturer's stated impedance.

### 3.3 DC Accuracy

The DC Accuracy test is used to measure the bit-weight of a digitizer channel by recording a known positive and negative DC signal at a reference voltage from a precision voltage source.

#### 3.3.1 Measurand

The quantity being measured is the digitizer input channels DC offset in volts and the bit-weight in volts/count.

#### 3.3.2 Configuration

The digitizer is connected to a DC signal source and a meter configured to measure voltage as shown in the diagram below.

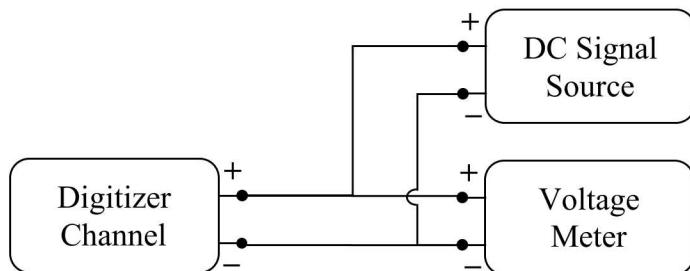



Figure 13 DC Accuracy Configuration Diagram

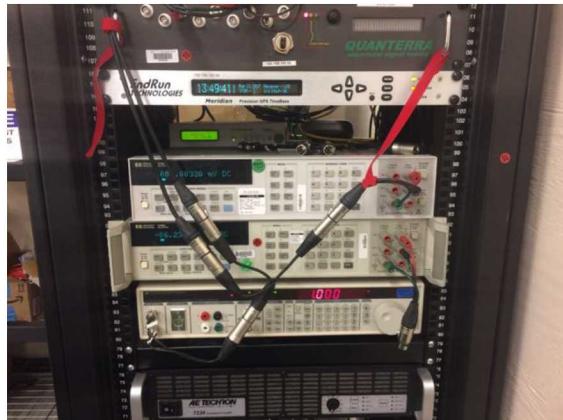



Figure 14 DC Accuracy Configuration

Table 6 DC Accuracy Testbed Equipment

|                           | Manufacturer / Model            | Serial Number | Nominal Configuration |
|---------------------------|---------------------------------|---------------|-----------------------|
| DC Signal Source - Bunker | Stanford Research Systems DS360 | 123672        | +1V / - 1 V           |
| Voltage Meter - Bunker    | Agilent 3458A                   | MY45048371    | 1 V full scale        |

The DC Signal Source is configured to generate a DC voltage with an amplitude of approximately 10% of the digitizer input channel's full scale. One minute of data is recorded with a positive amplitude followed by one minute of data with a negative amplitude.

The meter and the digitizer channel record the described DC voltage signal simultaneously. The recording made on the meter is used as the reference for comparison against the digitizer channel. The meter is configured to record at 100 Hz.

The meter used to measure the voltage time series has an active calibration from the Primary Standard Laboratory at Sandia.

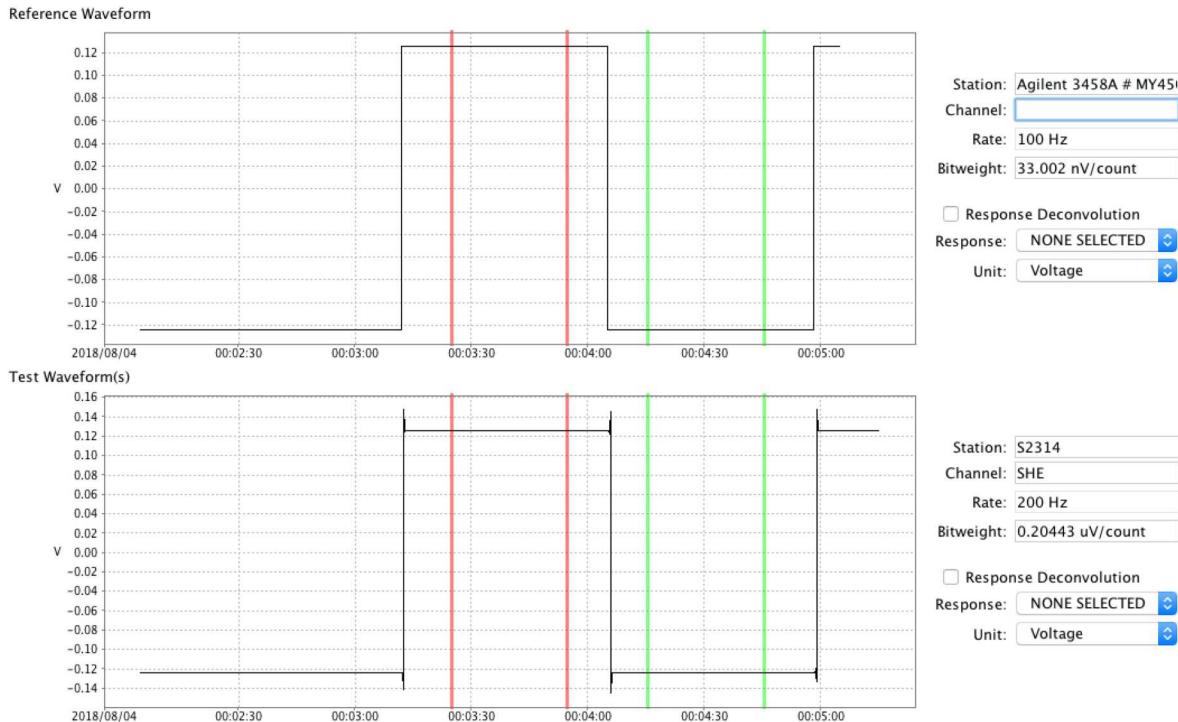
### 3.3.3 *Analysis*

A minimum of a thirty-second-time window is defined on the data for each of the positive and negative voltage signal segment.

The average of each of the positive and negative segments are computed from the reference meter in volts:

$$V_{pos} \text{ and } V_{neg}$$

The average of each of the positive and negative segments are computed from the digitizer channel in counts:


$$C_{pos} \text{ and } C_{neg}$$

The digitizer bit weight in Volts/count is computed:

$$Bitweight = \frac{V_{pos} - V_{neg}}{C_{pos} - C_{neg}}$$

### 3.3.4 Result

The figure below shows a representative waveform time series for the recording made on the reference meter and a digitizer channel under test. The window regions bounded by the red and green lines indicate the segment of data used to evaluate the positive and negative regions of data, respectively.



**Figure 15 DC Accuracy Test Time series, SMART24B 2314, Channel SHE (Channel 3)**

The following tables provide the bitweights, as provided by the manufacturer for each datalogger, and the computed bit weights for each of the channels, at a gain of 16x.

**Table 7 Geotech-Provided Bitweights for each DWR (Gain 16x)**

| DWR  | SHE<br>(Channel 3) | SHN<br>(Channel 2) | SHZ<br>(Channel 1) |
|------|--------------------|--------------------|--------------------|
| 2314 | 0.2039 uV/count    | 0.2045 uV/count    | 0.2042 uV/count    |
| 2453 | 0.2044 uV/count    | 0.2044 uV/count    | 0.2042 uV/count    |

**Table 8 DC Accuracy Bitweight, Both DWRs (Gain 16x)**

| DWR  | SHE<br>(Channel 3) | SHN<br>(Channel 2) | SHZ<br>(Channel 1) |
|------|--------------------|--------------------|--------------------|
| 2314 | 0.2044 uV/count    | 0.2048 uV/count    | 0.2044 uV/count    |
| 2453 | 0.2044 uV/count    | 0.2048 uV/count    | 0.2048 uV/count    |

Bit weights of both dataloggers remained very close to the manufacturer-provided bitweights, from 0.00% to 0.29% of the provided values.

### 3.4 AC Accuracy

The AC Accuracy test is used to measure the bitweight of a digitizer channel by recording a known AC signal at a reference voltage from a precision voltage source.

#### 3.4.1 Measurand

The quantity being measured is the digitizer input channels bitweight in volts/count and DC offset in volts.

#### 3.4.2 Configuration

The digitizer is connected to an AC signal source and a meter configured to measure voltage as shown in the diagram below.

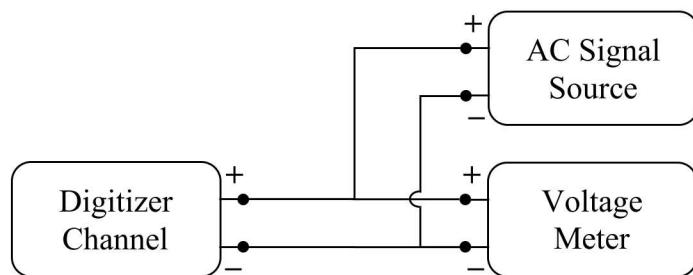



Figure 16 AC Accuracy Configuration Diagram

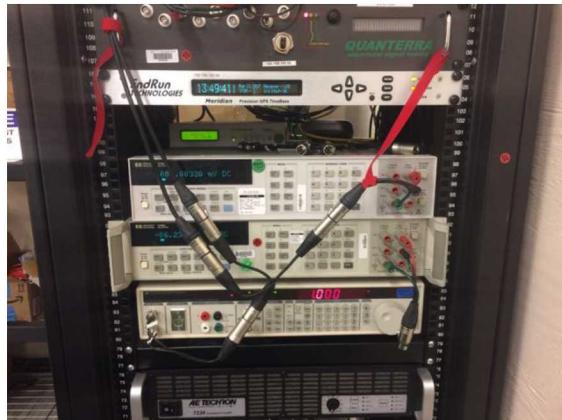



Figure 17 AC Accuracy Configuration Picture

Table 9 AC Accuracy Testbed Equipment

|                           | Manufacturer / Model            | Serial Number | Nominal Configuration |
|---------------------------|---------------------------------|---------------|-----------------------|
| DC Signal Source - Bunker | Stanford Research Systems DS360 | 123672        | +1V / - 1 V           |
| Voltage Meter - Bunker    | Agilent 3458A                   | MY45048371    | 1 V full scale        |

The AC Signal Source is configured to generate an AC voltage with an amplitude of approximately 10% of the digitizer input channel's full scale and a frequency equal to the calibration frequency of 1 Hz. One minute of data is recorded.

The meter and the digitizer channel record the described AC voltage signal simultaneously. The recording made on the meter is used as the reference for comparison against the digitizer channel. The meter is configured to record at 100 Hz, which is a minimum of 100 times the frequency of the signal of interest in order to reduce the Agilent 3458A Meter's response roll-off at 1 Hz to less than 0.01 %.

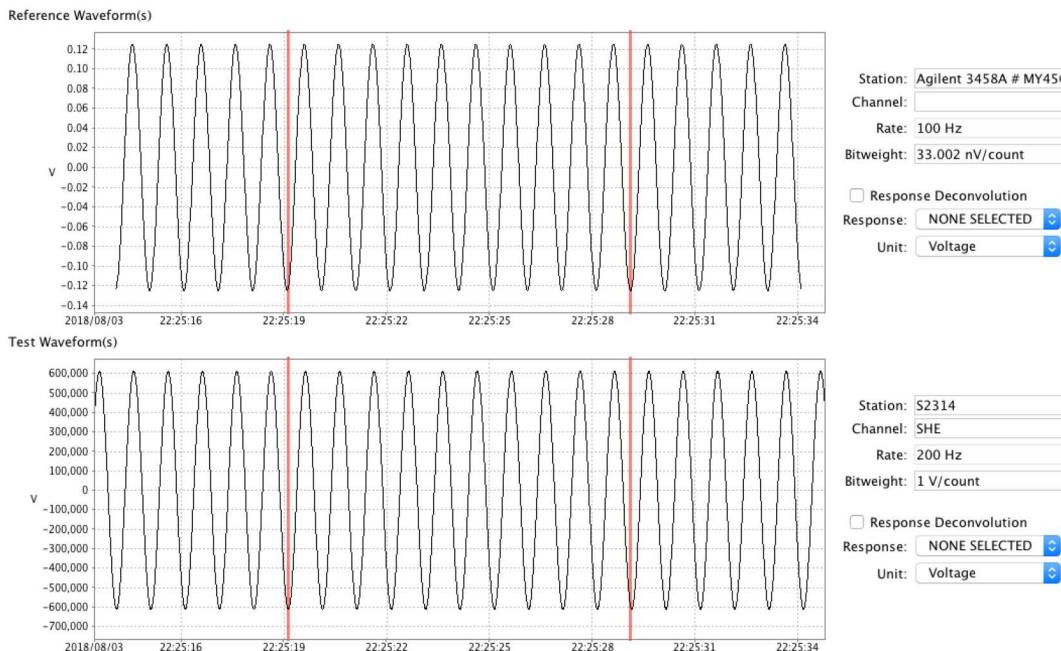
The meter used to measure the voltage time series has an active calibration from the Primary Standard Laboratory at Sandia.

### 3.4.3 Analysis

A minimum of a 10 cycles, or 10 seconds at 1 Hz, of data is defined on the data for the recorded signal segment.

A four parameter sine fit (Merchant, 2011; IEEE-STD1281) is applied to the time segment from the reference meter in Volts and the digitizer channel in counts in order to determine the sinusoid's amplitude, frequency, phase, and DC offset:

$$V_{ref} \sin(2 \pi f_{ref} t + \theta_{ref}) + V_{dc}$$


$$C_{meas} \sin(2 \pi f_{meas} t + \theta_{meas}) + C_{dc}$$

The digitizer bit weight in Volts/count is computed:

$$Bitweight = \frac{V_{ref}}{C_{meas}}$$

### 3.4.4 Result

The figure below shows a representative waveform time series for the recording made on the reference meter and a digitizer channel under test. The window regions bounded by the red lines indicate the segment of data used for analysis.



**Figure 18 AC Accuracy Time Series**

The following table contains the computed bit weights for each of the channels.

**Table 10 AC Accuracy Bitweight, both DWRs (Gain 16x)**

| DWR  | SHE<br>(Channel 3) | SHN<br>(Channel 2) | SHE<br>(Channel 1) |
|------|--------------------|--------------------|--------------------|
| 2314 | 0.2044 uV/count    | 0.2048 uV/count    | 0.2044 uV/count    |
| 2453 | 0.2044 uV/count    | 0.2048 uV/count    | 0.2048 uV/count    |

As with DC Accuracy Tests, bitweights remained very near the respective manufacturer-provided bitweight, not diverging more than 0.29% from the respective manufacturer-provided bitweight found in Table 7.

### 3.5 Input Shorted Offset

The Input Shorted Offset test measures the amount of DC offset present on a digitizer by collecting waveform data from an input channel that has been shorted. Thus, any signal present on the recorded waveform should be solely due to any internal offset of the digitizer.

#### 3.5.1 Measurand

The quantity being measured is the digitizer input channels DC offset in volts.

#### 3.5.2 Configuration

The digitizer input channel is connected to a shorting resistor as shown in the diagram below.



**Figure 19 Input Shorted Offset Configuration Diagram**



**Figure 20 Input Shorted Offset Terminators Picture**

**Table 11 Input Shorted Offset Testbed Equipment**

| Digitizer               | Resistor load         |
|-------------------------|-----------------------|
| Guralp Systems SMART24B | 9.4 kOhm (2x4.7 kOhm) |

Approximately 7 hours of data are recorded for tests of both units at 23° C.

### 3.5.3 Analysis

The measured bitweight, from the AC Accuracy at 1 Hz, is applied to the collected data:

$$x[n], \quad 0 \leq n \leq N - 1$$

The mean value, in volts, is evaluated:

$$Offset = \frac{1}{N} \sum_{n=0}^{N-1} x[n]$$

### 3.5.4 Result

The figure below shows a representative waveform time series for the recording made on a digitizer channel under test. The window regions bounded by the red lines indicate the segment of data used for analysis.



**Figure 21 Input Shorted Offset Time Series**

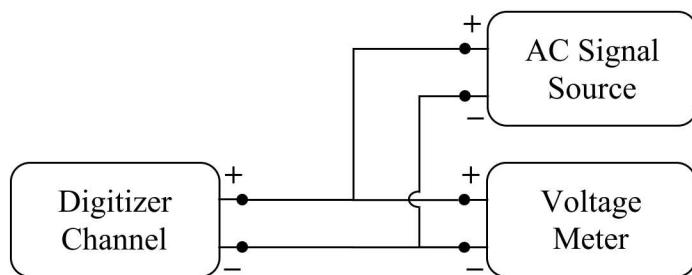
The following table contains the computed DC offsets in volts for each of the channels.

**Table 12 Input Shorted Offset, both DWRs**

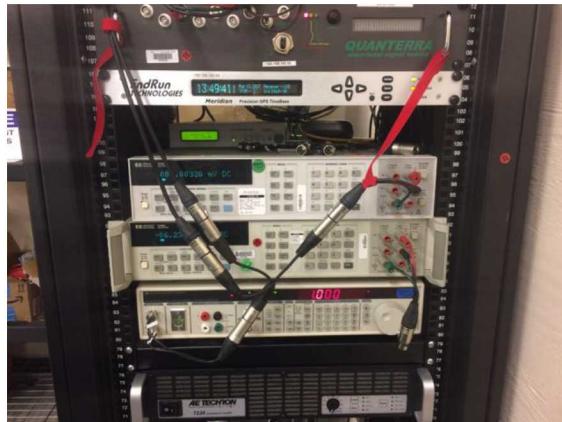
| DWR  | SHE<br>(Channel 3) | SHN<br>(Channel 2) | SHZ<br>(Channel 1) |
|------|--------------------|--------------------|--------------------|
| 2314 | -29.45 uV          | -5.47 uV           | -33.44 uV          |
| 2453 | -40.32 uV          | 20.23 uV           | -33.38 uV          |

The maximum offset observed across dataloggers is -0.0034% of full-scale (1.25 V at 16x gain), observed on datalogger 2453, channel SHE (channel 3).

## 3.6 AC Full Scale


The AC Full Scale test is used to validate the nominal full scale of a digitizer channel by recording a known AC signal with a voltage equal to the manufacturer's nominal full scale.

### 3.6.1 Measurand


The quantity being measured is the digitizer input channels full scale in volts.

### 3.6.2 Configuration

The digitizer is connected to a AC signal source and a meter configured to measure voltage as shown in the diagram below.



**Figure 22 AC Full Scale Configuration Diagram**



**Figure 23 AC Full Scale Configuration Picture**

**Table 13 AC Full Scale Testbed Equipment**

|                           | Manufacturer / Model            | Serial Number | Nominal Configuration |
|---------------------------|---------------------------------|---------------|-----------------------|
| DC Signal Source - Bunker | Stanford Research Systems DS360 | 123672        | +1V / - 1 V           |
| Voltage Meter - SB1       | Agilent 3458A                   | MY45048371    | 1 V full scale        |

The AC Signal Source is configured to generate an AC voltage with an amplitude equal to the digitizer input channel's full scale and a frequency equal to the calibration frequency of 1 Hz. One minute of data is recorded.

The meter and the digitizer channel record the described AC voltage signal simultaneously. The recording made on the meter is used as the reference for comparison against the digitizer channel. The meter is configured to record at 100 Hz, which is a minimum of 100 times the frequency of the signal of interest in order to reduce the Agilent 3458A Meter's response roll-off at 1 Hz to less than 0.01%.

The meter used to measure the voltage time series has an active calibration from the Primary Standard Laboratory at Sandia.

### 3.6.3 *Analysis*

The measured bitweight, from the AC Accuracy at 1 Hz, is applied to the collected data:

$$x[n], \quad 0 \leq n \leq N - 1$$

A short window is defined on the data around one of peak of the positive and negative peaks. The value within each positive and negative window is recorded.

The time series data is compared against the reference to verify that there is no visible limiting of the values near the full scale.

### 3.6.4 Result

The figure below shows a representative waveform time series for the recording made on the reference meter and a digitizer channel under test. The window regions bounded by the red and green lines indicate the segment of data used to evaluate the positive and negative regions of data, respectively.

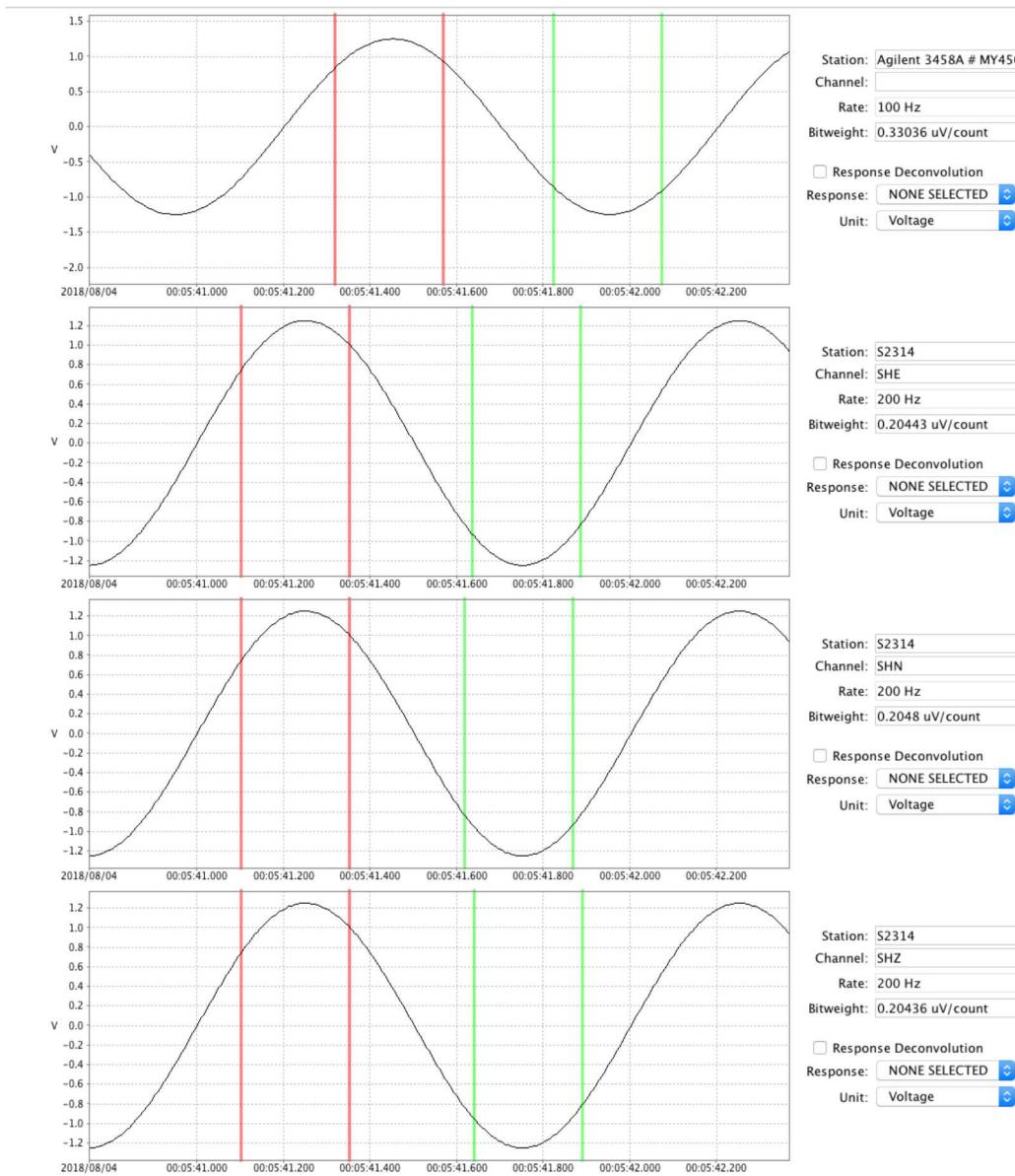



Figure 24 AC Full Scale Time Series, SMART24B 2314

The following tables contain the computed positive peak, negative peak, and peak-to-peak voltages ranges for each of the channels.

**Table 14 AC Full Scale Positive Peak**

| DWR  | SHE<br>(Channel 3) | SHN<br>(Channel 2) | SHZ<br>(Channel 1) |
|------|--------------------|--------------------|--------------------|
| 2314 | 1.2477 V           | 1.2477 V           | 1.2477 V           |
| 2453 | 1.2478 V           | 1.2478 V           | 1.2477 V           |

**Table 15 AC Full Scale Negative Peak**

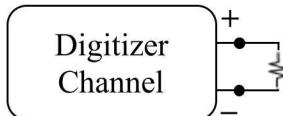
| DWR  | SHE<br>(Channel 3) | SHN<br>(Channel 2) | SHZ<br>(Channel 1) |
|------|--------------------|--------------------|--------------------|
| 2314 | -1.2506 V          | -1.2506 V          | -1.2507 V          |
| 2453 | -1.2507 V          | -1.2507 V          | -1.2507 V          |

**Table 16 AC Full Scale Peak-to-Peak**

| DWR  | SHE<br>(Channel 3) | SHN<br>(Channel 2) | SHZ<br>(Channel 1) |
|------|--------------------|--------------------|--------------------|
| 2314 | 2.4983 V           | 2.4983 V           | 2.4984 V           |
| 2453 | 2.4985 V           | 2.4985 V           | 2.4984 V           |

The digitizer channels were able to fully resolve the sinusoid with a peak-to-peak amplitude at or near the channels claimed full scale value without any signs of flattening that would indicate that clipping is occurring.

### 3.7 Self-Noise


The Self-Noise test measures the amount of noise present on a digitizer by collecting waveform data from an input channel that has been terminated with a resistor whose impedance matches the nominal impedance of a chosen sensor at 1 Hz. Thus, any signal present on the recorded waveform should be solely due to any internal noise of the digitizer.

#### 3.7.1 Measurand

The quantity being measured is the digitizer input channels self-noise power spectral density in dB relative to 1 V<sup>2</sup>/Hz versus frequency and the total noise in Volts RMS over an application pass-band.

#### 3.7.2 Configuration

The digitizer input channel is connected to a shorting resistor as shown in the diagram below.



**Figure 25 Self Noise Configuration Diagram**



**Figure 26 Self Noise Configuration Picture**

**Table 17 Self Noise Testbed Equipment**

|          | Impedance             |
|----------|-----------------------|
| resistor | 9.4 kOhm (2x4.7 kOhm) |

24 hours of data are generally utilized for this test.

### 3.7.3 Analysis

The measured bit-weight at 1 Hz, from Section 3.4, AC Accuracy, is applied to the collected data:

$$x[n], \quad 0 \leq n \leq N - 1$$

The PSD is computed (Merchant, 2011) from the time series using a Hann window of length 4k, 8k, and 16k for the 20 Hz, 40 Hz, and 100 Hz sample rates, respectively. The window length and data duration were chosen such that there were several points below the lower limit of the evaluation pass-band of 0.01 Hz and the 90% confidence interval is less than 0.5 dB.

$$P_{xx}[k], 0 \leq k \leq N - 1$$

Over frequencies (in Hertz):

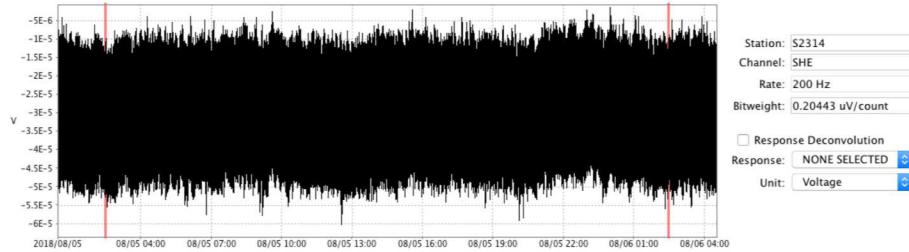
$$f[k], 0 \leq k \leq N - 1$$

The noise level PSD in  $V^2/Hz$  are compared to the theoretical levels of quantization noise in an ideal analog to digital converter in order to determine the number of effective noise free bits:

$$Spectral\ Noise = \left( \frac{(2 * V_{FS}/2^B)^2}{12 * F_s/2} \right)$$

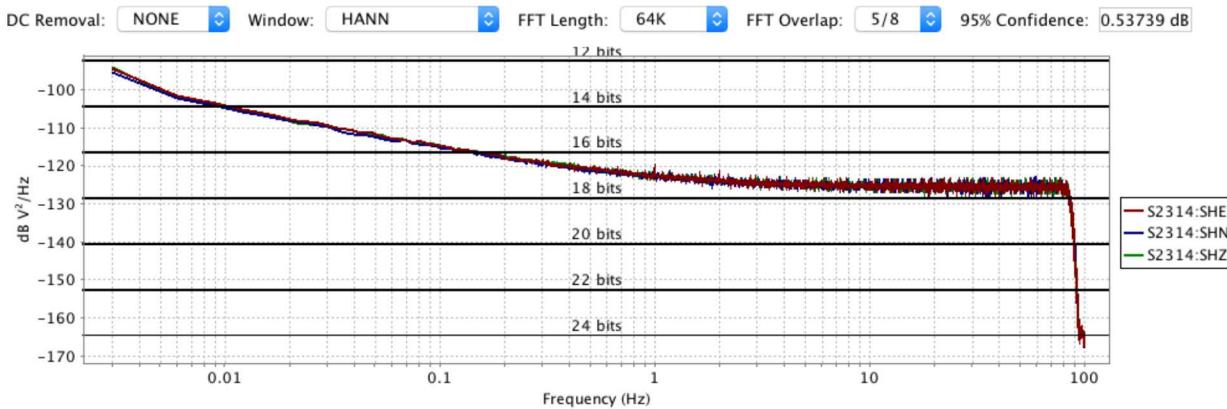
Where:

|                       |                                      |
|-----------------------|--------------------------------------|
| <i>Spectral Noise</i> | = Units of $V^2/Hz$                  |
| $V_{FS}$              | = Digitizer peak full scale in Volts |
| $B$                   | = Number of ideal bits of resolution |
| $F_s$                 | = Sampling frequency in Hertz        |

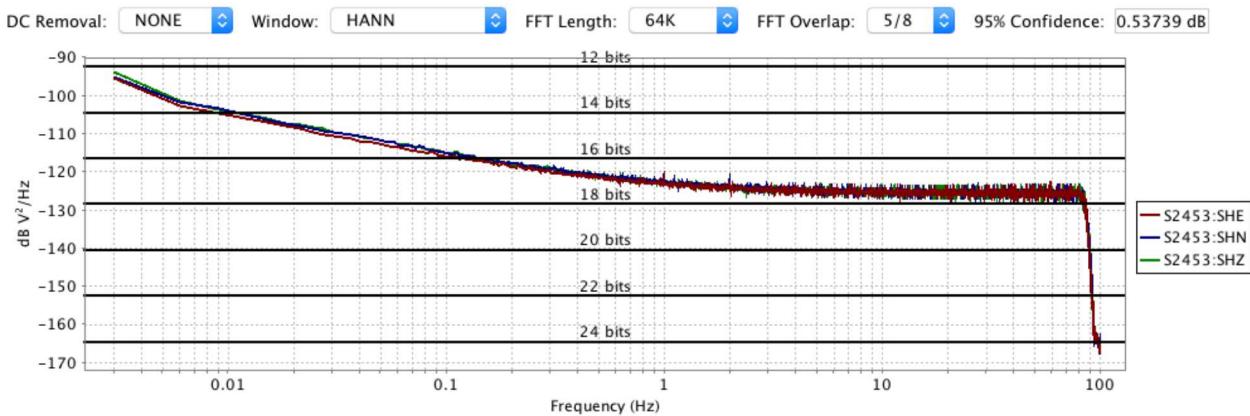

In addition, the total RMS noise is calculated over an application pass-band:

$$rms = \sqrt{\frac{1}{T_s L} \sum_{k=n}^m |P_{xx}[k]|}$$

where  $f[n]$  and  $f[m]$  are the passband limits,  $T_s$  is the sampling period in seconds, and  $L$  is window length.


### 3.7.4 Result

The figures below show the waveform time series and power spectra for the recording made on a digitizer channel under test. The window regions bounded by the red lines indicate the segment of data used for analysis.




**Figure 27 Self Noise Time Series Example, SMART24B 2314, SHE (Channel 3)**

The computed self noise of all dataloggers while exposed to 23° C follows. The data window is 24 hrs long and the computation has 90% confidence level of 0.43 dB in each case.



**Figure 28 Self Noise Power Spectra SMART24B 2314, 200 sps**



**Figure 29 Self Noise Power Spectra SMART24B 2453, 200 sps**

Channels SHE and SHZ on datalogger 2314 have slightly increased noise over that of SHN in mid-period band, from approximately 0.21 Hz to 0.37 Hz Hz, as much as 0.9 dB at 0.33 Hz. Otherwise the digitizer self noise power spectra are essentially uniform, to least the 95% confidence interval of the measurement.

Channel SHN and SHZ on datalogger 2453 have slightly increased noise over that of SHE below 0.2 Hz, as much as 1.2 dB at 0.27 Hz.

The plots' comparison of self-noise to bits of resolution illustrate the disadvantage of increasing a digitizer's gain to capture desired signals from a sensor, rather than installing a pre-amplifier in series with the sensor to utilize the full voltage range of the digitizer (40 Vpp).

The following tables contains the computed RMS noise levels in both volts and counts for the evaluated sample rate and gain setting. Frequency pass-bands consistent with the requirements for seismic applications were selected.

**Table 18 Self Noise RMS over 0.02 Hz – 1 Hz, both DWRs**

| DWR  | SHE<br>(Channel 3) | SHN<br>(Channel 2) | SHZ<br>(Channel 1) |
|------|--------------------|--------------------|--------------------|
| 2314 | 1.1832 uV rms      | 1.1244 uV rms      | 1.1774 uV rms      |
|      | 5.79 counts rms    | 5.49 counts rms    | 5.76 counts rms    |
| 2453 | 1.0679 uV rms      | 1.1673 uV rms      | 1.1719 uV rms      |
|      | 5.23 counts rms    | 5.70 counts rms    | 5.72 counts rms    |

**Table 19 Self Noise RMS over 0.5 Hz – 16 Hz, both DWRs**

| DWR  | SHE<br>(Channel 3) | SHN<br>(Channel 2) | SHZ<br>(Channel 1) |
|------|--------------------|--------------------|--------------------|
| 2314 | 2.2224 uV rms      | 2.1948 uV rms      | 2.2170 uV rms      |
|      | 10.87 counts rms   | 10.72 counts rms   | 10.85 counts rms   |
| 2453 | 2.1697 uV rms      | 2.2191 uV rms      | 2.2065 uV rms      |
|      | 10.62 counts rms   | 10.84 counts rms   | 10.78 counts rms   |

**Table 20 Self Noise RMS over 0.02 Hz – 16 Hz, both DWRs**

| DWR  | SHE<br>(Channel 3) | SHN<br>(Channel 2) | SHZ<br>(Channel 1) |
|------|--------------------|--------------------|--------------------|
| 2314 | 2.4528 uV rms      | 2.4045 uV rms      | 2.4448 uV rms      |
|      | 12.00 counts rms   | 11.74 counts rms   | 11.96 counts rms   |
| 2453 | 2.3606 uV rms      | 2.4443 uV rms      | 2.4357 uV rms      |
|      | 11.55 counts rms   | 11.94 counts rms   | 11.89 counts rms   |

Average self noise over all channels are as follows: over the low passband 1.1487 uV rms (~6 counts rms), over the high passband 2.4238 uV rms (~12 counts rms) and over the broad passband 2.2049 uV rms (~11 counts rms).

Self noise values remained relatively consistent within the high and broad passbands, within 1.60% and 2.61% of the average across all dataloggers and channels respectively, however over the low passband self noise estimates varied more, as much as 7.03%.

## 3.8 Dynamic Range

Dynamic Range is defined to be the ratio between the power of the largest and smallest signals that may be measured on the digitizer channel.

### 3.8.1 Measurand

The Dynamic Range is measured as dB of the ratio between the power in the largest and smallest signals. The largest signal is defined to be a sinusoid with amplitude equal to the full scale input of the digitizer channel. The smallest signal is defined to have power equal to the self-noise of the digitizer channel. This definition of dynamic range is consistent with the definition of signal-to-noise and distortion ratio (SINAD) for digitizers (IEEE Std 1241-2010 section 9.2).

### 3.8.2 Configuration

There is no test configuration for the dynamic range test.

The full scale value used for the largest signal comes from the manufacturer's nominal specifications, validated in section 3.6, AC Full Scale. The value for the smallest signal comes from the evaluated digitizer channel self noise determined in section 3.7, Self Noise.

### 3.8.3 Analysis

The dynamic range over a given pass-band is:

$$\text{Dynamic Range} = 10 \cdot \log_{10} \left( \frac{\text{signal power}}{\text{noise power}} \right)$$

Where

$$\begin{aligned} \text{signal power} &= (\text{fullscale}/\sqrt{2})^2 \\ \text{noise power} &= (\text{RMS Noise})^2 \end{aligned}$$

The application pass-band over which the noise is integrated should be selected to be consistent with the application pass-band.

### 3.8.4 Result

The following tables contain the peak-to-peak full scales, noise levels, and dynamic ranges that were identified in the evaluations of the sample rates and gain levels.

**Table 21 Dynamic Range, Both DWRs**

| DWR  | Passband       | SHE<br>(Channel 3) | SHN<br>(Channel 2) | SHZ<br>(Channel 1) |
|------|----------------|--------------------|--------------------|--------------------|
| 2314 | 20 mHz - 1 Hz  | 120.19 dB          | 120.63 dB          | 120.23 dB          |
|      | 20 mHz - 16 Hz | 113.86 dB          | 114.03 dB          | 113.88 dB          |
|      | 0.5 Hz - 16 Hz | 114.71 dB          | 114.82 dB          | 114.73 dB          |
| 2453 | 20 mHz - 1 Hz  | 121.08 dB          | 120.31 dB          | 120.27 dB          |
|      | 20 mHz - 16 Hz | 114.19 dB          | 113.89 dB          | 113.92 dB          |
|      | 0.5 Hz - 16 Hz | 114.92 dB          | 114.73 dB          | 114.78 dB          |

The observed dynamic range values across all dataloggers and channels, recording at a gain of 16x while exposed to 23° C, were between 120.19 dB and 121.08 dB over the 0.02 Hz to 1.0 Hz passband, 114.71 dB and 114.92 dB over the 0.5 Hz to 16 Hz passband and 113.86 dB and 114.19 dB over the 0.02 Hz and 16 Hz passband.

Observed dynamic range values were relatively tightly clustered around their average. The most variation in dynamic range occurred over the 0.02 Hz to 1.0 Hz passband, where variations were as high as 0.52% from the average of 120.45 dB for the passband; over the 0.5 Hz to 16 Hz passband, dynamic ranges varied 0.12% from 114.78 dB, the average over this passband; and finally, over the broad passband, 0.02 Hz and 16 Hz, variations were within 0.20% of the average of 113.96 dB over the broad passband.

## 3.9 System Noise

The System Noise test determines the amount of digitizer self-noise expressed in units of a sensor.

### 3.9.1 Measurand

The quantity being measured is the digitizer input channels self-noise power spectral density, corrected by a sensor's response to some geophysical unit, in dB relative to  $1 \text{ (m/s)}^2/\text{Hz}$  versus frequency.

### 3.9.2 Configuration

There is no test configuration for the dynamic range test.

The time-series data and PSD are obtained from the evaluated digitizer channel self noise determined in Section 3.7, Self Noise, are corrected for a desired sensor's amplitude response model. The resulting PSD in the sensor's geophysical unit is then compared against an application requirement or background noise model to determine whether the resulting system noise meets the requirement.

### 3.9.3 Result

The PSD of the system noise is shown in the plots below. Where available, reference sensor and background noise models are provided for comparison.

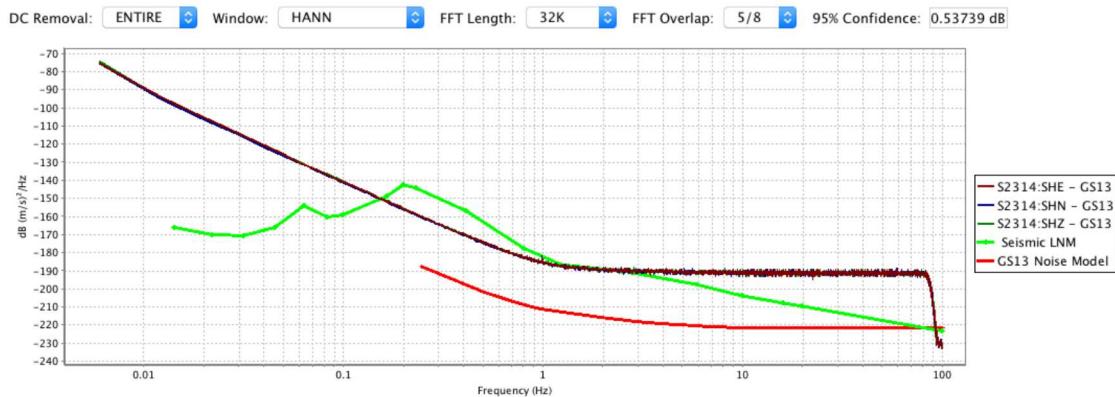
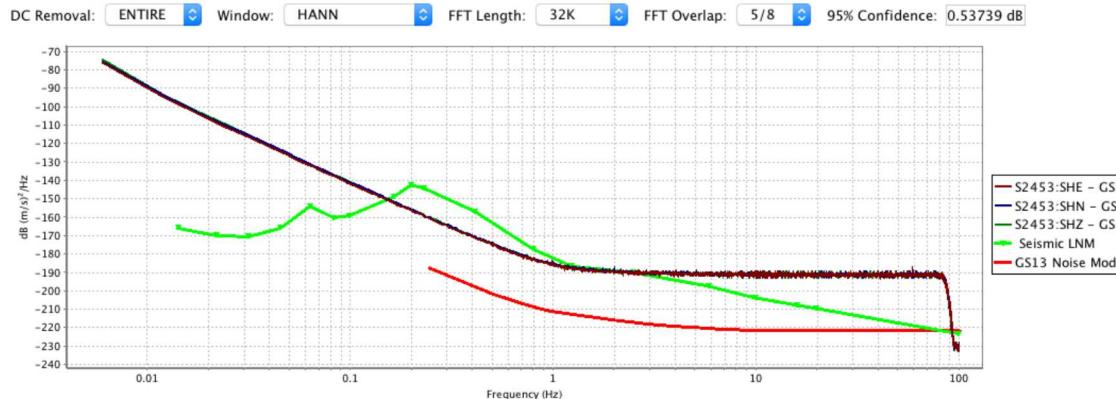




Figure 30 Seismic System Noise SMART24B 2314



**Figure 31 Seismic System Noise SMART24B 2453**

Equivalent seismic system noise of both SMART24B dataloggers recording at a gain of 16x exceeds the self-noise models of the GS-13 over the entire spectrum of interest. This result brings to mind the relevance of utilizing a pre-amplifier in series with the GS-13 and reducing the gain of the digitizer to improve equivalent seismic system noise.

### 3.10 Response Verification

The Response Verification test measures the amplitude and phase response versus frequency that is present on the digitizer channels, relative to a reference channel.

#### 3.10.1 Measurand

The quantity being measured is the unit-less relative amplitude and relative phase in degrees versus frequency for each digitizer channel relative to the first channel.

#### 3.10.2 Configuration

Multiple digitizer channels are connected to a white noise signal source as shown in the diagram below.

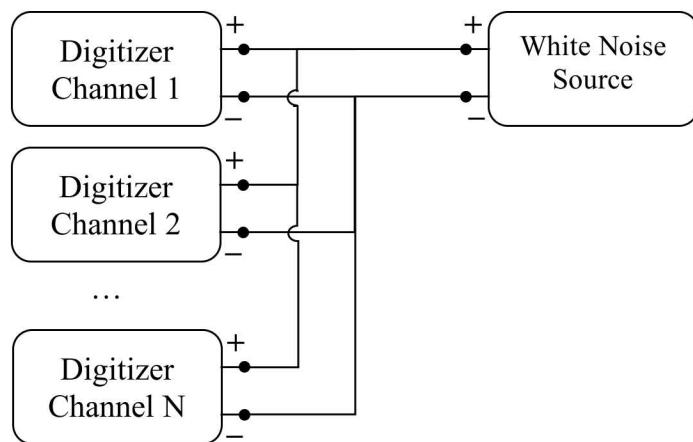



Figure 32 Response Verification Configuration Diagram

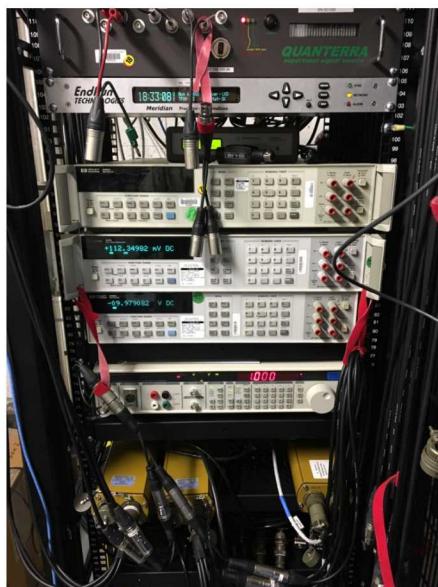



Figure 33 Response Verification Configuration Picture

**Table 22 Response Verification Testbed Equipment**

|                           | Manufacturer / Model            | Serial Number | Configuration |
|---------------------------|---------------------------------|---------------|---------------|
| White Noise Source Bunker | Stanford Research Systems DS360 | 123672        | +1V / - 1 V   |

The white noise source is configured to generate a band-width limited white noise voltage with an amplitude equal to approximately 10% of the digitizer input channel's full scale. One hour of data is recorded.

### 3.10.3 Analysis

The measured bitweight, from the AC Accuracy at 1 Hz, is applied to the collected data:

$$x[n], \quad 0 \leq n \leq N - 1$$

The relative transfer function, both amplitude and phase, is computed between the two digitizer channels (Merchant, 2011) from the power spectral density:

$$H[k], \quad 0 \leq k \leq N - 1$$

### 3.10.4 Result

The coherence and relative amplitude and phase response were computed between channel 1 and the remaining two channels for all of the evaluated sample rate and gain configurations utilizing a 7 hour window of data.

The first group of plots shows coherence between channel 1 and the remaining channels for each datalogger under test.

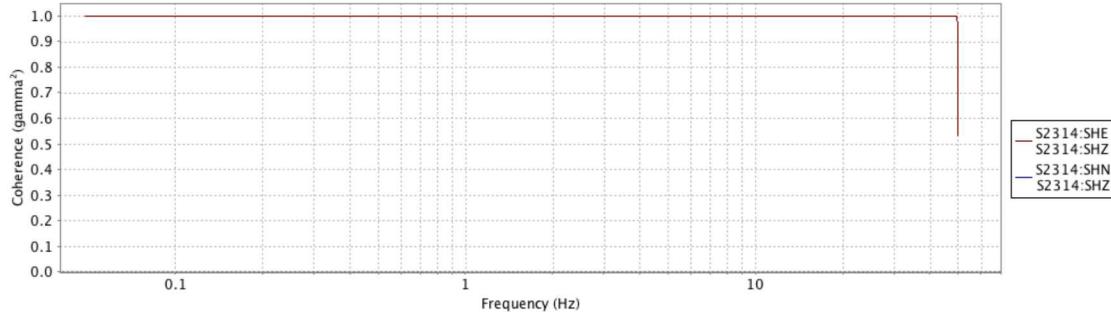



Figure 34 White Noise Coherence SMART24B 2314

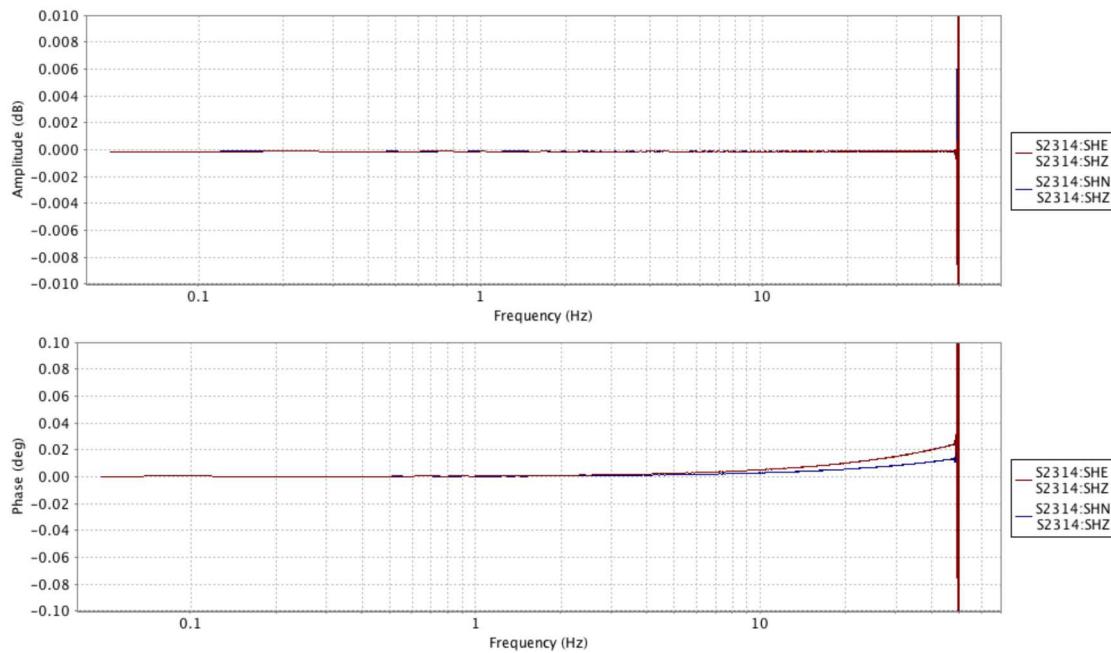
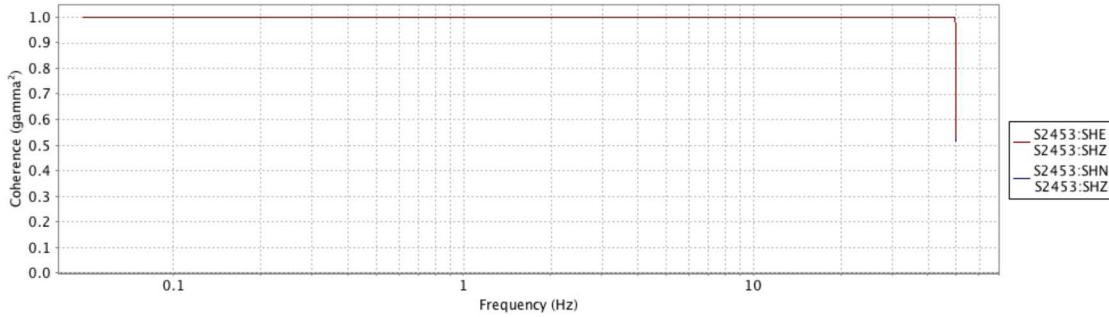
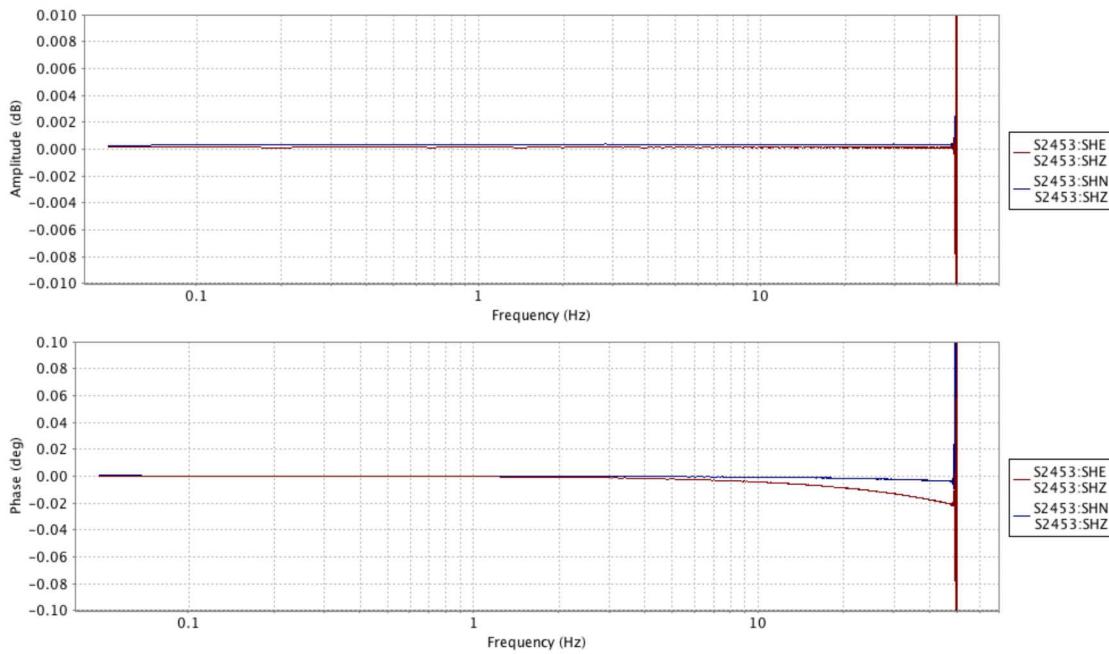





Figure 35 Relative Magnitude and Phase SMART24B 2314



**Figure 36 White Noise Coherence SMART24B 2453**

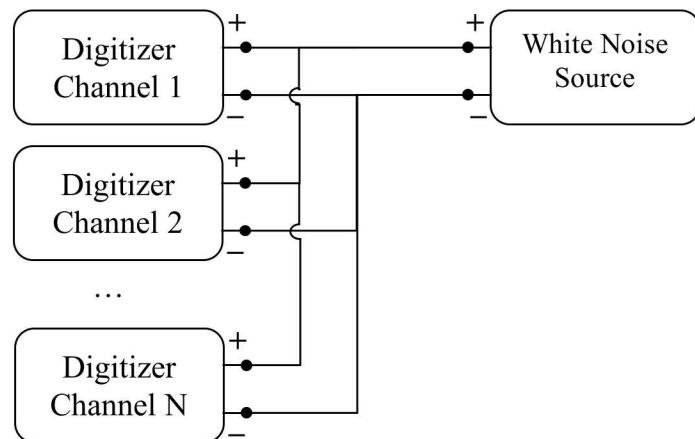


**Figure 37 Relative Magnitude and Phase SMART24B 2453**

The coherence was identically 1.0 across the pass-band for each datalogger. Amplitude differences were very small across channels ( $< 0.001$  dB). Phase differences were also very small ( $< 0.05^\circ$ ), with some variation in the amount of the roll-off between channels. This roll-off in phase may be attributed to slight differences in timing, which will be investigated further in the

Relative Transfer Function section.

### 3.11 Relative Transfer Function


The Relative Transfer Function test measures the amount of channel-to-channel timing skew present on a digitizer.

#### 3.11.1 Measurand

The quantity being measured is the timing skew in seconds between the digitizer input channels.

#### 3.11.2 Configuration

Multiple digitizer channels are connected to a white noise signal source as shown in the diagram below.



**Figure 38 Relative Transfer Function Configuration Diagram**

**Table 23 Relative Transfer Function Testbed Equipment**

|                             | Manufacturer / Model            | Serial Number | Configuration |
|-----------------------------|---------------------------------|---------------|---------------|
| White Noise Source - Bunker | Stanford Research Systems DS360 | 123672        | +1V / - 1 V   |

The white noise source is configured to generate a band-width limited white noise voltage with an amplitude equal to approximately 10% of the digitizer input channel's full scale. At least one hour of data is recorded.

### 3.11.3 Analysis

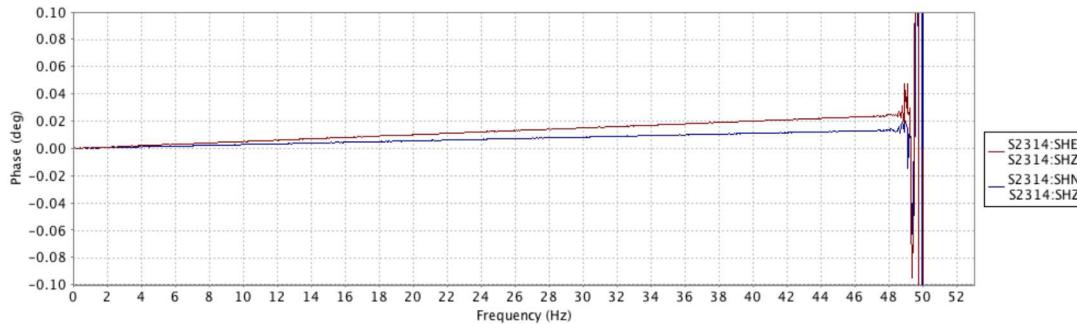
The measured bitweight, from the AC Accuracy at 1 Hz, is applied to the collected data:

$$x[n], \quad 0 \leq n \leq N - 1$$

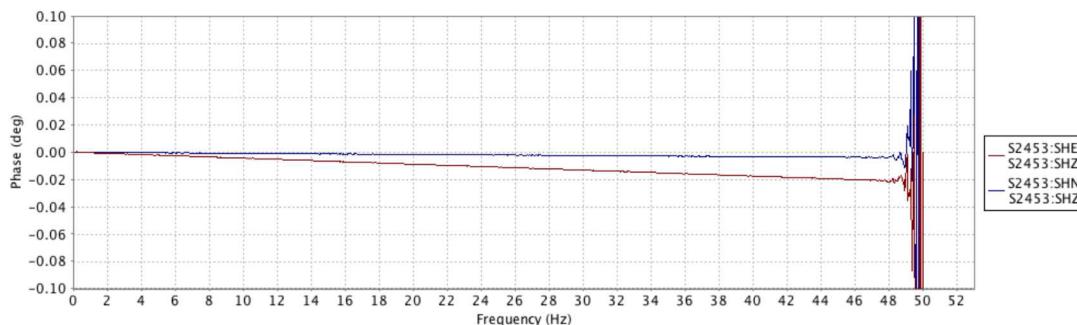
The relative transfer function, both amplitude and phase, is computed between the two digitizer channels:

$$H[k], \quad 0 \leq k \leq N - 1$$

The tester defines a frequency range over which to measure the skew:


$$f[k], \quad 0 \leq k \leq N - 1$$

The amount of timing skew, in seconds, is computed by averaging the relative phase delay between the two channels over a frequency band from  $f[n]$  to  $f[m]$  over which the relative phase delay is observed to be linear:


$$skew = \frac{1}{m - n + 1} \sum_{k=n}^m \frac{\Delta(H[k])}{2\pi f[k]}$$

### 3.11.4 Result

The phase delay versus frequency is shown for evaluated sample rate (100 sps). To the extent that the delay is a constant time offset, the phase delay is observed to be linear with respect to frequency.



**Figure 39 Relative Transfer Function, SMART24B 2314**



**Figure 40 Relative Transfer Function, SMART24B 2453**

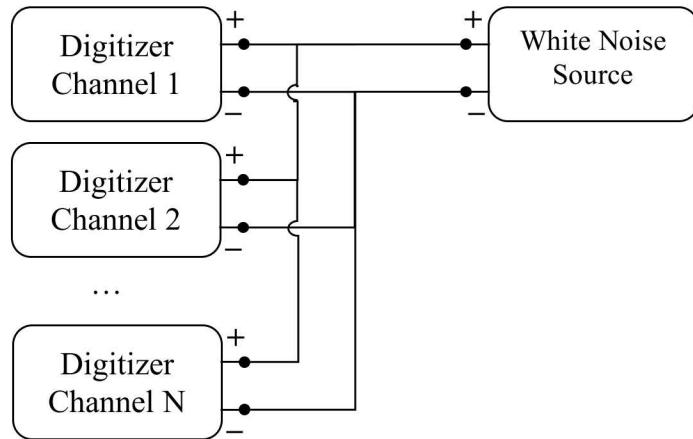
Phase delays are linear with respect to frequency for both dataloggers. The constant channel-to-channel timing skew corresponding to these phase delays is shown in the tables below.

**Table 24 Relative Transfer Function Timing Skew**

| DWR  | SHE (channel 3) | SHN (channel 2) |
|------|-----------------|-----------------|
| 2314 | 1.22 us         | 0.52 us         |
| 2453 | -1.22 us        | -0.22 us        |

Timing skews were consistently of larger in absolute magnitude for the SHE channels relative to the SHN channels. Absolute values of the timing skews did not exceed 1.22 microseconds.

## 3.12 Analog Bandwidth


The Analog Bandwidth test measures the bandwidth of the digitizer's analog and digital filter.

### 3.12.1 Measurand

The quantity being measured is the upper limit of the frequency pass-band in Hertz.

### 3.12.2 Configuration

Multiple digitizer channels are connected to a white noise signal source as shown in the diagram below.



**Figure 41 Analog Bandwidth Configuration Diagram**

**Table 25 Analog Bandwidth Testbed Equipment**

|                             | Manufacturer / Model            | Serial Number | Configuration |
|-----------------------------|---------------------------------|---------------|---------------|
| White Noise Source - Bunker | Stanford Research Systems DS360 | 123672        | +1V / - 1 V   |
| White Noise Source - SB1    | Stanford Research Systems DS360 | 123669        | +1V / - 1 V   |

The white noise source is configured to generate a band-width limited white noise voltage with an amplitude equal to approximately 10% of the digitizer input channel's full scale. One hour data recordings were utilized for the evaluation across all dataloggers and for evaluations at select temperatures, gains and sample rates, respectively.

### 3.12.3 Analysis

The measured bitweight, from the AC Accuracy at 1 Hz, is applied to the collected data:

$$x[n], \quad 0 \leq n \leq N - 1$$

The PSD is computed from the time series (Merchant, 2011) from the time series and the 3 dB point in the power spectra is measured.

### 3.12.4 Result

The power spectra of the white noise signal recorded on the SMART24B digitizer channels are shown in the plots below.

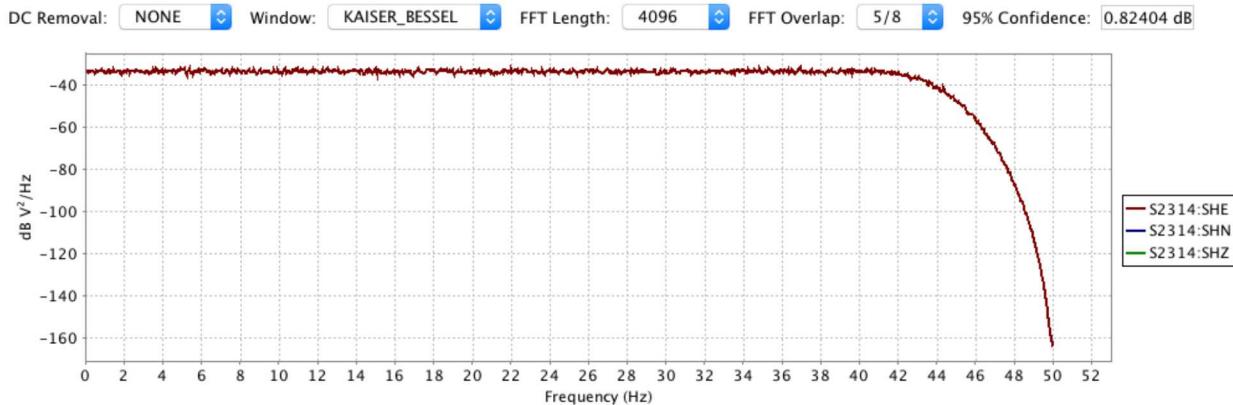



Figure 42 Analog Bandwidth, SMART24B 2314

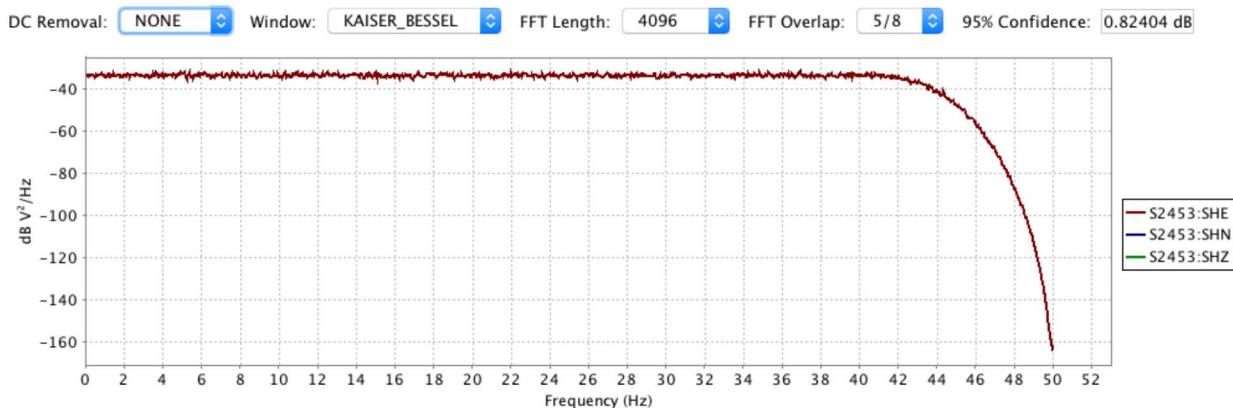



Figure 43 Analog Bandwidth, SMART24B 2453

Table 26 Analog Bandwidth, both DWRs

| DWR  | SHE<br>(channel 3) | SHN<br>(channel 6) | SHZ<br>(channel 1) | % Nyquist<br>Frequency |
|------|--------------------|--------------------|--------------------|------------------------|
| 2314 | 42.7 Hz            | 42.7 Hz            | 42.7 Hz            | 85.4 %                 |
| 2453 | 42.7 Hz            | 42.7 Hz            | 42.7 Hz            | 85.4 %                 |

The observed pass-band limit of all the dataloggers while recording 100 sps, with a 16x gain, while exposed to 23° C, was 85.4% of the 50 Hz Nyquist Frequency.

### 3.13 Total Harmonic Distortion

The Total Harmonic Distortion test is used to measure the linearity of a digitizer channel by recording a known AC signal at a reference voltage from an ultra-low distortion oscillator.

#### 3.13.1 Measurand

The quantity being measured is the digitizer input channels linearity expressed in decibels.

#### 3.13.2 Configuration

The digitizer is connected to an ultra-low distortion oscillator and a meter configured to measure voltage as shown in the diagram below.

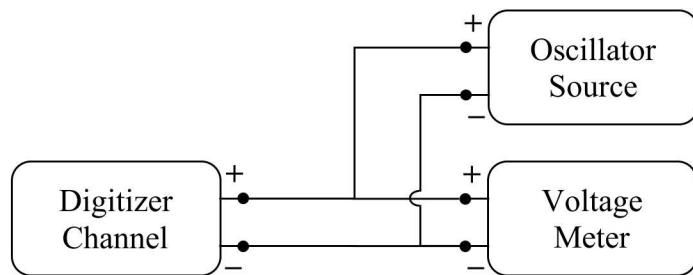



Figure 44 THD Configuration Diagram



Figure 45 Total Harmonic Distortion Configuration

**Table 27 Total Harmonic Distortion Testbed Equipment**

|                            | Manufacturer / Model                                                              | Serial Number      | Nominal Configuration |
|----------------------------|-----------------------------------------------------------------------------------|--------------------|-----------------------|
| Oscillator Source - Bunker | End Run Technologies/Meridian GPS 3025-0101<br>Quanterra/Supertonal Signal Source | 12010020<br>021202 | +0.64 V / -0.64 V     |
| Voltage Meter - Bunker     | Agilent 3458A                                                                     | MY45048371         | 1.0 V full scale      |

The oscillator is configured to generate an AC signal with an amplitude of approximately 50% of the digitizer input channel's full scale and a frequency equal to 1.41 Hz. This frequency was chosen as it is near the calibration frequency of 1 Hz and neither this frequency or any of its nearby harmonics coincide with integer valued frequencies which are typically are often corrupted with noise from digital electronics containing a pulse-per-second timing.

The meter and the digitizer channel record the described AC voltage signal simultaneously. The recording made on the meter is used as the reference for comparison against the digitizer channel. The meter is configured to record at 100 Hz, which is a minimum of 100 times the frequency of the signal of interest in order to reduce the Agilent 3458A Meter's response roll-off at 1 Hz to less than 0.01%.

Both the chosen oscillator and reference meter have signal characteristics that exceed that of the digitizer under test. Therefore, any distortion observed in the signal recorded on the digitizer channel may be inferred to be due to the digitizer.

A minimum of 1 hour of data is recorded.

The meter used to measure the voltage time series has an active calibration from the Primary Standard Laboratory at Sandia.

### 3.13.3 Analysis

The measured bitweight, from the AC Accuracy at 1 Hz, is applied to the collected data:

$$x[n], \quad 0 \leq n \leq N - 1$$

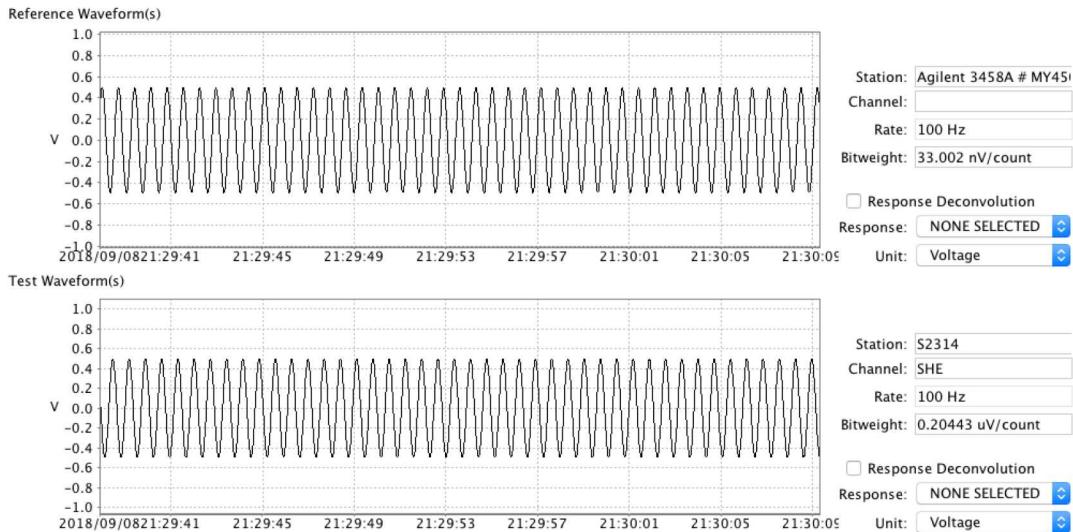
The PSD is computed from the time series (Merchant, 2011) from the time series using a Kaiser-Bessel window varying in length from 4k to 16k window dependent upon on the sample rate of the data recorded. A Kaiser-Bessel window is used to minimize the width of the main lobe and the amplitude of side-lobes. The window length and data duration were chosen to provide sufficient frequency resolution around the primary harmonic and to ensure that the 90% confidence interval ideally 0.5 db or below, though in practice the 90% confidence interval ranged between 0.39 dB and 0.89 dB; at the lowest sample rate the 90% confidence interval increases to has high as 1.43 dB.

$$P_{xx}[k], 0 \leq k \leq N - 1$$

Over frequencies (in Hertz):

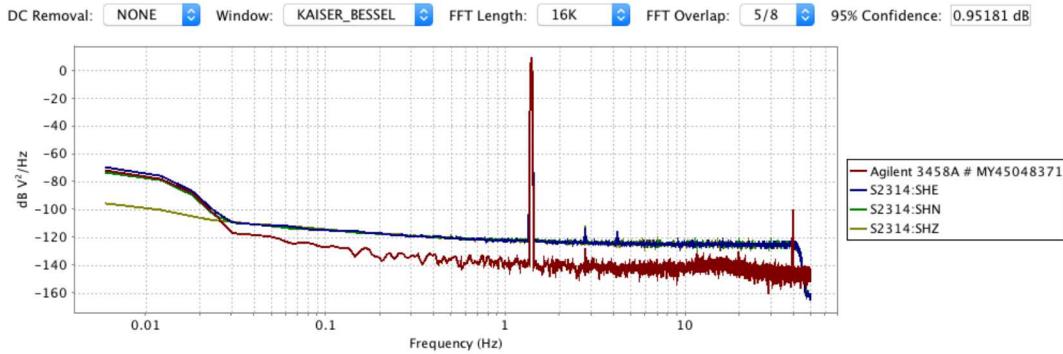
$$f[k], 0 \leq k \leq N - 1$$

A peak-detection algorithm is applied to identify peaks that occur at the location of expected harmonics within the power spectra and the RMS power is computed for each of the peaks that are present (Merchant, 2011).

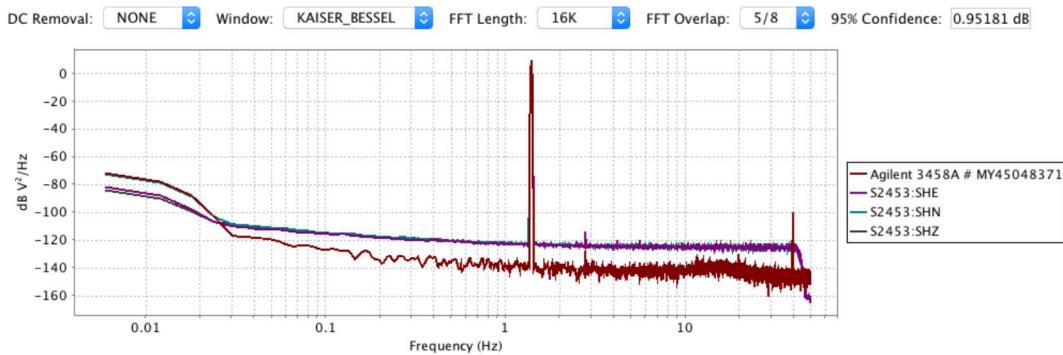

The THD is then computed as the ratio power in the harmonics to the power in the fundamental:

$$THD_{dB} = 10 \log_{10} \left( \frac{\sqrt{\sum_{l=1}^{M-1} (rms[l])^2}}{rms[0]} \right)^2$$

The THD of the signal recorded on the reference meter is computed as well. The reference meter THD provides a baseline for the quality of the signal that was introduced to the digitizer. Any increase in signal distortion may be inferred to be due to the digitizer.


### 3.13.4 Result

The figure below shows a short segment of a representative waveform time series recorded on both the reference meter and a digitizer channel under test of the sinusoid that was used to measure harmonic distortion.




**Figure 46 THD Time Series**

The figures below show the power spectra of the THD for each of the digitizers evaluated.



**Figure 47 THD Power Spectra SMART24B 2314, 16x Gain**



**Figure 48 THD Power Spectra SMART24B 2453 16x Gain**

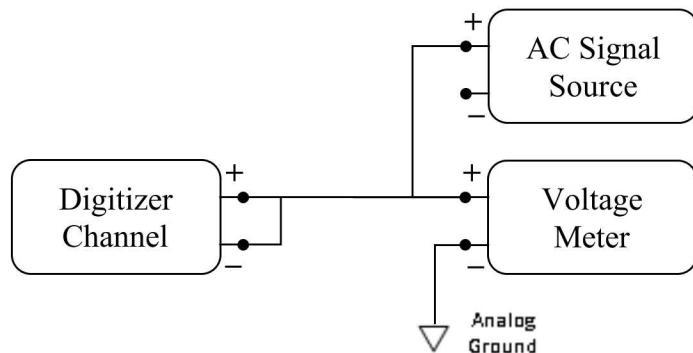
**Table 28 Total Harmonic Distortion, both DWRs**

| DWR  | Reference Meter | SHE (chan 3) | SHN (chan 2) | SHZ (chan 1) |
|------|-----------------|--------------|--------------|--------------|
| 2314 | -136.92 dB      | -117.72 dB   | -121.85 dB   | -119.07 dB   |
| 2453 | -136.92 dB      | -120.23 dB   | -124.9 dB    | -128.98 dB   |

In all cases, the reference measurement of the signal generated by the low distortion oscillator exceeded the measurement made on the digitizer channel indicating that the distortion observed is due to the digitizer. No observable systemic relationship between channel and THD observed exists.

The observed harmonic distortion ranged between -117.72 dB (SN 2314, SHE) and -128.98 dB (SN 2453, SHE). The relatively low THD of the dataloggers may be attributed to the limited penetration of the harmonic distortion (spikes) above the relatively high noise floor of the 16x gain digitizer.

### 3.14 Common Mode Rejection


The Common Mode Rejection test measures the ability of a digitizer to reject a common mode signal on a differential input channel.

#### 3.14.1 Measurand

The quantity being measured is the ratio of the common mode signal amplitude to the observed amplitude on the digitizer input channels in dB.

#### 3.14.2 Configuration

The digitizer is connected to a AC signal source and a meter configured to measure voltage as shown in the diagram below.



**Figure 49 Common Mode Rejection Configuration Diagram**

Since the digitizer input channels are differential and are shorted together, the digitizer should not be recording any signal. However, some amount of common mode signal will still be present on the digitizer input channel.



**Figure 50 Common Mode Rejection Configuration**

**Table 29 Common Mode Rejection Testbed Equipment**

|                           | Manufacturer / Model            | Serial Number | Configuration  |
|---------------------------|---------------------------------|---------------|----------------|
| DC Signal Source - Bunker | Stanford Research Systems DS360 | 123672        | +1V / - 1V     |
| Voltage Meter - Bunker    | Agilent 3458A                   | MY45048371    | 1 V full scale |

The AC Signal Source is configured to generate an AC voltage with an amplitude of approximately 50% of the digitizer input channel's full scale and a frequency equal to the calibration frequency of 1 Hz. One minute of data is recorded.

The meter and the digitizer channel record the described AC voltage signal simultaneously. The recording made on the meter is used as the reference for comparison against the digitizer channel. The meter is configured to record at 100 Hz, which is a minimum of 100 times the frequency of the signal of interest in order to reduce the Agilent 3458A Meter's response roll-off at 1 Hz to less than 0.01 %.

The meter used to measure the voltage time series has an active calibration from the Primary Standard Laboratory at Sandia.

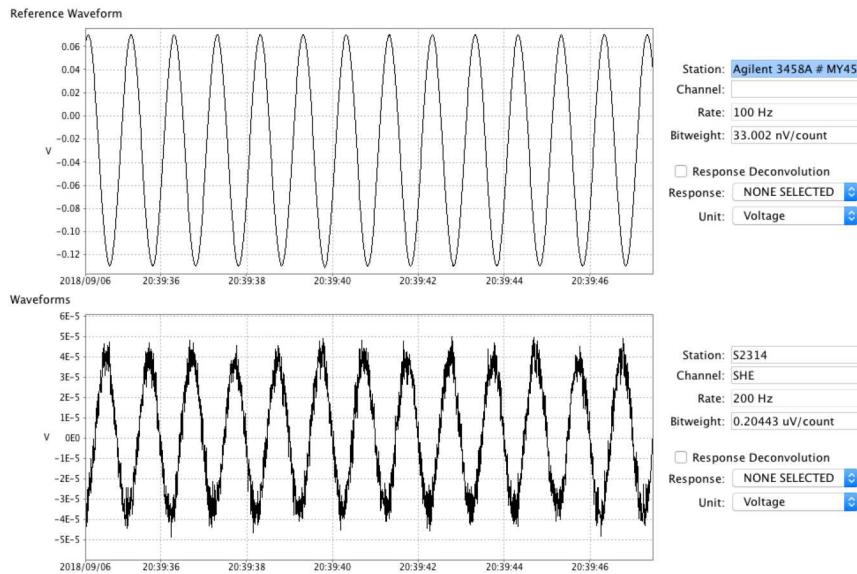
### 3.14.3 Analysis

A minimum of a 10 cycles, or 10 seconds at 1 Hz, of data is defined on the data for the recorded signal segment.

A four parameter sine fit (Merchant, 2011; IEEE-STD1281) is applied to the time segment from the reference meter in Volts in order to determine the sinusoid's amplitude, frequency, phase, and DC offset:

$$V_{ref} \sin(2\pi f_0 t_n + \theta) + V_{dc}$$

A similar sine-fit is performed on the data recorded on the digitizer:


$$V_{meas} \sin(2\pi f_0 t_n + \theta) + V_{dc}$$

The Common Mode Rejection is then computed as the ratio between the reference and measured amplitudes:

$$CMR_{dB} = 10 * \log_{10} \left( \frac{V_{ref}}{V_{meas}} \right)^2$$

### 3.14.4 Result

The figures below show the waveform time series for the recording made on the digitizer channels under test. The window regions bounded by the red lines indicate the segment of data used for analysis.



**Figure 51 Common Mode Rejection Time Series**

The following table contains the computed common mode noise and rejection ratio.

**Table 30 Common Mode Rejection Ratio, both DWRs**

| DWR  |                | SHE<br>(chan 3) | SHN<br>(chan 2) | SHZ<br>(chan 1) |
|------|----------------|-----------------|-----------------|-----------------|
| 2314 | Amplitude      | 37.39 uV        | 14.49 uV        | 4.96 uV         |
|      | Rejection Gain | 68.51 dB        | 76.75 dB        | 86.05 dB        |
| 2453 | Amplitude      | 34.81 uV        | 104.32 uV       | 16.42 uV        |
|      | Rejection Gain | 69.13 dB        | 59.60 dB        | 75.66 dB        |

The observed common mode rejection across dataloggers ranged from 59.60 dB to 86.05 dB while configured with a gain of 16x.

### 3.15 Crosstalk

The Crosstalk test measures how much of a signal recorded on one channel of a digitizer is also present on another channel as noise.

#### 3.15.1 Measurand

The quantity being measured is the ratio of the signal power present in one or more other channels to the observed signal power on another channel in dB.

#### 3.15.2 Configuration

The digitizer is connected to a AC signal source and a meter configured to measure voltage as shown in the diagram below.

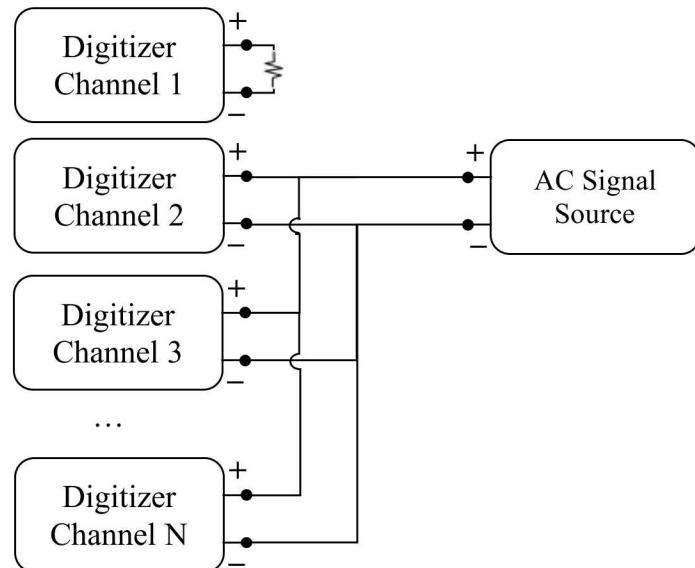



Figure 52 Crosstalk Configuration Diagram



Figure 53 Crosstalk Configuration

**Table 31 Crosstalk Testbed Equipment**

|                         | Manufacturer / Model            | Serial Number | Nominal Configuration |
|-------------------------|---------------------------------|---------------|-----------------------|
| AC Signal Source Bunker | Stanford Research Systems DS360 | 123672        | +1V / - 1 V           |

The AC Signal Source is configured to generate a AC voltage with an amplitude of approximately 50% of the digitizer input channel's full scale and a frequency equal to the calibration frequency of 1 Hz. Approximately 1.2 minutes of data are recorded.

### 3.15.3 Analysis

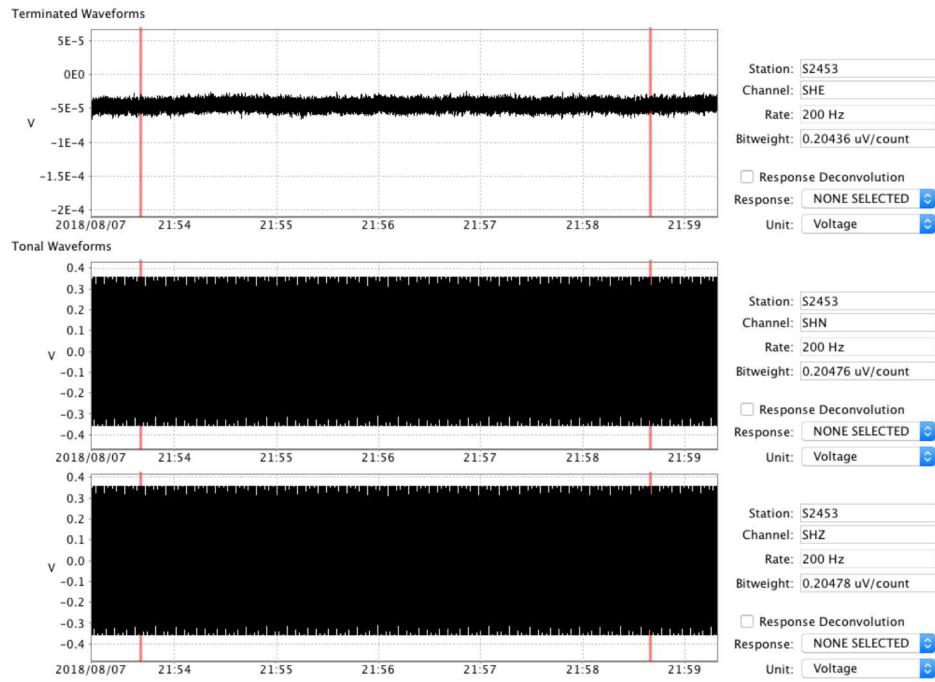
The measured bitweight, from the AC Accuracy at 1 Hz, is applied to the collected data:

$$x[n]$$

The PSD is computed from the time series (Merchant, 2011) from the time series using a 2k-sample Hann window and 5/8 overlap of the input terminated channel and all of the tonal channels:

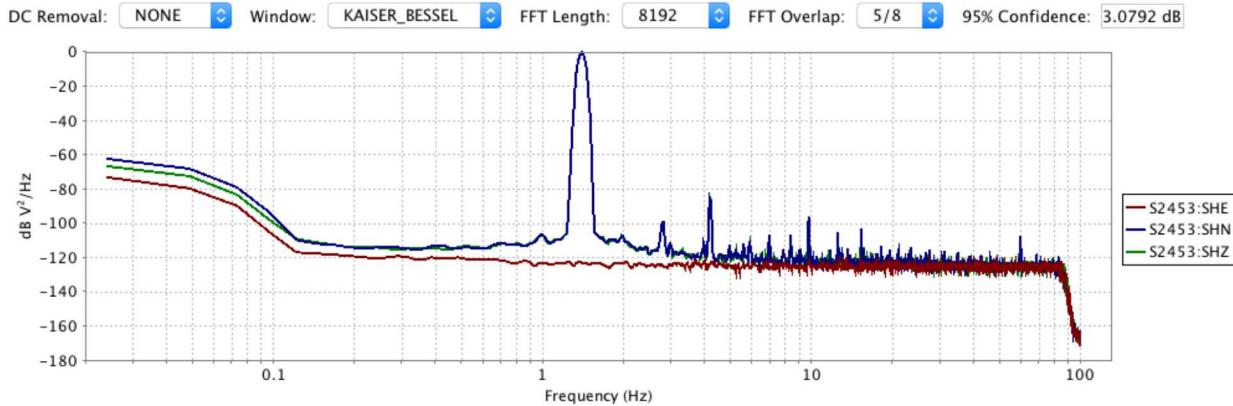
$$P_i[k], \quad 1 \leq i \leq N$$

For the purposes of convention, the input terminated channel is assumed to be the first channel and the tonal channels are 2 through N. The RMS value of the maximum peak in each of the power spectra are identified and computed:


$$V_{rms\ i}, \quad 1 \leq i \leq N$$

The mean crosstalk value is also computed between the terminated channel and each of the tonal channels is computed:

$$Mean\ Crosstalk = 10 \log_{10} \left[ \frac{1}{N-1} \sum_{i=2}^N \frac{V_{rms\ 1}}{V_{rms\ i}} \right]^2$$


### 3.15.4 Result

The figure below shows a representative waveform time series for the recording made on the digitizer channels under test. All of the results were similar to the waveforms shown below. The window regions bounded by the red lines indicate the segment of data used for analysis.



**Figure 54 Crosstalk Time Series Example, SMART24B 2453**

The figures below show a representative power spectra of the terminated and tonal channels for each of the two sample rates for which crosstalk was evaluated. All of the results were similar to the power spectra shown below.



**Figure 55 Crosstalk Power Spectra**

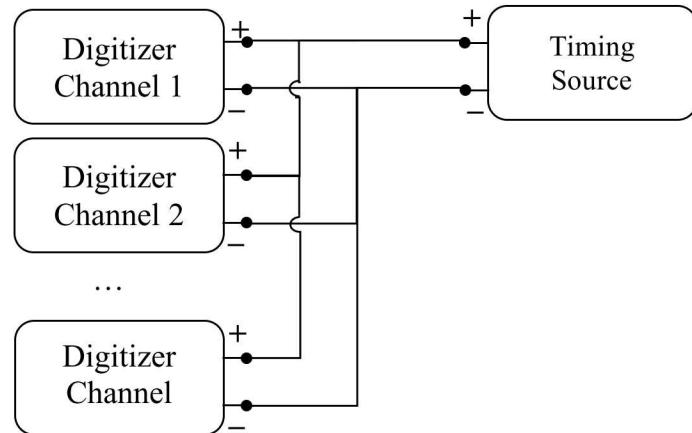
The following table contains the computed crosstalk ratios for all digitizers measured in the bunker at 23 C. Notice the lack of an observable peak in the terminated channel's power spectra.

**Table 32 Crosstalk\*, both DWRs**

| DWR  | SHE<br>(chan 3) | SHN<br>(chan 2) | SHZ<br>(chan 1) |
|------|-----------------|-----------------|-----------------|
| 2314 | -122.74 dB      | -119.11 dB      | -127.61 dB      |
| 2453 | -121.68 dB      | -120.70 dB      | -126.47 dB      |

No peak is observable in the terminated channel's power spectra, therefore the values represent the maximum possible observable crosstalk. The maximum possible observable levels of crosstalk were all between -119.11 dB and -127.61 dB while the dataloggers were configured with a gain of 16x.

### 3.16 Time Tag Accuracy


The Time Tag Accuracy test measures the digitizer's timing accuracy under stable conditions in which the digitizer is clock is locked and stable.

#### 3.16.1 Measurand

The quantity being measured is the error in the time tag of specific time-series sample in seconds. Error is defined to be the observed time-stamp minus the expected time-stamp.

#### 3.16.2 Configuration

The digitizer is connected to a timing source as shown in the diagram below.



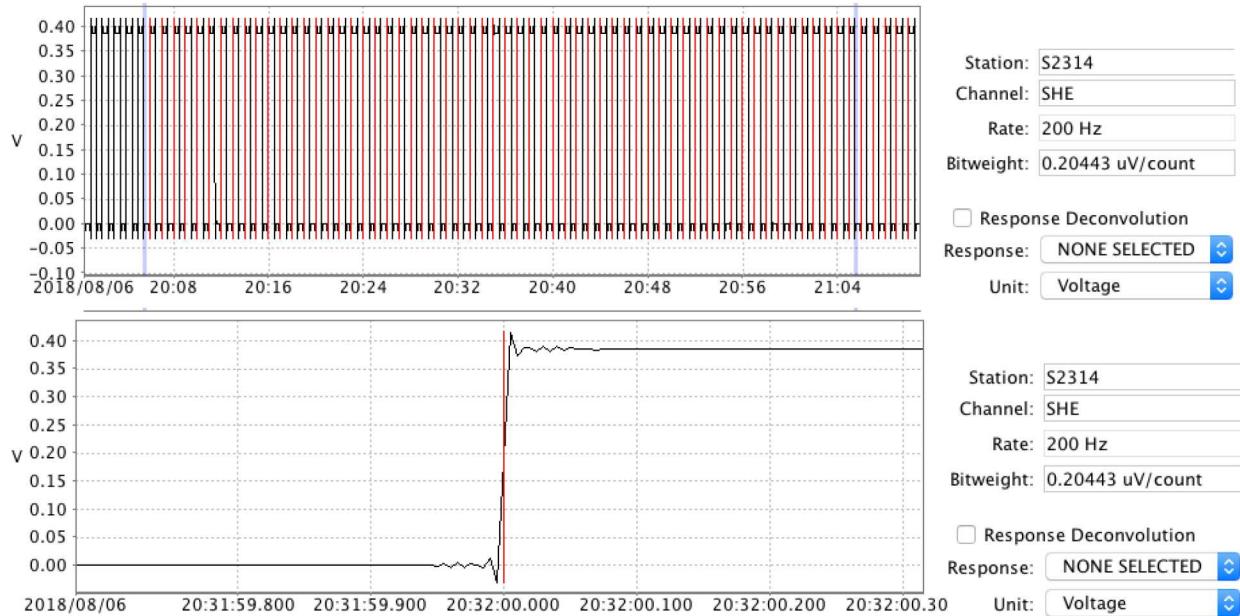
**Figure 56 Time Tag Configuration Diagram**



**Figure 57 Time Tag Configuration Picture**

**Table 33 Time Tag Testbed Equipment**

|        | Manufacturer / Model                                                              | Serial Number      | Nominal Configuration |
|--------|-----------------------------------------------------------------------------------|--------------------|-----------------------|
| Bunker | End Run Technologies/Meridian GPS 3025-0101<br>Quanterra/Supertonal Signal Source | 12010020<br>021202 | GPS PPM Output        |


The timing source may be configured to generate a time-synchronized pulse-per-minute, pulse-per-hour, or sinusoid. In each case, there is an observable signal characteristic

### *3.16.3 Analysis*

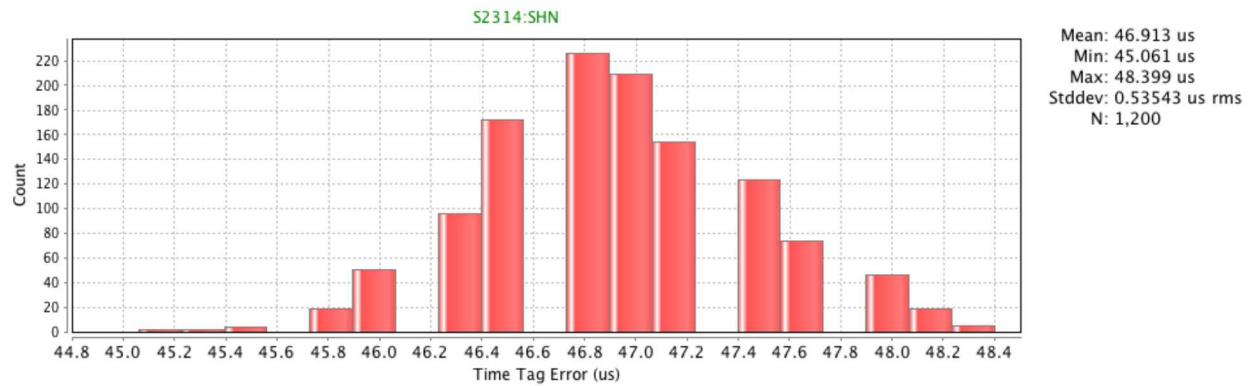
The difference between the digitizers actual and expected time stamps are measured by evaluating the unique characteristics of the signal being recorded (Merchant, 2011). The average time tag error is computed over a minimum of an hour.

### 3.16.4 Result

The figure below shows a representative waveform time series of a Pulse-per-minute (PPM) for the recording made on a digitizer channel under test.



**Figure 58 Time Tag Accuracy PPM Time Series**


The following table contains the computed timing offsets as measured from the testing configuration as shown in Figure 56.

**Table 34 Time Tag Accuracy, both DWRs**

| DWR  | SHE<br>(chan 3) | SHN<br>(chan 2) | SHZ<br>(chan 1) |
|------|-----------------|-----------------|-----------------|
| 2314 | 46.25 us        | 46.97 us        | 48.16 us        |
| 2453 | 47.68 us        | 46.25 us        | 46.73 us        |

Both dataloggers' timing tag offsets were tightly clustered, ranging from 46.16 us to 48.16 us.

The following histogram of time tag errors for SN 2314 channel SHN is representative of the other two channels' errors and hence are not shown here.



**Figure 59 Histogram of Time Tag Errors**

### 3.17 Timing Drift

The Time Tag Drift test measures how the digitizer's timing accuracy drifts when the digitizer's clock is not locked and recovers once lock is restored.

#### 3.17.1 Measurand

The quantity being measured is the error in the time tag of specific time-series sample in seconds and the rate at which the error changes with time. Error is defined to be the observed time-stamp minus the expected time-stamp.

#### 3.17.2 Configuration

The digitizer is connected to a timing source as shown in the diagram below.

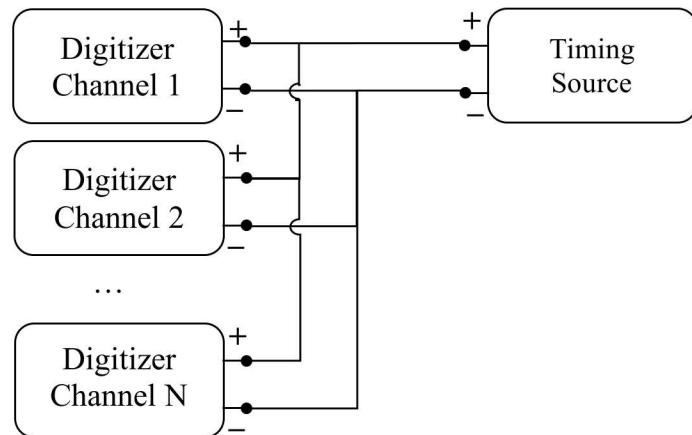



Figure 60 Timing Drift Configuration Diagram

Table 35 Timing Drift Testbed Equipment

| Location | Manufacturer / Model                                                              | Serial Number      | Nominal Configuration |
|----------|-----------------------------------------------------------------------------------|--------------------|-----------------------|
| Bunker   | End Run Technologies/Meridian GPS 3025-0101<br>Quanterra/Supertonal Signal Source | 12010020<br>021202 | GPS PPM Output        |

The timing source may be configured to generate a time-synchronized pulse-per-minute, pulse-per-hour, or sinusoid. In each case, there is an observable signal characteristic

The digitizer clock is allowed to stabilize before the GPS antenna is covered, which results in the digitizer losing timing lock. The digitizer is allowed to drift before the GPS antenna uncovered and then regains its timing lock and corrects for drift.

### 3.17.3 Analysis

The difference between the digitizers actual and expected time stamps are measured by evaluating the unique characteristics of the signal being recorded (Merchant, 2011).

The levels of timing error and rates of change are observed while the digitizer has GPS lock, while it is drifting without GPS lock, and while it is recovering once GPS lock is resumed.

### 3.17.4 Result

The figures below show the timing offsets over time as the digitizer channels drift and recover.

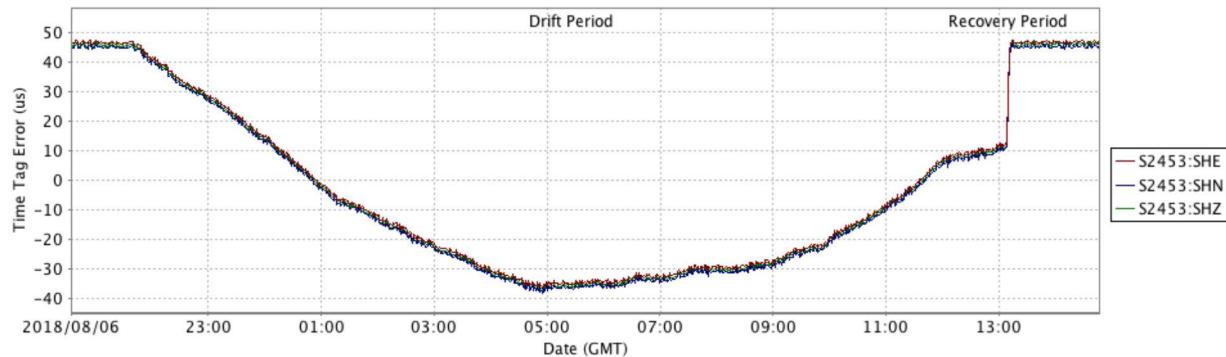



Figure 61 Time Tag Drift, SMART24B 2453, 23° C

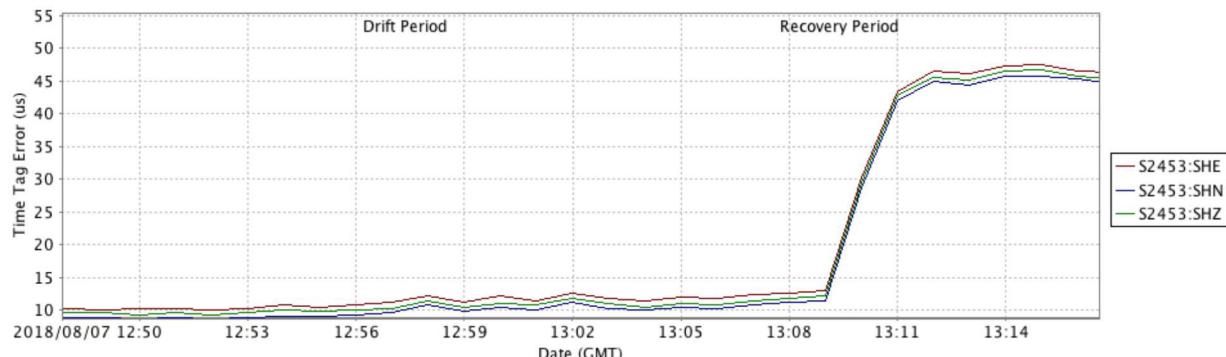



Figure 62 Time Tag Recovery SMART24B 2453, 23° C

The following table contains the computed timing offsets with the GPS unlocked and the estimated rate at which the digitizer was observed to drift prior to recovering GPS lock.

Table 36 Time Tag Drift and Recovery

| Digitizer | Config/Conditions        | Timing Offset | Drift Rate |
|-----------|--------------------------|---------------|------------|
| 2314      | -                        | -             | -          |
| 2453      | 200 sps, gain 16x, 23° C | -37 us        | 2.07 us/h  |

Datalogger 2453 had remarkably little drift over the ~15 hour period during which the antenna was covered with foil to simulate an antenna's sky view being blocked. The drift rate reverses approximately 7 hours after covering the antenna, at which time the timing begins to drifting in the opposite direction.

The mean drift rate over the time during which the antenna was covered is 2.07 us/h. The observed timing offset with GPS-locked timing is approximately 46 us (ahead of actual time). During the GPS-unlocked time period the timing offset was -37 us (behind actual time). Upon uncovering the antenna at 1307 UTC, the timing quickly recovered to its pre-unlocked timing offset, within approximately 4 minutes (the antenna was uncovered at 1307 UTC).

## 4 SUMMARY

### **Power Consumption**

The average observed power consumption of 2.78 W is significantly higher than the ~1 W provided in the datasheet specification, however the manufacturer's power consumption is with respect to power-cycled GPS receiver operation, rather than the tested configuration of continuous GPS receiver operation.

### **Input Impedance**

Both dataloggers remained had measured input impedances on channel 1 of 17% over the specified 1 Mohm impedance; channels 2 and 3 over twice the manufacturer's stated impedance.

### **DC Accuracy**

Bit weights of both dataloggers remained very close to the manufacturer-provided bitweights, from 0.00% to 0.29% of the provided values.

### **AC Accuracy**

As with DC Accuracy Tests, bitweights remained very near the respective manufacturer-provided bitweight, not diverging more than 0.29% from the respective manufacturer-provided bitweight.

### **Input Shorted Offset**

The maximum offset observed across dataloggers is -0.0034% of full-scale (1.25 V at 16x gain), observed on datalogger 2453, channel SHE (channel 3).

### **AC Full Scale**

The digitizer channels were able to fully resolve the sinusoid with a peak-to-peak amplitude at or near the channels claimed full scale value without any signs of flattening that would indicate that clipping is occurring.

### **Self-Noise**

Self noise values remained relatively consistent within the high and broad passbands, within 1.60% and 2.61% of the average across all dataloggers and channels respectively, however over the low passband self noise estimates varied more, as much as 7.03%.

### **Dynamic Range**

Observed dynamic range values were relatively tightly clustered around their average. The most variation in dynamic range occurred over the 0.02 Hz to 1.0 Hz passband, where variations were as high as 0.52% from the average of 120.45 dB for the passband; over the 0.5 Hz to 16 Hz passband, dynamic ranges varied 0.12% from 114.78 dB, the average over this passband; and finally, over the broad passband, 0.02 Hz and 16 Hz, variations were within 0.20% of the average of 113.96 dB over the broad passband.

### **System Noise**

Equivalent seismic system noise of both SMART24B dataloggers recording at a gain of 16x exceeds the self-noise models of the GS-13 over the entire spectrum of interest. This result

brings to mind the relevance of utilizing a pre-amplifier in series with the GS-13 and reducing the gain of the digitizer to improve equivalent seismic system noise.

### **Response Verification**

Amplitude differences were very small across channels (< 0.001 dB). Phase differences were very small also (<0.005°), with some variation in the amount of the roll-off between channels.

### **Relative Transfer Function**

Timing skews were consistently of larger in absolute magnitude for the SHE channels relative to the SHN channels. Absolute values of the timing skews did not exceed 1.22 microseconds.

### **Analog Bandwidth**

The observed pass-band limit of all the dataloggers while recording 100 sps, with a 16x gain, while exposed to 23° C, was 85.4% of the 50 Hz Nyquist Frequency.

### **Total Harmonic Distortion**

The observed harmonic distortion ranged between -117.72 dB (SN 2314, SHE) and -128.98 dB (SN 2453, SHE). The relatively low THD of the dataloggers may be attributed to the limited penetration of the harmonic distortion (spikes) above the relatively high noise floor of the 16x gain digitizer.

### **Common Mode Rejection**

The observed common mode rejection across dataloggers ranged from 59.60 dB to 86.05 dB while configured with a gain of 16x.

### **Crosstalk**

No peak is observable in the terminated channel's power spectra, therefore the values represent the maximum possible observable crosstalk. The maximum possible observable levels of crosstalk were all between -119.11 dB and -127.61 dB while the dataloggers were configured with a gain of 16x.

### **Time Tag Accuracy**

Over all test configurations and conditions, timing offsets varied from -25 us to -41 us, with no correlation of offset with temperature or sample rate.

### **Time Tag Drift**

Drift rates varied widely across dataloggers, from as little as 187 us/h to as much as -411 us/h. In every instance of connecting the GPS antenna to the receiver, GPS receivers locked and timing was corrected, to essentially the same measured timing offset as that prior to the drift test, within just a few minutes.

## REFERENCES

1. Holcomb, Gary L. (1989), *A Direct Method for calculating Instrument Noise Levels in Side-by-Side Seismometer Evaluations*, DOI USGS Open-File Report 89-214.
2. IEEE Standard for Digitizing Waveform Recorders, IEEE Std. 1057-1994.
3. IEEE Standard for Analog to Digital Converters, IEEE Std. 1241-2010.
4. Kromer, Richard P., Hart, Darren M. and J. Mark Harris (2007), *Test Definition for the Evaluation of Digital Waveform Recorders Version 1.0*, SAND2007-5037.
5. McDonald, Timothy S. (1994), *Modified Noise Power Ratio Testing of High Resolution digitizers*, SAND94-0221.
6. Merchant, B. John, and Darren M. Hart (2011), *Component Evaluation Testing and Analysis Algorithms*, SAND2011-8265.
7. Sleeman, R., Wettum, A., Trampert, J. (2006), *Three-Channel Correlation Analysis: A New Technique to Measure Instrumental Noise of Digitizers and Seismic Sensors*, Bulletin of the Seismological Society of America, Vol. 96, No. 1, pp. 258-271, February 2006. Appendix A: Amplitude and Phase Response

## APPENDIX A: SELF-NOISE

Digitizer self-noise values are reported in units of dB relative to  $1 \text{ V}^2/\text{Hz}$  at the defined octave-band frequencies. The 90% uncertainty of the provided estimates are 0.54 .

**Table 37 SMART24B Digitizer Noise Model, 16x Gain**

| Frequency<br>(Hz) | SHE<br>(chan 3) | SHN<br>(chan 2) | SHZ<br>(chan 1) |
|-------------------|-----------------|-----------------|-----------------|
| 0.0315            | -110.1 dB       | -109.9 dB       | -109.8 dB       |
| 0.04              | -111.5 dB       | -111.3 dB       | -110.9 dB       |
| 0.05              | -112.2 dB       | -112.1 dB       | -111.8 dB       |
| 0.063             | -113.6 dB       | -113.4 dB       | -113.1 dB       |
| 0.08              | -114.4 dB       | -114.2 dB       | -114.0 dB       |
| 0.1               | -115.5 dB       | -115.3 dB       | -115.0 dB       |
| 0.125             | -116.4 dB       | -116.2 dB       | -115.9 dB       |
| 0.16              | -117.3 dB       | -117.1 dB       | -117.0 dB       |
| 0.2               | -118.3 dB       | -118.1 dB       | -117.9 dB       |
| 0.25              | -119.1 dB       | -118.9 dB       | -118.7 dB       |
| 0.315             | -119.8 dB       | -119.7 dB       | -119.5 dB       |
| 0.4               | -120.6 dB       | -120.6 dB       | -120.3 dB       |
| 0.5               | -121.2 dB       | -121.2 dB       | -121.0 dB       |
| 0.63              | -121.9 dB       | -121.9 dB       | -121.7 dB       |
| 0.8               | -122.6 dB       | -122.5 dB       | -122.3 dB       |
| 1                 | -123.1 dB       | -122.9 dB       | -122.8 dB       |
| 1.25              | -123.5 dB       | -123.4 dB       | -123.3 dB       |
| 1.6               | -123.9 dB       | -123.8 dB       | -123.8 dB       |
| 2                 | -124.2 dB       | -124.1 dB       | -124.1 dB       |
| 2.5               | -124.5 dB       | -124.5 dB       | -124.5 dB       |
| 3.15              | -124.8 dB       | -124.7 dB       | -124.7 dB       |
| 4                 | -125.0 dB       | -124.9 dB       | -124.9 dB       |
| 5                 | -125.2 dB       | -125.1 dB       | -125.1 dB       |
| 6.3               | -125.3 dB       | -125.3 dB       | -125.2 dB       |
| 8                 | -125.4 dB       | -125.4 dB       | -125.4 dB       |
| 10                | -125.5 dB       | -125.5 dB       | -125.5 dB       |
| 12.5              | -125.6 dB       | -125.6 dB       | -125.5 dB       |
| 16                | -125.6 dB       | -125.6 dB       | -125.6 dB       |
| 20                | -125.7 dB       | -125.7 dB       | -125.7 dB       |
| 25                | -125.7 dB       | -125.7 dB       | -125.7 dB       |
| 31.5              | -125.7 dB       | -125.8 dB       | -125.8 dB       |
| 40                | -125.8 dB       | -125.8 dB       | -125.8 dB       |

## APPENDIX B: RESPONSE MODELS

### 4.1 Geotech GS-13 Response

Geotech GS-13 seismometer amplitude and phase response.

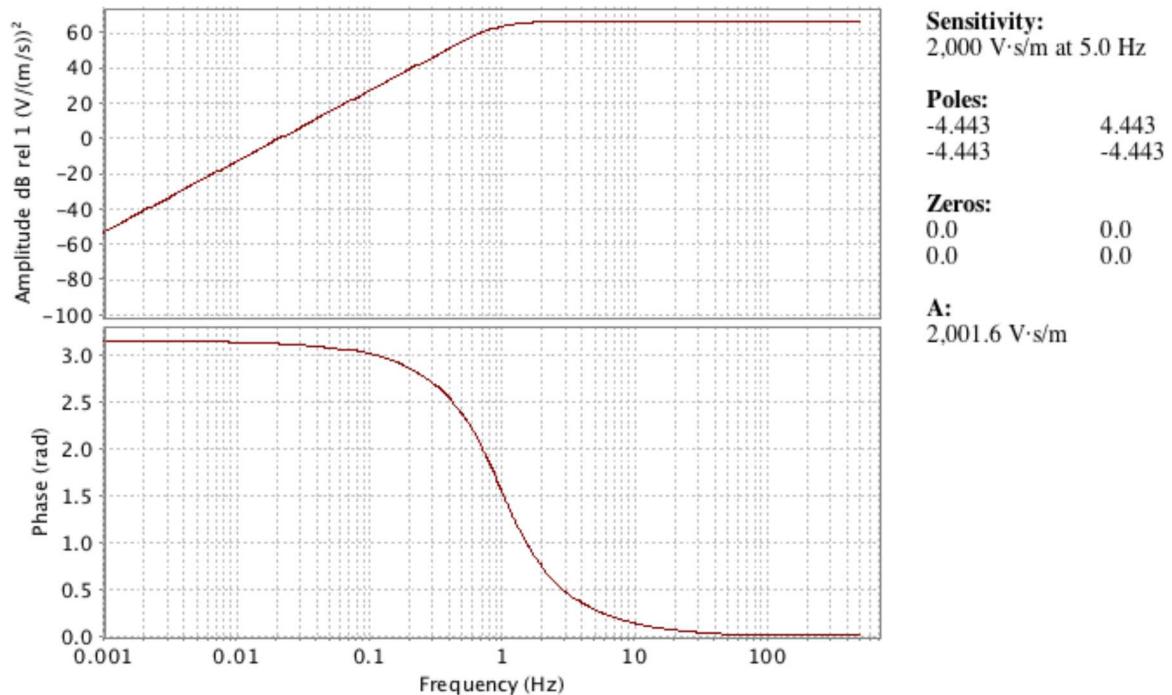



Figure 63 GS-13 Amplitude and Phase Response

## APPENDIX C: TESTBED CALIBRATIONS

### Agilent 3458A # MY45048371

#### PRIMARY STANDARDS LABORATORY

Sandia National Laboratories, Albuquerque, New Mexico 87185-0665

#### Limited Calibration Certificate

Document #: 6652541\_11726859

#### Item Identification

|                   |                                      |
|-------------------|--------------------------------------|
| Asset Number      | 6652541                              |
| Description       | Multimeter,Digital                   |
| Model             | 3458A                                |
| Serial #          | MY45048371                           |
| Manufacturer      | Agilent Technologies                 |
| Customer Asset Id | N/A                                  |
| Purchase Order    | N/A                                  |
| Customer          | Ground-Based Monitoring R&E<br>06752 |

|                             |                                       |
|-----------------------------|---------------------------------------|
| Custodian                   | Slad, George William                  |
| Location                    | SNLN/M/TA1/758/1044                   |
| Date of Receipt             | November 07, 2017                     |
| Dates Tested (Start – End)  | November 29, 2017 - November 29, 2017 |
| Date Approved               | November 29, 2017                     |
| Calibration Expiration Date | November 29, 2018                     |

#### Calibration Description

|                             |                  |
|-----------------------------|------------------|
| Calibration Lab             | PSL-ELECTRICAL   |
| Calibration Procedure, rev. | HP 3458A, 4.2    |
| Temperature                 | $23 \pm 2$ deg C |
| Humidity                    | $40 \pm 20$ %RH  |
| Barometric Pressure         | N/A mmHg         |
| As Found Condition          | PASS             |
| As Left Condition           | PASS             |
| Software Used               | MET/CAL 8.3.2.37 |
| Tamper Seal                 | None             |

# PRIMARY STANDARDS LABORATORY

Sandia National Laboratories, Albuquerque, New Mexico 87185-0665

## Calibration Specifications and Results

This instrument (Agilent/HP 3458A) was tested using the SNL Primary Standards Laboratory's Multimeter/Multifunction Station MMS #9300 and is certified to be within the following LIMITED specifications:

### DC Volts:

± (11 ppm of reading + 10 ppm of range) 100 mV range  
± (10 ppm of reading + 1 ppm of range) 1 V range  
± (10 ppm of reading + 0.2 ppm of range) 10 V range  
± (12 ppm of reading + 0.3 ppm of range) 100 V range  
± (12 ppm of reading + 0.1 ppm of range) 1000 V range

### AC Volts:

10 Hz to 40 Hz ± (0.2% of reading + 0.002% of range) 10 mV to 100 V ranges  
40 Hz to 20 kHz ± (0.045% of reading + 0.002% of range) 10 mV to 100 V ranges  
40 Hz to 20 kHz ± (0.08% of reading + 0.002% of range) 1000 V range  
20 kHz to 50 kHz ± (0.1% of reading + 0.011% of range) 10 mV range  
20 kHz to 50 kHz ± (0.1% of reading + 0.002% of range) 100 mV to 100 V ranges  
50 kHz to 100 kHz ± (0.5% of reading + 0.011% of range) 10 mV range  
50 kHz to 100 kHz ± (0.2% of reading + 0.002% of range) 100 mV to 100 V ranges  
100 kHz to 300 kHz ± (4% of reading + 0.02% of range) 10 mV range  
100 kHz to 300 kHz ± (1% of reading + 0.01% of range) 100 mV to 10 V ranges  
100 kHz to 200 kHz ± (1% of reading + 0.01% of range) 100 V range

NOTE: 700 V RMS maximum on 1000 VAC range

### 4-wire Ohms:

± (100 ppm of reading + 10 ppm of range) 10 Ω range  
± (50 ppm of reading + 5 ppm of range) 100 Ω range  
± (50 ppm of reading + 1 ppm of range) 1 KΩ to 100 KΩ ranges  
± (100 ppm of reading + 2 ppm of range) 1 MΩ range  
± (200 ppm of reading + 10 ppm of range) 10 MΩ range  
± (500 ppm of reading + 10 ppm of range) 100 MΩ range  
± (2% of reading + 10 ppm of range) 1 GΩ range

### DC Current

± (10% of reading + 0.01% of range) 100 nA range  
± (3.0% of reading + 0.01% of range) 1 μA range  
± (0.3% of reading + 0.001% of range) 10 μA  
± (0.04% of reading + 0.01% of range) 100 μA and 1 A ranges  
± (0.02% of reading + 0.005% of range) 1 mA, 10 mA, and 100 mA ranges

### AC Current:

## PRIMARY STANDARDS LABORATORY

Sandia National Laboratories, Albuquerque, New Mexico 87185-0665

20 Hz to 1 kHz  $\pm$  (0.15% of reading + 0.02% of range) 100  $\mu$ A range  
20 Hz to 5 kHz  $\pm$  (0.15% of reading + 0.02% of range) 1 mA to 100 mA ranges  
40 Hz to 5 kHz  $\pm$  (0.15% of reading + 0.02% of range) 1 A range  
5 kHz to 10 kHz  $\pm$  (0.5% of reading + 0.02% of range) 1 mA to 100 mA ranges

Frequency:

10 Hz to 40 Hz  $\pm$  0.05% of reading  
40 Hz to 10 MHz  $\pm$  0.01% of reading

Note 1: Measurement setup configuration is defined in manufacturer's accuracy statement footnotes.

Note 2: Additional errors due to deviations in setup configuration shall be added by the user to the specifications in this certificate.

Note 3: Contact the Primary Standards Laboratory for assistance with uncertainty calculations as needed.

# PRIMARY STANDARDS LABORATORY

Sandia National Laboratories, Albuquerque, New Mexico 87185-0665

## Calibration Data Report

### Primary Electrical Lab



Unit Under Test: Agilent 3458A Digital Multimeter  
Asset Number: 6652541  
Serial Number: MY45048371  
Procedure Name: HP 3458A  
Revision: 4.2  
Calibrated By: Jason Chance

Test Result: PASS  
Test Type: FOUND-LEFT  
Calibration Date: 11/29/2017  
Temperature: 23 °C  
Humidity: 40 %

- Test Type is defined as follows:
  - AS-FOUND Data collected prior to adjustment and/or repair
  - AS-LEFT Data collected after adjustment and/or repair
  - FOUND-LEFT Data collected without adjustment and/or repair
- Test Uncertainty Ratio (TUR) is defined as:
  - TUR = Specification Limit / Uncertainty of the Measurement
- A hash (#) appended to the TUR indicates a guardbanded measurement
- An asterisk (\*) appended to the TUR indicates use of a Test Accuracy Ratio (TAR) instead of a TUR
  - TAR = Specification Limit / Accuracy of the Standard

#### COMMENTS:

##### Standards Used

| Asset # | Description                                          | Due Date   |
|---------|------------------------------------------------------|------------|
| 11123   | Keithley 5155-9 1 Gohm resistor                      | 5/10/2018  |
| 20174   | Fluke 5725A Amplifier                                | 8/10/2018  |
| 20563   | FLUKE 5790A CALIBRATOR                               | 10/19/2018 |
| 6651332 | Agilent 33250A Function/Arbitrary Waveform Generator | 2/15/2018  |
| 6664631 | Fluke 5730A Multifunction Calibrator                 | 12/4/2017  |

##### Test Results

| Test Description | True Value | Lower Limit | Measured Value | Upper Limit | Units | TUR | % Tol | Status |
|------------------|------------|-------------|----------------|-------------|-------|-----|-------|--------|
| <hr/>            |            |             |                |             |       |     |       |        |

MMS: 9300

SOFTWARE USED: Met/Cal Version 8.3.2

##### CALIBRATION MANUAL:

Agilent Technologies 3458A Multimeter  
Calibration Manual, Edition 6, October 2013  
PN 03458-90017

##### LIMITED CALIBRATION:

PSL specifications are larger than manufacturer's  
specifications reported in Factory User Manual.  
This is a limitation of the PSL.

The internal temperature of the 3458A is 36.1 deg.C

DC Volts

|               |             |             |             |    |       |    |
|---------------|-------------|-------------|-------------|----|-------|----|
| 100.00000 mV  | 99.99812    | 100.00028   | 100.00188   | mV | 2.26# | 15 |
| -100.00000 mV | -100.00188  | -100.00030  | -99.99812   | mV | 2.26# | 16 |
| 1.0000000 V   | 0.99998965  | 1.00000458  | 1.00001035  | V  | 2.97# | 44 |
| -1.0000000 V  | -1.00001035 | -1.00000474 | -0.99998965 | V  | 2.97# | 46 |
| -10.000000 V  | -10.0000987 | -10.0000510 | -9.9999013  | V  | 3.92# | 52 |
| -5.0000000 V  | -5.0000501  | -5.0000262  | -4.9999499  | V  | 3.71# | 52 |
| -2.0000000 V  | -2.0000209  | -2.0000090  | -1.9999791  | V  | 3.24# | 43 |
| 2.0000000 V   | 1.9999791   | 2.0000095   | 2.0000209   | V  | 3.24# | 45 |
| 5.0000000 V   | 4.9999499   | 5.0000265   | 5.0000501   | V  | 3.71# | 53 |
| 10.000000 V   | 9.9999013   | 10.0000501  | 10.0000987  | V  | 3.92# | 51 |
| 100.00000 V   | 99.998821   | 100.000715  | 100.001179  | V  | 3.51# | 61 |

Agilent 3458A Asset # 6652541  
Calibration Date: 11/29/2017 09:53:55

Primary Electrical Lab TUR Report version 06/14/17

Page 1 of 3

Page 4 of 8  
6652541\_11726859

# PRIMARY STANDARDS LABORATORY

Sandia National Laboratories, Albuquerque, New Mexico 87185-0665

## Test Results

| Test Description         | True Value | Lower Limit | Measured Value | Upper Limit | Units    | TUR   | % Tol | Status |
|--------------------------|------------|-------------|----------------|-------------|----------|-------|-------|--------|
| 1000.00000 V             | 999.58900  | 1000.00799  |                | 1000.01100  | V        | 2.42# | 73    |        |
| DC Current               |            |             |                |             |          |       |       |        |
| 100.000 nA               | 91.597     | 100.049     | 108.403        | nA          | 1.85#    | 1     |       |        |
| 1.000000 $\mu$ A         | 0.969900   | 1.000067    | 1.030100       | $\mu$ A     | 5.5      | 0     |       |        |
| 10.000000 $\mu$ A        | 9.969900   | 9.99948     | 10.030100      | $\mu$ A     | 5.2      | 0     |       |        |
| 100.00000 $\mu$ A        | 99.95000   | 99.99883    | 100.05000      | $\mu$ A     | 5.7      | 2     |       |        |
| 1.0000000 mA             | 0.9997500  | 0.9999948   | 1.0002500      | mA          | 7.6      | 2     |       |        |
| 10.000000 mA             | 9.997500   | 9.99983     | 10.002500      | mA          | 8.1      | 1     |       |        |
| 100.00000 mA             | 99.97500   | 100.00057   | 100.02500      | mA          | 6.1      | 2     |       |        |
| 1.0000000 A              | 0.9995000  | 1.0000207   | 1.0005000      | A           | 7.6      | 4     |       |        |
| Resistance               |            |             |                |             |          |       |       |        |
| 10.00000 $\Omega$        | 10.000277  | 9.99918     | 10.00030       | $\Omega$    | 5.8      | 2     |       |        |
| 100.0000 $\Omega$        | 100.003650 | 99.99815    | 100.00422      | $\Omega$    | 6.5      | 10    |       |        |
| 1.0000000 $k\Omega$      | 0.99998440 | 0.9999334   | 0.9999891      | $k\Omega$   | 9.1      | 9     |       |        |
| 10.00000 $k\Omega$       | 9.9998260  | 9.999316    | 9.999897       | $k\Omega$   | 9.4      | 14    |       |        |
| 100.0000 $k\Omega$       | 100.000560 | 99.99546    | 100.00140      | $k\Omega$   | 8.2      | 17    |       |        |
| 1.0000000 $M\Omega$      | 0.99995920 | 0.9998572   | 0.9999694      | $M\Omega$   | 9.3      | 10    |       |        |
| 10.000000 $M\Omega$      | 9.9982190  | 9.996119    | 9.998373       | $M\Omega$   | 7.2      | 7     |       |        |
| 100.00000 $M\Omega$      | 100.006930 | 99.95593    | 100.00600      | $M\Omega$   | 6.0      | 2     |       |        |
| 1.00192000 $G\Omega$     | 0.9818716  | 0.9996921   | 1.0219684      | $G\Omega$   | >10      | 11    |       |        |
| AC Current               |            |             |                |             |          |       |       |        |
| 100.0000 $\mu$ A @ 20 Hz | 99.8300    | 99.9427     | 100.1700       | $\mu$ A     | 7.4      | 34    |       |        |
| 100.0000 $\mu$ A @ 45 Hz | 99.8300    | 99.9874     | 100.1700       | $\mu$ A     | 10.0     | 7     |       |        |
| 100.0000 $\mu$ A @ 1 kHz | 99.8300    | 99.9872     | 100.1700       | $\mu$ A     | 10.0     | 8     |       |        |
| 1.000000 mA @ 20 Hz      | 0.998300   | 0.999523    | 1.001700       | mA          | 10.0     | 28    |       |        |
| 1.000000 mA @ 45 Hz      | 0.998300   | 0.999984    | 1.001700       | mA          | >10      | 1     |       |        |
| 1.000000 mA @ 5 kHz      | 0.998300   | 1.000265    | 1.001700       | mA          | 6.3      | 16    |       |        |
| 1.000000 mA @ 10 kHz     | 0.995013   | 1.000560    | 1.004987       | mA          | 3.47#    | 11    |       |        |
| 10.00000 mA @ 20 Hz      | 9.98300    | 9.99528     | 10.01700       | mA          | 10.0     | 28    |       |        |
| 10.00000 mA @ 45 Hz      | 9.98300    | 9.99990     | 10.01700       | mA          | >10      | 1     |       |        |
| 10.00000 mA @ 5 kHz      | 9.98300    | 10.00167    | 10.01700       | mA          | 7.7      | 10    |       |        |
| 10.00000 mA @ 10 kHz     | 9.94970    | 10.00290    | 10.05030       | mA          | 4.0      | 6     |       |        |
| 100.0000 mA @ 20 Hz      | 99.8300    | 99.9567     | 100.1700       | mA          | 10.0     | 26    |       |        |
| 100.0000 mA @ 45 Hz      | 99.8300    | 100.0027    | 100.1700       | mA          | >10      | 2     |       |        |
| 100.0000 mA @ 5 kHz      | 99.8300    | 100.0353    | 100.1700       | mA          | 8.5      | 21    |       |        |
| 100.0000 mA @ 10 kHz     | 99.4800    | 100.0627    | 100.5200       | mA          | 5.5      | 12    |       |        |
| 1.000000 A @ 40 Hz       | 0.998300   | 0.999954    | 1.001700       | A           | 6.8      | 3     |       |        |
| 1.000000 A @ 5 kHz       | 0.998357   | 1.000907    | 1.001643       | A           | 3.95#    | 55    |       |        |
| AC Volts                 |            |             |                |             |          |       |       |        |
| 10.00000 mV @ 10 Hz      | 9.997800   | 9.97760     | 9.99878        | mV          | 7.2      | 5     |       |        |
| 10.00000 mV @ 40 Hz      | 9.997700   | 9.99328     | 9.99933        | mV          | 2.94#    | 14    |       |        |
| 10.00000 mV @ 100 kHz    | 9.998400   | 9.99398     | 9.99897        | mV          | 2.94#    | 13    |       |        |
| 10.00000 mV @ 500 kHz    | 9.998800   | 9.98770     | 9.99729        | mV          | 4.1      | 14    |       |        |
| 10.00000 mV @ 1000 kHz   | 10.001500  | 9.95039     | 9.98880        | mV          | 10.05261 | >10   | 25    |        |
| 10.00000 mV @ 3000 kHz   | 9.999500   | 9.95752     | 9.98451        | mV          | 10.40148 | >10   | 29    |        |
| 100.00000 mV @ 10 Hz     | 99.99400   | 99.7920     | 99.9914        | mV          | 100.1960 | >10   | 1     |        |
| 100.00000 mV @ 40 Hz     | 99.99360   | 99.9466     | 99.9962        | mV          | 100.0406 | >10   | 6     |        |
| 100.00000 mV @ 20 kHz    | 99.99500   | 99.9480     | 99.9987        | mV          | 100.0420 | >10   | 11    |        |
| 100.00000 mV @ 50 kHz    | 99.99490   | 99.8929     | 99.9937        | mV          | 100.0969 | >10   | 1     |        |
| 100.00000 mV @ 100 kHz   | 99.99750   | 99.7955     | 99.9850        | mV          | 100.1995 | >10   | 6     |        |
| 100.00000 mV @ 300 kHz   | 100.00640  | 98.9963     | 99.9423        | mV          | 101.0165 | >10   | 6     |        |
| 1.000000 V @ 10 Hz       | 1.0000200  | 0.998000    | 1.000062       | V           | 1.002040 | >10   | 2     |        |
| 1.000000 V @ 40 Hz       | 0.9999989  | 0.999529    | 1.000040       | V           | 1.000469 | >10   | 9     |        |
| 1.000000 V @ 20 kHz      | 0.9999984  | 0.999528    | 0.999971       | V           | 1.000468 | >10   | 6     |        |
| 1.000000 V @ 50 kHz      | 1.0000149  | 0.998995    | 1.000070       | V           | 1.001035 | >10   | 5     |        |
| 1.000000 V @ 100 kHz     | 1.0000389  | 0.998019    | 1.000195       | V           | 1.002059 | >10   | 8     |        |
| 1.000000 V @ 300 kHz     | 1.0003754  | 0.990272    | 1.001898       | V           | 1.010479 | >10   | 15    |        |
| 10.000000 V @ 10 Hz      | 10.000108  | 9.97991     | 10.000036      | V           | 10.02031 | >10   | 1     |        |
| 10.000000 V @ 40 Hz      | 9.999949   | 9.99525     | 10.000038      | V           | 10.00465 | >10   | 9     |        |
| 10.000000 V @ 20 kHz     | 10.000001  | 9.99530     | 9.99975        | V           | 10.00470 | >10   | 5     |        |
| 10.000000 V @ 50 kHz     | 10.000081  | 9.98988     | 10.00058       | V           | 10.01028 | >10   | 5     |        |

Agilent 3458A Asset # 6652541  
Calibration Date: 11/29/2017 09:53:55

Primary Electrical Lab TUR Report version 06/14/17

Page 2 of 3

Page 5 of 8  
6652541\_11726859

# PRIMARY STANDARDS LABORATORY

Sandia National Laboratories, Albuquerque, New Mexico 87185-0665

## Test Results

| Test Description       | True Value | Lower Limit | Measured Value | Upper Limit | Units | TUR | % Tol | Status |
|------------------------|------------|-------------|----------------|-------------|-------|-----|-------|--------|
| 10.00000 V @ 100 kHz   | 10.000453  | 9.98025     | 9.99993        | 10.02065    | V     | >10 | 3     |        |
| 10.00000 V @ 300 kHz   | 10.004297  | 9.90325     | 10.00300       | 10.10534    | V     | >10 | 1     |        |
| 100.00000 V @ 10 Hz    | 100.00065  | 99.7986     | 100.0055       | 100.2027    | V     | >10 | 2     |        |
| 100.00000 V @ 40 Hz    | 99.99960   | 99.9526     | 100.0038       | 100.0466    | V     | >10 | 9     |        |
| 100.00000 V @ 20 kHz   | 100.00240  | 99.9554     | 100.0023       | 100.0494    | V     | >10 | 0     |        |
| 100.00000 V @ 50 kHz   | 100.00624  | 99.9042     | 100.0144       | 100.1082    | V     | >10 | 8     |        |
| 100.00000 V @ 100 kHz  | 100.01079  | 99.8088     | 100.0147       | 100.2128    | V     | >10 | 2     |        |
| 100.00000 V @ 200 kHz  | 100.06064  | 99.0500     | 100.0514       | 101.0712    | V     | >10 | 1     |        |
| 700.00000 V @ 40 Hz    | 700.01210  | 699.4321    | 700.0015       | 700.5921    | V     | >10 | 2     |        |
| 700.00000 V @ 20 kHz   | 700.00580  | 699.4258    | 699.7836       | 700.5858    | V     | >10 | 38    |        |
| FREQUENCY              |            |             |                |             |       |     |       |        |
| 10.00000 Hz @ 1 V      |            | 9.995000    | 10.000139      | 10.005000   | Hz    | >10 | 3     |        |
| 40.00000 Hz @ 1 V      |            | 39.996000   | 40.000503      | 40.004000   | Hz    | >10 | 13    |        |
| 100.00000 Hz @ 1 V     |            | 99.990000   | 100.001152     | 100.010000  | Hz    | >10 | 12    |        |
| 1000.00000 Hz @ 1 V    |            | 999.90000   | 1000.00887     | 1000.10000  | Hz    | >10 | 9     |        |
| 10000.00000 Hz @ 1 V   |            | 9999.00000  | 10000.08774    | 10001.00000 | Hz    | >10 | 9     |        |
| 20000.00000 Hz @ 1 V   |            | 19998.00000 | 20000.17738    | 20002.00000 | Hz    | >10 | 9     |        |
| 50000.00000 Hz @ 1 V   |            | 49995.00000 | 50000.43868    | 50005.00000 | Hz    | >10 | 9     |        |
| 100000.00000 kHz @ 1 V |            | 99.990000   | 100.000877     | 100.010000  | kHz   | >10 | 9     |        |
| 500.00000 kHz @ 1 V    |            | 499.950000  | 500.004435     | 500.050000  | kHz   | >10 | 9     |        |
| 1.000000 MHz @ 1 V     |            | 0.9999000   | 1.00000088     | 1.0001000   | MHz   | >10 | 9     |        |
| 2.000000 MHz @ 1 V     |            | 1.9998000   | 2.0000177      | 2.0002000   | MHz   | >10 | 9     |        |
| 4.000000 MHz @ 1 V     |            | 3.9996000   | 4.0000355      | 4.0004000   | MHz   | >10 | 9     |        |
| 6.000000 MHz @ 1 V     |            | 5.9994000   | 6.0000532      | 6.0006000   | MHz   | >10 | 9     |        |
| 8.000000 MHz @ 1 V     |            | 7.9992000   | 8.0000702      | 8.0008000   | MHz   | >10 | 9     |        |
| 10.000000 MHz @ 1 V    |            | 9.9990000   | 10.0000877     | 10.0010000  | MHz   | >10 | 9     |        |

\*\*\*\*\* End of Test Results \*\*\*\*\*

**PRIMARY STANDARDS  
LABORATORY**

Sandia National Laboratories, Albuquerque, New Mexico 87185-0665

**Limitations**

PSL specifications are larger than manufacturer's specifications reported in Factory User Manual. This is a limitation of the PSL.

**Equipment (Standard) Used**

| <u>Asset #</u> | <u>Description</u>       | <u>Model #</u> | <u>Expires</u>    |
|----------------|--------------------------|----------------|-------------------|
| 6664631        | Calibrator,Multifunction | 5730A          | April 25, 2018    |
| 6651332        | Generator,Function       | 33250A         | February 16, 2018 |
| 20563          | Standard,Measurement,AC  | 5790A          | October 10, 2018  |
| 20174          | Amplifier                | 5725A          | August 11, 2018   |
| 11123          | Resistor,Standard        | 5155-9         | May 10, 2018      |

## PRIMARY STANDARDS LABORATORY

Sandia National Laboratories, Albuquerque, New Mexico 87185-0665

### Traceability

Values and the associated uncertainties reported are traceable to the SI through one of more of the following:

1. Reference standards whose values are disseminated by the PSL and are traceable to National Institute of Standards and Technology (NIST) or, where appropriate, to the national metrological institute of another nation participating in the CIPM MRA;
2. Reference standards whose values are disseminated by a laboratory that has demonstrated competence, measurement capability, and traceability for those values;
3. The accepted value(s) of fundamental physical phenomena (intrinsic standards);
4. Ratio(s) or other non-maintained standards established by either a self-calibration and/or a direct calibration technique;
5. Standards maintained and disseminated in special cases and where warranted, such as consensus standards where no national or international standards exist.

*NOTE 1: This certificate or report shall not be reproduced except in full, without the advance written approval of the laboratory.*

*NOTE 2: The as received condition of the standard, set of standards, or measurement equipment described herein was as expected, unless otherwise noted in the body of the certificate or report.*

*NOTE 3: The presence of names and titles under "Authorization" are properly authenticated electronic signatures conforming to the equivalent identification signatory requirements of ISO 17025:2005 5.10.2.j.*

### Authorization

Calibrated By:

Chance, Jason  
Metrologist

Approved By:

Johnson, Raegan Lynn  
QA Representative

### End-of-Document

Page 8 of 8  
6652541\_11726859

# Hewlett Packard 3458A # 2823A08050

## PRIMARY STANDARDS LABORATORY

Sandia National Laboratories, Albuquerque, New Mexico 87185-0665

### **Limited Calibration Certificate**

Document #: 20006\_11719425

#### **Item Identification**

|                   |                                      |
|-------------------|--------------------------------------|
| Asset Number      | 20006                                |
| Description       | Meter,Multifunction                  |
| Model             | 3458A                                |
| Serial #          | 2823A08050                           |
| Manufacturer      | Hewlett Packard Co                   |
| Customer Asset Id | N/A                                  |
| Purchase Order    | N/A                                  |
| Customer          | Ground-Based Monitoring R&E<br>06752 |

|                             |                                   |
|-----------------------------|-----------------------------------|
| Custodian                   | Slad, George William              |
| Location                    | SNLN/T/1/758/1044                 |
| Date of Receipt             | July 27, 2017                     |
| Dates Tested (Start – End)  | August 10, 2017 - August 10, 2017 |
| Date Approved               | August 11, 2017                   |
| Calibration Expiration Date | August 11, 2018                   |

#### **Calibration Description**

|                             |                  |
|-----------------------------|------------------|
| Calibration Lab             | PSL-ELECTRICAL   |
| Calibration Procedure, rev. | HP 3458A, 4.2    |
| Temperature                 | 23 ± 2 deg C     |
| Humidity                    | 40 ± 20 %RH      |
| Barometric Pressure         | NA mmHg          |
| As Found Condition          | PASS             |
| As Left Condition           | PASS             |
| Software Used               | MET/CAL 8.3.2.37 |
| Tamper Seal                 | None             |

# PRIMARY STANDARDS LABORATORY

Sandia National Laboratories, Albuquerque, New Mexico 87185-0665

## Calibration Specifications and Results

This instrument (Agilent/HP 3458A) was tested using the SNL Primary Standards Laboratory's Multimeter/Multifunction Station MMS #9300 and is certified to be within the following LIMITED specifications:

### DC Volts:

± (11 ppm of reading + 10 ppm of range) 100 mV range  
± (10 ppm of reading + 1 ppm of range) 1 V range  
± (10 ppm of reading + 0.2 ppm of range) 10 V range  
± (12 ppm of reading + 0.3 ppm of range) 100 V range  
± (12 ppm of reading + 0.1 ppm of range) 1000 V range

### AC Volts:

10 Hz to 40 Hz ± (0.2% of reading + 0.002% of range) 10 mV to 100 V ranges  
40 Hz to 20 kHz ± (0.045% of reading + 0.002% of range) 10 mV to 100 V ranges  
40 Hz to 20 kHz ± (0.08% of reading + 0.002% of range) 1000 V range  
20 kHz to 50 kHz ± (0.1% of reading + 0.011% of range) 10 mV range  
20 kHz to 50 kHz ± (0.1% of reading + 0.002% of range) 100 mV to 100 V ranges  
50 kHz to 100 kHz ± (0.5% of reading + 0.011% of range) 10 mV range  
50 kHz to 100 kHz ± (0.2% of reading + 0.002% of range) 100 mV to 100 V ranges  
100 kHz to 300 kHz ± (4% of reading + 0.02% of range) 10 mV range  
100 kHz to 300 kHz ± (1% of reading + 0.01% of range) 100 mV to 10 V ranges  
100 kHz to 200 kHz ± (1% of reading + 0.01% of range) 100 V range

NOTE: 700 V RMS maximum on 1000 VAC range

### 4-wire Ohms:

± (100 ppm of reading + 10 ppm of range) 10 Ω range  
± (50 ppm of reading + 5 ppm of range) 100 Ω range  
± (50 ppm of reading + 1 ppm of range) 1 KΩ to 100 KΩ ranges  
± (100 ppm of reading + 2 ppm of range) 1 MΩ range  
± (200 ppm of reading + 10 ppm of range) 10 MΩ range  
± (500 ppm of reading + 10 ppm of range) 100 MΩ range  
± (2% of reading + 10 ppm of range) 1 GΩ range

### DC Current

± (10% of reading + 0.01% of range) 100 nA range  
± (3.0% of reading + 0.01% of range) 1 μA range  
± (0.3% of reading + 0.001% of range) 10 μA  
± (0.04% of reading + 0.01% of range) 100 μA and 1 A ranges  
± (0.02% of reading + 0.005% of range) 1 mA, 10 mA, and 100 mA ranges

### AC Current:

Page 2 of 8  
20006\_11719425

## PRIMARY STANDARDS LABORATORY

Sandia National Laboratories, Albuquerque, New Mexico 87185-0665

20 Hz to 1 kHz  $\pm$  (0.15% of reading + 0.02% of range) 100  $\mu$ A range  
20 Hz to 5 kHz  $\pm$  (0.15% of reading + 0.02% of range) 1 mA to 100 mA ranges  
40 Hz to 5 kHz  $\pm$  (0.15% of reading + 0.02% of range) 1 A range  
5 kHz to 10 kHz  $\pm$  (0.5% of reading + 0.02% of range) 1 mA to 100 mA ranges

Frequency:

10 Hz to 40 Hz  $\pm$  0.05% of reading  
40 Hz to 10 MHz  $\pm$  0.01% of reading

Note 1: Measurement setup configuration is defined in manufacturer's accuracy statement footnotes.

Note 2: Additional errors due to deviations in setup configuration shall be added by the user to the specifications in this certificate.

Note 3: Contact the Primary Standards Laboratory for assistance with uncertainty calculations as needed.

# PRIMARY STANDARDS LABORATORY

Sandia National Laboratories, Albuquerque, New Mexico 87185-0665



## Calibration Data Report

### Primary Electrical Lab

Unit Under Test: HP 3458A Multimeter  
Asset Number: 20006  
Serial Number: 2823A08050  
Procedure Name: HP 3458A  
Revision: 4.2  
Calibrated By: Jason Chance

Test Result: PASS  
Test Type: FOUND-LEFT  
Calibration Date: 8/10/2017  
Temperature: 23 °C  
Humidity: 40 %

- Test Type is defined as follows:
  - AS-FOUND Data collected prior to adjustment and/or repair
  - AS-LEFT Data collected after adjustment and/or repair
  - FOUND-LEFT Data collected without adjustment and/or repair
- Test Uncertainty Ratio (TUR) is defined as:
  - TUR = Specification Limit / Uncertainty of the Measurement
  - A hash (#) appended to the TUR indicates a guardbanded measurement
  - An asterisk (\*) appended to the TUR indicates use of a Test Accuracy Ratio (TAR) instead of a TUR
    - TAR = Specification Limit / Accuracy of the Standard

#### COMMENTS:

##### Standards Used

| Asset # | Description                                          | Due Date  |
|---------|------------------------------------------------------|-----------|
| 11123   | Keithley 5155-9 1 Gohm resistor                      | 5/10/2018 |
| 20174   | Fluke 5725A Amplifier                                | 8/10/2017 |
| 20563   | FLUKE 5790A CALIBRATOR                               | 9/19/2017 |
| 6651332 | Agilent 33250A Function/Arbitrary Waveform Generator | 2/15/2018 |
| 6664631 | Fluke 5730A Multifunction Calibrator                 | 9/8/2017  |

##### Test Results

| Test Description | True Value | Lower Limit | Measured Value | Upper Limit | Units | TUR | % Tol | Status |
|------------------|------------|-------------|----------------|-------------|-------|-----|-------|--------|
| <hr/>            |            |             |                |             |       |     |       |        |

MMS: 9300

SOFTWARE USED: Met/Cal Version 8.3.2

##### CALIBRATION MANUAL:

Agilent Technologies 3458A Multimeter  
Calibration Manual, Edition 6, October 2013  
PN 03458-90017

##### LIMITED CALIBRATION:

PSL specifications are larger than manufacturer's  
specifications reported in Factory User Manual.  
This is a limitation of the PSL.

The internal temperature of the 3458A is 38.5 deg.C

DC Volts

|               |             |             |             |    |       |    |
|---------------|-------------|-------------|-------------|----|-------|----|
| 100.00000 mV  | 99.99812    | 99.99994    | 100.00188   | mV | 2.26# | 3  |
| -100.00000 mV | -100.00188  | -99.99991   | -99.99812   | mV | 2.26# | 5  |
| 1.0000000 V   | 0.99998965  | 1.00000025  | 1.00001035  | V  | 2.97# | 2  |
| -1.0000000 V  | -1.00001035 | -1.00000073 | -0.99998965 | V  | 2.97# | 7  |
| -10.000000 V  | -10.0000987 | -10.0000090 | -9.9999013  | V  | 3.92# | 9  |
| -5.0000000 V  | -5.0000501  | -5.0000052  | -4.9999499  | V  | 3.71# | 10 |
| -2.0000000 V  | -2.0000209  | -2.0000008  | -1.9999791  | V  | 3.24# | 4  |
| 2.0000000 V   | 1.9999791   | 2.0000002   | 2.0000209   | V  | 3.24# | 1  |
| 5.0000000 V   | 4.9999499   | 5.0000040   | 5.0000501   | V  | 3.71# | 8  |
| 10.000000 V   | 9.9999013   | 10.0000064  | 10.0000987  | V  | 3.92# | 7  |
| 100.00000 V   | 99.998821   | 100.000257  | 100.001179  | V  | 3.51# | 22 |

HP 3458A Asset # 20006

Calibration Date: 8/10/2017 07:24:25

Primary Electrical Lab TUR Report version 06/14/17

Page 1 of 3

Page 4 of 8  
20006\_11719425

# PRIMARY STANDARDS LABORATORY

Sandia National Laboratories, Albuquerque, New Mexico 87185-0665

## Test Results

| Test Description         | True Value | Lower Limit | Measured Value | Upper Limit | Units     | TUR   | % Tol | Status |
|--------------------------|------------|-------------|----------------|-------------|-----------|-------|-------|--------|
| 1000.00000 V             | 999.98900  | 1000.00211  |                | 1000.01100  | V         | 2.42# | 19    |        |
| DC Current               |            |             |                |             |           |       |       |        |
| 100.000 nA               | 91.597     | 100.005     | 108.403        | nA          | 1.85#     | 0     |       |        |
| 1.000000 $\mu$ A         | 0.969900   | 1.000039    | 1.030100       | $\mu$ A     | 5.5       | 0     |       |        |
| 10.000000 $\mu$ A        | 9.969900   | 9.999885    | 10.030100      | $\mu$ A     | 5.2       | 0     |       |        |
| 100.00000 $\mu$ A        | 99.95000   | 99.99907    | 100.05000      | $\mu$ A     | 5.7       | 2     |       |        |
| 1.0000000 mA             | 0.9997500  | 0.9999976   | 1.0002500      | mA          | 7.6       | 1     |       |        |
| 10.000000 mA             | 9.997500   | 10.000009   | 10.002500      | mA          | 8.1       | 0     |       |        |
| 100.00000 mA             | 99.97500   | 100.00107   | 100.02500      | mA          | 6.1       | 4     |       |        |
| 1.0000000 A              | 0.9995000  | 1.0000137   | 1.0005000      | A           | 7.6       | 3     |       |        |
| Resistance               |            |             |                |             |           |       |       |        |
| 10.00000 $\Omega$        | 10.000270  | 9.99917     | 10.00020       | 10.00137    | $\Omega$  | 5.8   | 6     |        |
| 100.0000 $\Omega$        | 100.003620 | 99.99812    | 100.00351      | 100.00912   | $\Omega$  | 6.5   | 2     |        |
| 1.0000000 $k\Omega$      | 0.99998460 | 0.9999336   | 0.9999827      | 1.0000356   | $k\Omega$ | 7.3   | 4     |        |
| 10.000000 $k\Omega$      | 9.9998320  | 9.999322    | 9.999833       | 10.000342   | $k\Omega$ | 7.3   | 0     |        |
| 100.00000 $k\Omega$      | 100.000630 | 99.99553    | 100.00076      | 100.00573   | $k\Omega$ | 6.0   | 3     |        |
| 1.0000000 $M\Omega$      | 0.99996060 | 0.9999856   | 0.9999622      | 1.0000626   | $M\Omega$ | 7.3   | 2     |        |
| 10.000000 $M\Omega$      | 9.9982380  | 9.996138    | 9.998227       | 10.000338   | $M\Omega$ | 7.2   | 1     |        |
| 100.00000 $M\Omega$      | 100.008520 | 99.95752    | 100.01111      | 100.05952   | $M\Omega$ | 6.0   | 5     |        |
| 1.00192000 $G\Omega$     | 0.9818716  | 1.0014771   | 1.0219684      | $G\Omega$   | >10       | 2     |       |        |
| AC Current               |            |             |                |             |           |       |       |        |
| 100.0000 $\mu$ A @ 20 Hz | 99.8300    | 99.9451     | 100.1700       | $\mu$ A     | 7.4       | 32    |       |        |
| 100.0000 $\mu$ A @ 45 Hz | 99.8300    | 99.9885     | 100.1700       | $\mu$ A     | 9.4       | 7     |       |        |
| 100.0000 $\mu$ A @ 1 kHz | 99.8300    | 99.9897     | 100.1700       | $\mu$ A     | 9.4       | 6     |       |        |
| 1.000000 mA @ 20 Hz      | 0.998300   | 0.999464    | 1.001700       | mA          | 10.0      | 32    |       |        |
| 1.000000 mA @ 45 Hz      | 0.998300   | 0.999910    | 1.001700       | mA          | >10       | 5     |       |        |
| 1.000000 mA @ 5 kHz      | 0.998300   | 1.000174    | 1.001700       | mA          | 6.3       | 10    |       |        |
| 1.000000 mA @ 10 kHz     | 0.995013   | 1.000350    | 1.004987       | mA          | 3.47#     | 7     |       |        |
| 10.000000 mA @ 20 Hz     | 9.98300    | 9.99472     | 10.01700       | mA          | 10.0      | 31    |       |        |
| 10.000000 mA @ 45 Hz     | 9.98300    | 9.99910     | 10.01700       | mA          | >10       | 5     |       |        |
| 10.000000 mA @ 5 kHz     | 9.98300    | 10.00114    | 10.01700       | mA          | 7.7       | 7     |       |        |
| 10.000000 mA @ 10 kHz    | 9.94970    | 10.00212    | 10.05030       | mA          | 4.0       | 4     |       |        |
| 100.0000 mA @ 20 Hz      | 99.8300    | 99.9464     | 100.1700       | mA          | 10.0      | 32    |       |        |
| 100.0000 mA @ 45 Hz      | 99.8300    | 99.9928     | 100.1700       | mA          | >10       | 4     |       |        |
| 100.0000 mA @ 5 kHz      | 99.8300    | 100.0242    | 100.1700       | mA          | 8.5       | 14    |       |        |
| 100.0000 mA @ 10 kHz     | 99.4800    | 100.0475    | 100.5200       | mA          | 5.5       | 9     |       |        |
| 1.000000 A @ 40 Hz       | 0.998300   | 0.999907    | 1.001700       | A           | 6.5       | 5     |       |        |
| 1.0000000 A @ 5 kHz      | 0.998357   | 1.000915    | 1.001643       | A           | 3.95#     | 56    |       |        |
| AC Volts                 |            |             |                |             |           |       |       |        |
| 10.00000 mV @ 10 Hz      | 10.006000  | 9.98579     | 9.99875        | 10.02621    | mV        | 7.2   | 36    |        |
| 10.00000 mV @ 40 Hz      | 9.998000   | 9.99358     | 9.99851        | 10.00242    | mV        | 2.94# | 12    |        |
| 10.00000 mV @ 50 kHz     | 9.997000   | 9.99258     | 9.99744        | 10.00142    | mV        | 2.94# | 10    |        |
| 10.00000 mV @ 50 kHz     | 9.997600   | 9.98650     | 9.99428        | 10.00870    | mV        | 4.1   | 30    |        |
| 10.00000 mV @ 100 kHz    | 10.000100  | 9.94900     | 9.97982        | 10.05120    | mV        | >10   | 40    |        |
| 10.00000 mV @ 300 kHz    | 9.997300   | 9.95941     | 9.81902        | 10.39919    | mV        | >10   | 44    |        |
| 100.00000 mV @ 10 Hz     | 100.07250  | 99.8704     | 99.9996        | 100.2746    | mV        | >10   | 36    |        |
| 100.00000 mV @ 40 Hz     | 99.99460   | 99.9476     | 99.9954        | 100.0416    | mV        | >10   | 2     |        |
| 100.00000 mV @ 20 kHz    | 99.97840   | 99.9314     | 99.9921        | 100.0254    | mV        | >10   | 29    |        |
| 100.00000 mV @ 50 kHz    | 99.98210   | 99.8801     | 99.9879        | 100.0841    | mV        | >10   | 6     |        |
| 100.00000 mV @ 100 kHz   | 99.98530   | 99.7833     | 99.9600        | 100.1873    | mV        | >10   | 13    |        |
| 100.00000 mV @ 300 kHz   | 99.98880   | 98.9789     | 99.8345        | 100.9987    | mV        | >10   | 15    |        |
| 1.000000 V @ 10 Hz       | 0.9999963  | 0.997976    | 1.000029       | 1.002016    | V         | >10   | 2     |        |
| 1.000000 V @ 40 Hz       | 0.9999942  | 0.999524    | 1.000011       | 1.000464    | V         | >10   | 4     |        |
| 1.000000 V @ 20 kHz      | 0.9999962  | 0.999526    | 0.999953       | 1.000466    | V         | >10   | 9     |        |
| 1.000000 V @ 50 kHz      | 1.0000174  | 0.998997    | 0.999985       | 1.001037    | V         | >10   | 3     |        |
| 1.0000000 V @ 100 kHz    | 1.0000339  | 0.998014    | 1.000056       | 1.002054    | V         | >10   | 1     |        |
| 1.0000000 V @ 300 kHz    | 1.0003704  | 0.990267    | 1.001576       | 1.010474    | V         | >10   | 12    |        |
| 10.000000 V @ 10 Hz      | 9.999919   | 9.97972     | 10.00059       | 10.02012    | V         | >10   | 3     |        |
| 10.000000 V @ 40 Hz      | 9.999991   | 9.99529     | 10.00029       | 10.00469    | V         | >10   | 6     |        |
| 10.000000 V @ 20 kHz     | 10.000049  | 9.99535     | 9.99963        | 10.00475    | V         | >10   | 9     |        |
| 10.000000 V @ 50 kHz     | 10.000228  | 9.99003     | 9.99855        | 10.01043    | V         | >10   | 17    |        |

HP 3458A Asset # 20006  
Calibration Date: 8/10/2017 07:24:25

Primary Electrical Lab TUR Report version 06/14/17

Page 2 of 3

# PRIMARY STANDARDS LABORATORY

Sandia National Laboratories, Albuquerque, New Mexico 87185-0665

## Test Results

| Test Description       | True Value | Lower Limit | Measured Value | Upper Limit | Units | TUR | % Tol | Status |
|------------------------|------------|-------------|----------------|-------------|-------|-----|-------|--------|
| 10.00000 V @ 100 kHz   | 10.000649  | 9.98045     | 9.99453        | 10.02085    | V     | >10 | 30    |        |
| 10.00000 V @ 300 kHz   | 10.003541  | 9.90251     | 9.97991        | 10.10458    | V     | >10 | 23    |        |
| 100.00000 V @ 10 Hz    | 100.00001  | 99.7980     | 100.0038       | 100.2020    | V     | >10 | 2     |        |
| 100.00000 V @ 40 Hz    | 100.00021  | 99.9532     | 100.0002       | 100.0472    | V     | >10 | 0     |        |
| 100.00000 V @ 20 kHz   | 100.00242  | 99.9554     | 99.9961        | 100.0494    | V     | >10 | 14    |        |
| 100.00000 V @ 50 kHz   | 100.00743  | 99.9054     | 99.9950        | 100.1094    | V     | >10 | 12    |        |
| 100.00000 V @ 100 kHz  | 100.01261  | 99.8106     | 99.9763        | 100.2146    | V     | >10 | 18    |        |
| 100.00000 V @ 200 kHz  | 100.06311  | 99.0525     | 99.9860        | 101.0737    | V     | >10 | 8     |        |
| 700.00000 V @ 40 Hz    | 700.02270  | 699.4427    | 699.9122       | 700.6027    | V     | >10 | 19    |        |
| 700.00000 V @ 20 kHz   | 700.03000  | 699.4500    | 699.8439       | 700.6100    | V     | >10 | 32    |        |
| FREQUENCY              |            |             |                |             |       |     |       |        |
| 10.00000 Hz @ 1 V      |            | 9.995000    | 9.999835       | 10.005000   | Hz    | >10 | 3     |        |
| 40.00000 Hz @ 1 V      |            | 39.996000   | 39.999894      | 40.004000   | Hz    | >10 | 3     |        |
| 100.00000 Hz @ 1 V     |            | 99.990000   | 100.000125     | 100.010000  | Hz    | >10 | 1     |        |
| 1000.00000 Hz @ 1 V    |            | 999.90000   | 1000.00067     | 1000.10000  | Hz    | >10 | 1     |        |
| 10000.00000 Hz @ 1 V   |            | 9999.00000  | 10000.00668    | 10001.00000 | Hz    | >10 | 1     |        |
| 20000.00000 Hz @ 1 V   |            | 19998.00000 | 20000.01336    | 20002.00000 | Hz    | >10 | 1     |        |
| 50000.00000 Hz @ 1 V   |            | 49995.00000 | 50000.03338    | 50005.00000 | Hz    | >10 | 1     |        |
| 100000.00000 kHz @ 1 V |            | 99.990000   | 100.000057     | 100.010000  | kHz   | >10 | 1     |        |
| 500.00000 kHz @ 1 V    |            | 499.950000  | 500.000286     | 500.050000  | kHz   | >10 | 1     |        |
| 1.000000 MHz @ 1 V     |            | 0.9999000   | 1.0000007      | 1.0001000   | MHz   | >10 | 1     |        |
| 2.000000 MHz @ 1 V     |            | 1.9998000   | 2.0000011      | 2.0002000   | MHz   | >10 | 1     |        |
| 4.000000 MHz @ 1 V     |            | 3.9996000   | 4.0000023      | 4.0004000   | MHz   | >10 | 1     |        |
| 6.000000 MHz @ 1 V     |            | 5.9994000   | 6.0000036      | 6.0006000   | MHz   | >10 | 1     |        |
| 8.000000 MHz @ 1 V     |            | 7.9992000   | 8.0000053      | 8.0008000   | MHz   | >10 | 1     |        |
| 10.000000 MHz @ 1 V    |            | 9.9990000   | 10.0000057     | 10.0010000  | MHz   | >10 | 1     |        |

\*\*\*\*\* End of Test Results \*\*\*\*\*

## PRIMARY STANDARDS

### LABORATORY

Sandia National Laboratories, Albuquerque, New Mexico 87185-0665

#### **Limitations**

PSL specifications are larger than manufacturer's specifications reported in Factory User Manual. This is a limitation of the PSL.

#### **Equipment (Standard) Used**

| <u>Asset #</u> | <u>Description</u>       | <u>Model</u> | <u>Expires</u>     |
|----------------|--------------------------|--------------|--------------------|
| 6651332        | Generator,Function       | 33250A       | February 16, 2018  |
| 20563          | Standard,Measurement,AC  | 5790A        | September 19, 2017 |
| 20174          | Amplifier                | 5725A        | August 10, 2017    |
| 6664631        | Calibrator,Multifunction | 5730A        | April 25, 2018     |
| 11123          | Resistor,Standard        | 5155-9       | May 10, 2018       |

# PRIMARY STANDARDS LABORATORY

Sandia National Laboratories, Albuquerque, New Mexico 87185-0665

## Traceability

Values and the associated uncertainties supplied by the Primary Standards Lab (PSL) are traceable to the SI through one or more of the following:

1. Reference standards whose values are disseminated by the National Institute of Standards and Technology (United States of America) or, where appropriate, to the national metrological institute of another nation participating in the CIPM MRA;
2. Reference standards whose values are disseminated by a laboratory that has demonstrated competence, measurement capability, and traceability for those values;
3. The accepted value(s) of fundamental physical phenomena (intrinsic standards);
4. Ratio(s) or other non-maintained standards established by either a self-calibration and/or a direct calibration technique;
5. Standards maintained and disseminated by the PSL in special cases and where warranted, such as consensus standards where no national or international standards exist;

*Note 1: This certificate or report shall not be reproduced except in full, without the advance written approval of the Primary Standards Lab at Sandia National Laboratories.*

*Note 2: The as received condition of the standard, set of standards, or measurement equipment described herein was as expected, unless otherwise noted in the body of the certificate or report.*

*Note 3: The presence of names and titles under "Authorization" are properly authenticated electronic signatures conforming to the equivalent identification signatory requirements of ISO 17025:2005 5.10.2.j.*

## Authorization

Calibrated By:

Chance, Jason  
Metrologist

Approved By:

Aragon, Steven J.  
Metrologist

## End-of-Document

# Hewlett Packard 3458A # 2823A10915

## PRIMARY STANDARDS LABORATORY

Sandia National Laboratories, Albuquerque, New Mexico 87185-0665

### **Limited Calibration Certificate**

Document #: 41628\_11719482

#### **Item Identification**

|                   |                                      |
|-------------------|--------------------------------------|
| Asset Number      | 41628                                |
| Description       | Meter,Multifunction                  |
| Model             | 3458A                                |
| Serial #          | 2823A10915                           |
| Manufacturer      | Hewlett Packard Co                   |
| Customer Asset Id | N/A                                  |
| Purchase Order    | N/A                                  |
| Customer          | Ground-Based Monitoring R&E<br>06752 |

|                             |                                   |
|-----------------------------|-----------------------------------|
| Custodian                   | Slad, George William              |
| Location                    | SNLN/TM1/758/1029                 |
| Date of Receipt             | July 27, 2017                     |
| Dates Tested (Start – End)  | August 09, 2017 - August 09, 2017 |
| Date Approved               | August 11, 2017                   |
| Calibration Expiration Date | August 11, 2018                   |

#### **Calibration Description**

|                             |                  |
|-----------------------------|------------------|
| Calibration Lab             | PSL-ELECTRICAL   |
| Calibration Procedure, rev. | HP 3458A, 4.2    |
| Temperature                 | 23 ± 2 deg C     |
| Humidity                    | 40 ± 20 %RH      |
| Barometric Pressure         | NA mmHg          |
| As Found Condition          | PASS             |
| As Left Condition           | PASS             |
| Software Used               | MET/CAL 8.3.2.37 |
| Tamper Seal                 | None             |

# PRIMARY STANDARDS LABORATORY

Sandia National Laboratories, Albuquerque, New Mexico 87185-0665

## Calibration Specifications and Results

This instrument (Agilent/HP 3458A) was tested using the SNL Primary Standards Laboratory's Multimeter/Multifunction Station MMS #9300 and is certified to be within the following LIMITED specifications:

### DC Volts:

± (11 ppm of reading + 10 ppm of range) 100 mV range  
± (10 ppm of reading + 1 ppm of range) 1 V range  
± (10 ppm of reading + 0.2 ppm of range) 10 V range  
± (12 ppm of reading + 0.3 ppm of range) 100 V range  
± (12 ppm of reading + 0.1 ppm of range) 1000 V range

### AC Volts:

10 Hz to 40 Hz ± (0.2% of reading + 0.002% of range) 10 mV to 100 V ranges  
40 Hz to 20 kHz ± (0.045% of reading + 0.002% of range) 10 mV to 100 V ranges  
40 Hz to 20 kHz ± (0.08% of reading + 0.002% of range) 1000 V range  
20 kHz to 50 kHz ± (0.1% of reading + 0.011% of range) 10 mV range  
20 kHz to 50 kHz ± (0.1% of reading + 0.002% of range) 100 mV to 100 V ranges  
50 kHz to 100 kHz ± (0.5% of reading + 0.011% of range) 10 mV range  
50 kHz to 100 kHz ± (0.2% of reading + 0.002% of range) 100 mV to 100 V ranges  
100 kHz to 300 kHz ± (4% of reading + 0.02% of range) 10 mV range  
100 kHz to 300 kHz ± (1% of reading + 0.01% of range) 100 mV to 10 V ranges  
100 kHz to 200 kHz ± (1% of reading + 0.01% of range) 100 V range

NOTE: 700 V RMS maximum on 1000 VAC range

### 4-wire Ohms:

± (100 ppm of reading + 10 ppm of range) 10 Ω range  
± (50 ppm of reading + 5 ppm of range) 100 Ω range  
± (50 ppm of reading + 1 ppm of range) 1 KΩ to 100 KΩ ranges  
± (100 ppm of reading + 2 ppm of range) 1 MΩ range  
± (200 ppm of reading + 10 ppm of range) 10 MΩ range  
± (500 ppm of reading + 10 ppm of range) 100 MΩ range  
± (2% of reading + 10 ppm of range) 1 GΩ range

### DC Current

± (10% of reading + 0.01% of range) 100 nA range  
± (3.0% of reading + 0.01% of range) 1 μA range  
± (0.3% of reading + 0.001% of range) 10 μA  
± (0.04% of reading + 0.01% of range) 100 μA and 1 A ranges  
± (0.02% of reading + 0.005% of range) 1 mA, 10 mA, and 100 mA ranges

### AC Current:

## PRIMARY STANDARDS LABORATORY

Sandia National Laboratories, Albuquerque, New Mexico 87185-0665

20 Hz to 1 kHz  $\pm$  (0.15% of reading + 0.02% of range) 100  $\mu$ A range  
20 Hz to 5 kHz  $\pm$  (0.15% of reading + 0.02% of range) 1 mA to 100 mA ranges  
40 Hz to 5 kHz  $\pm$  (0.15% of reading + 0.02% of range) 1 A range  
5 kHz to 10 kHz  $\pm$  (0.5% of reading + 0.02% of range) 1 mA to 100 mA ranges

Frequency:

10 Hz to 40 Hz  $\pm$  0.05% of reading  
40 Hz to 10 MHz  $\pm$  0.01% of reading

Note 1: Measurement setup configuration is defined in manufacturer's accuracy statement footnotes.

Note 2: Additional errors due to deviations in setup configuration shall be added by the user to the specifications in this certificate.

Note 3: Contact the Primary Standards Laboratory for assistance with uncertainty calculations as needed.

# PRIMARY STANDARDS LABORATORY

Sandia National Laboratories, Albuquerque, New Mexico 87185-0665

## Calibration Data Report

### Primary Electrical Lab



Unit Under Test: HP 3458A Multimeter  
Asset Number: 41628  
Serial Number: 2823A10915  
Procedure Name: HP 3458A  
Revision: 4.2  
Calibrated By: Jason Chance

Test Result: PASS  
Test Type: FOUND-LEFT  
Calibration Date: 8/9/2017  
Temperature: 23 °C  
Humidity: 40 %

- Test Type is defined as follows:
  - AS-FOUND Data collected prior to adjustment and/or repair
  - AS-LEFT Data collected after adjustment and/or repair
  - FOUND-LEFT Data collected without adjustment and/or repair
- Test Uncertainty Ratio (TUR) is defined as:
  - TUR = Specification Limit / Uncertainty of the Measurement
  - A hash (#) appended to the TUR indicates a guardbanded measurement
  - An asterisk (\*) appended to the TUR indicates use of a Test Accuracy Ratio (TAR) instead of a TUR
    - TAR = Specification Limit / Accuracy of the Standard

#### COMMENTS:

#### Standards Used

| Asset # | Description                                          | Due Date  |
|---------|------------------------------------------------------|-----------|
| 11123   | Keithley 5155-9 1 Gohm resistor                      | 5/10/2018 |
| 20174   | Fluke 5725A Amplifier                                | 8/10/2017 |
| 20563   | FLUKE 5790A CALIBRATOR                               | 9/19/2017 |
| 6651332 | Agilent 33250A Function/Arbitrary Waveform Generator | 2/15/2018 |
| 6664631 | Fluke 5730A Multifunction Calibrator                 | 9/8/2017  |

#### Test Results

| Test Description | True Value | Lower Limit | Measured Value | Upper Limit | Units | TUR | % Tol | Status |
|------------------|------------|-------------|----------------|-------------|-------|-----|-------|--------|
| <hr/>            |            |             |                |             |       |     |       |        |

MMS: 9300

SOFTWARE USED: Met/Cal Version 8.3.2

#### CALIBRATION MANUAL:

Agilent Technologies 3458A Multimeter  
Calibration Manual, Edition 6, October 2013  
PN 03458-90017

#### LIMITED CALIBRATION:

PSL specifications are larger than manufacturer's  
specifications reported in Factory User Manual.  
This is a limitation of the PSL.

The internal temperature of the 3458A is 36.1 deg.C

| DC Volts      | 99.99812    | 99.99976   | 100.00188   | mV | 2.26# | 13 |
|---------------|-------------|------------|-------------|----|-------|----|
| -100.00000 mV | -100.00188  | -99.99974  | -99.99812   | mV | 2.26# | 14 |
| 1.0000000 V   | 0.99998965  | 0.99999895 | 1.00001035  | V  | 2.97# | 10 |
| -1.0000000 V  | -1.00001035 | -0.9999926 | -0.99998965 | V  | 2.97# | 7  |
| -10.000000 V  | -10.0000987 | -9.9999912 | -9.9999013  | V  | 3.92# | 9  |
| -5.0000000 V  | -5.0000501  | -4.9999960 | -4.9999499  | V  | 3.71# | 8  |
| -2.0000000 V  | -2.0000209  | -1.9999976 | -1.9999791  | V  | 3.24# | 12 |
| 2.0000000 V   | 1.9999791   | 1.9999967  | 2.0000209   | V  | 3.24# | 16 |
| 5.0000000 V   | 4.9999499   | 4.9999953  | 5.0000501   | V  | 3.71# | 9  |
| 10.000000 V   | 9.9999013   | 9.9999894  | 10.0000987  | V  | 3.92# | 11 |
| 100.00000 V   | 99.998821   | 99.999960  | 100.001179  | V  | 3.51# | 3  |

HP 3458A Asset # 41628  
Calibration Date: 8/9/2017 05:29:47

Primary Electrical Lab TUR Report version 06/14/17

Page 1 of 3

Page 4 of 8  
41628\_11719482

# PRIMARY STANDARDS LABORATORY

Sandia National Laboratories, Albuquerque, New Mexico 87185-0665

## Test Results

| Test Description         | True Value | Lower Limit | Measured Value | Upper Limit | Units     | TUR   | % Tol | Status |
|--------------------------|------------|-------------|----------------|-------------|-----------|-------|-------|--------|
| 1000.00000 V             | 999.98900  | 999.99736   |                | 1000.01100  | V         | 2.42# | 24    |        |
| DC Current               |            |             |                |             |           |       |       |        |
| 100.000 nA               | 91.597     | 99.976      | 108.403        | nA          | 1.85#     | 0     |       |        |
| 1.000000 $\mu$ A         | 0.969900   | 0.999960    | 1.030100       | $\mu$ A     | 5.5       | 0     |       |        |
| 10.000000 $\mu$ A        | 9.969900   | 9.99844     | 10.030100      | $\mu$ A     | 5.2       | 1     |       |        |
| 100.00000 $\mu$ A        | 99.95000   | 99.99882    | 100.05000      | $\mu$ A     | 5.7       | 2     |       |        |
| 1.0000000 mA             | 0.9997500  | 0.9999961   | 1.0002500      | mA          | 7.6       | 2     |       |        |
| 10.000000 mA             | 9.997500   | 9.999991    | 10.002500      | mA          | 8.1       | 0     |       |        |
| 100.00000 mA             | 99.97500   | 100.00062   | 100.02500      | mA          | 6.1       | 2     |       |        |
| 1.0000000 A              | 0.9995000  | 1.0000213   | 1.0005000      | A           | 7.6       | 4     |       |        |
| Resistance               |            |             |                |             |           |       |       |        |
| 10.00000 $\Omega$        | 10.000270  | 9.99917     | 10.00021       | 10.00137    | $\Omega$  | 5.8   | 6     |        |
| 100.0000 $\Omega$        | 100.003620 | 99.99812    | 100.00318      | 100.00912   | $\Omega$  | 6.5   | 8     |        |
| 1.0000000 $k\Omega$      | 0.99998460 | 0.9999336   | 0.9999831      | 1.0000356   | $k\Omega$ | 7.3   | 3     |        |
| 10.000000 $k\Omega$      | 9.9998320  | 9.999322    | 9.999830       | 10.000342   | $k\Omega$ | 7.3   | 0     |        |
| 100.00000 $k\Omega$      | 100.000630 | 99.99553    | 100.00075      | 100.00573   | $k\Omega$ | 6.0   | 2     |        |
| 1.0000000 $M\Omega$      | 0.99996060 | 0.9998586   | 0.9999609      | 1.0000626   | $M\Omega$ | 7.3   | 0     |        |
| 10.000000 $M\Omega$      | 9.9982380  | 9.996138    | 9.998227       | 10.000338   | $M\Omega$ | 7.2   | 1     |        |
| 100.00000 $M\Omega$      | 100.008520 | 99.95752    | 100.01760      | 100.05952   | $M\Omega$ | 6.0   | 18    |        |
| 1.00192000 $G\Omega$     | 0.9818716  | 1.0024808   | 1.0219684      | 1.0219684   | $G\Omega$ | >10   | 3     |        |
| AC Current               |            |             |                |             |           |       |       |        |
| 100.0000 $\mu$ A @ 20 Hz | 99.8300    | 99.9346     | 100.1700       | $\mu$ A     | 7.4       | 39    |       |        |
| 100.0000 $\mu$ A @ 45 Hz | 99.8300    | 99.9808     | 100.1700       | $\mu$ A     | 9.4       | 11    |       |        |
| 100.0000 $\mu$ A @ 1 kHz | 99.8300    | 99.9828     | 100.1700       | $\mu$ A     | 9.4       | 10    |       |        |
| 1.000000 mA @ 20 Hz      | 0.998300   | 0.999488    | 1.001700       | mA          | 10.0      | 30    |       |        |
| 1.000000 mA @ 45 Hz      | 0.998300   | 0.999938    | 1.001700       | mA          | >10       | 4     |       |        |
| 1.000000 mA @ 5 kHz      | 0.998300   | 1.000172    | 1.001700       | mA          | 6.3       | 10    |       |        |
| 1.000000 mA @ 10 kHz     | 0.995013   | 1.000288    | 1.004987       | mA          | 3.47#     | 6     |       |        |
| 10.000000 mA @ 20 Hz     | 9.98300    | 9.99494     | 10.01700       | mA          | 10.0      | 30    |       |        |
| 10.000000 mA @ 45 Hz     | 9.98300    | 9.99944     | 10.01700       | mA          | >10       | 3     |       |        |
| 10.000000 mA @ 5 kHz     | 9.98300    | 10.00133    | 10.01700       | mA          | 7.7       | 8     |       |        |
| 10.000000 mA @ 10 kHz    | 9.94970    | 10.00200    | 10.05030       | mA          | 4.0       | 4     |       |        |
| 100.0000 mA @ 20 Hz      | 99.8300    | 99.9528     | 100.1700       | mA          | 10.0      | 28    |       |        |
| 100.0000 mA @ 45 Hz      | 99.8300    | 99.9995     | 100.1700       | mA          | >10       | 0     |       |        |
| 100.0000 mA @ 5 kHz      | 99.8300    | 100.0300    | 100.1700       | mA          | 8.5       | 18    |       |        |
| 100.0000 mA @ 10 kHz     | 99.4800    | 100.0495    | 100.5200       | mA          | 5.5       | 10    |       |        |
| 1.000000 A @ 40 Hz       | 0.998300   | 0.999896    | 1.001700       | A           | 6.5       | 6     |       |        |
| 1.000000 A @ 5 kHz       | 0.998357   | 1.001093    | 1.001643       | A           | 3.95#     | 67    |       |        |
| AC Volts                 |            |             |                |             |           |       |       |        |
| 10.00000 mV @ 10 Hz      | 10.006200  | 9.98599     | 9.99880        | 10.02641    | mV        | 7.2   | 37    |        |
| 10.00000 mV @ 40 Hz      | 9.998000   | 9.99358     | 9.99825        | 10.00242    | mV        | 2.94# | 6     |        |
| 10.00000 mV @ 20 kHz     | 9.997000   | 9.99258     | 9.99788        | 10.00142    | mV        | 2.94# | 20    |        |
| 10.00000 mV @ 50 kHz     | 9.997600   | 9.998650    | 9.999413       | 10.00870    | mV        | 4.1   | 31    |        |
| 10.00000 mV @ 100 kHz    | 9.94890    | 9.98216     | 10.05110       | mV          | >10       | 35    |       |        |
| 10.00000 mV @ 300 kHz    | 9.997300   | 9.95941     | 9.84587        | 10.39919    | mV        | >10   | 38    |        |
| 100.00000 mV @ 10 Hz     | 100.07170  | 99.8696     | 99.9998        | 100.2738    | mV        | >10   | 36    |        |
| 100.00000 mV @ 40 Hz     | 99.99470   | 99.9477     | 99.9957        | 100.0417    | mV        | >10   | 2     |        |
| 100.00000 mV @ 20 kHz    | 99.97850   | 99.9315     | 99.9969        | 100.0255    | mV        | >10   | 39    |        |
| 100.00000 mV @ 50 kHz    | 99.98210   | 99.8801     | 99.9912        | 100.0841    | mV        | >10   | 9     |        |
| 100.00000 mV @ 100 kHz   | 99.98540   | 99.7834     | 99.9719        | 100.1874    | mV        | >10   | 7     |        |
| 100.00000 mV @ 300 kHz   | 99.98800   | 98.9781     | 99.8645        | 100.9979    | mV        | >10   | 12    |        |
| 1.000000 V @ 10 Hz       | 0.9999928  | 0.997973    | 1.000036       | 1.002013    | V         | >10   | 2     |        |
| 1.000000 V @ 40 Hz       | 0.9999930  | 0.999523    | 1.000025       | 1.000463    | V         | >10   | 7     |        |
| 1.000000 V @ 20 kHz      | 0.9999961  | 0.999526    | 0.999969       | 1.000466    | V         | >10   | 6     |        |
| 1.000000 V @ 50 kHz      | 1.0000142  | 0.998944    | 0.999998       | 1.001034    | V         | >10   | 2     |        |
| 1.000000 V @ 100 kHz     | 1.0000316  | 0.998012    | 1.000109       | 1.002052    | V         | >10   | 4     |        |
| 1.000000 V @ 300 kHz     | 1.0003600  | 0.990256    | 1.001526       | 1.010464    | V         | >10   | 12    |        |
| 10.00000 V @ 10 Hz       | 10.00022   | 9.97982     | 10.00055       | 10.02022    | V         | >10   | 3     |        |
| 10.00000 V @ 40 Hz       | 9.99997    | 9.99530     | 10.00036       | 10.00470    | V         | >10   | 8     |        |
| 10.00000 V @ 20 kHz      | 10.000074  | 9.99537     | 9.99981        | 10.00477    | V         | >10   | 6     |        |
| 10.00000 V @ 50 kHz      | 10.000247  | 9.99005     | 9.99966        | 10.01045    | V         | >10   | 6     |        |

HP 3458A Asset # 41628  
Calibration Date: 08/01/2017 05:29:47

Primary Electrical Lab TUR Report version 06/14/17

Page 2 of 3

# PRIMARY STANDARDS LABORATORY

Sandia National Laboratories, Albuquerque, New Mexico 87185-0665

| Test Results         |            |             |                |             |       |     |       |        |
|----------------------|------------|-------------|----------------|-------------|-------|-----|-------|--------|
| Test Description     | True Value | Lower Limit | Measured Value | Upper Limit | Units | TUR | % Tol | Status |
| 10.00000 V @ 100 kHz | 10.000629  | 9.98043     | 9.99770        | 10.02083    | V     | >10 | 15    |        |
| 10.00000 V @ 300 kHz | 10.003385  | 9.90235     | 9.98995        | 10.10442    | V     | >10 | 13    |        |
| 100.0000 V @ 10 Hz   | 99.99904   | 99.7970     | 100.0037       | 100.2010    | V     | >10 | 2     |        |
| 100.0000 V @ 40 Hz   | 100.00010  | 99.9531     | 100.0019       | 100.0471    | V     | >10 | 4     |        |
| 100.0000 V @ 20 kHz  | 100.00217  | 99.9552     | 100.0041       | 100.0492    | V     | >10 | 4     |        |
| 100.0000 V @ 50 kHz  | 100.00724  | 99.9052     | 100.0091       | 100.1092    | V     | >10 | 2     |        |
| 100.0000 V @ 100 kHz | 100.01276  | 99.8107     | 100.0074       | 100.2148    | V     | >10 | 3     |        |
| 100.0000 V @ 200 kHz | 100.06317  | 99.0525     | 100.0525       | 101.0738    | V     | >10 | 1     |        |
| 700.0000 V @ 40 Hz   | 700.01700  | 699.4370    | 699.9785       | 700.5970    | V     | >10 | 7     |        |
| 700.0000 V @ 20 kHz  | 700.03180  | 699.4518    | 699.9037       | 700.6118    | V     | >10 | 22    |        |
| FREQUENCY            |            |             |                |             |       |     |       |        |
| 10.00000 Hz @ 1 V    |            | 9.995000    | 10.000040      | 10.005000   | Hz    | >10 | 1     |        |
| 40.00000 Hz @ 1 V    |            | 39.996000   | 39.99966       | 40.004000   | Hz    | >10 | 1     |        |
| 100.00000 Hz @ 1 V   |            | 99.990000   | 99.999887      | 100.010000  | Hz    | >10 | 1     |        |
| 1000.0000 Hz @ 1 V   |            | 999.90000   | 1000.00029     | 1000.10000  | Hz    | >10 | 0     |        |
| 10000.0000 Hz @ 1 V  |            | 9999.00000  | 10000.00382    | 10001.00000 | Hz    | >10 | 0     |        |
| 20000.0000 Hz @ 1 V  |            | 19998.00000 | 20000.00573    | 20002.00000 | Hz    | >10 | 0     |        |
| 50000.0000 Hz @ 1 V  |            | 49995.00000 | 50000.01907    | 50005.00000 | Hz    | >10 | 0     |        |
| 100.00000 kHz @ 1 V  |            | 99.990000   | 100.000038     | 100.010000  | kHz   | >10 | 0     |        |
| 500.00000 kHz @ 1 V  |            | 499.950000  | 500.000191     | 500.050000  | kHz   | >10 | 0     |        |
| 1.000000 MHz @ 1 V   |            | 0.9999000   | 1.0000004      | 1.0001000   | MHz   | >10 | 0     |        |
| 2.000000 MHz @ 1 V   |            | 1.9998000   | 2.0000006      | 2.0002000   | MHz   | >10 | 0     |        |
| 4.000000 MHz @ 1 V   |            | 3.9996000   | 4.0000013      | 4.0004000   | MHz   | >10 | 0     |        |
| 6.000000 MHz @ 1 V   |            | 5.9994000   | 6.0000021      | 6.0006000   | MHz   | >10 | 0     |        |
| 8.000000 MHz @ 1 V   |            | 7.9992000   | 8.0000032      | 8.0008000   | MHz   | >10 | 0     |        |
| 10.000000 MHz @ 1 V  |            | 9.9990000   | 10.0000038     | 10.0010000  | MHz   | >10 | 0     |        |

\*\*\*\*\* End of Test Results \*\*\*\*\*

## PRIMARY STANDARDS

### LABORATORY

Sandia National Laboratories, Albuquerque, New Mexico 87185-0665

#### Limitations

PSL specifications are larger than manufacturer's specifications reported in Factory User Manual. This is a limitation of the PSL.

#### Equipment (Standard) Used

| <u>Asset #</u> | <u>Description</u>       | <u>Model</u> | <u>Expires</u>     |
|----------------|--------------------------|--------------|--------------------|
| 6651332        | Generator,Function       | 33250A       | February 16, 2018  |
| 20563          | Standard,Measurement,AC  | 5790A        | September 19, 2017 |
| 20174          | Amplifier                | 5725A        | August 10, 2017    |
| 6664631        | Calibrator,Multifunction | 5730A        | April 25, 2018     |
| 11123          | Resistor,Standard        | 5155-9       | May 10, 2018       |

# PRIMARY STANDARDS LABORATORY

Sandia National Laboratories, Albuquerque, New Mexico 87185-0665

## Traceability

Values and the associated uncertainties supplied by the Primary Standards Lab (PSL) are traceable to the SI through one or more of the following:

1. Reference standards whose values are disseminated by the National Institute of Standards and Technology (United States of America) or, where appropriate, to the national metrological institute of another nation participating in the CIPM MRA;
2. Reference standards whose values are disseminated by a laboratory that has demonstrated competence, measurement capability, and traceability for those values;
3. The accepted value(s) of fundamental physical phenomena (intrinsic standards);
4. Ratio(s) or other non-maintained standards established by either a self-calibration and/or a direct calibration technique;
5. Standards maintained and disseminated by the PSL in special cases and where warranted, such as consensus standards where no national or international standards exist;

*Note 1: This certificate or report shall not be reproduced except in full, without the advance written approval of the Primary Standards Lab at Sandia National Laboratories.*

*Note 2: The as received condition of the standard, set of standards, or measurement equipment described herein was as expected, unless otherwise noted in the body of the certificate or report.*

*Note 3: The presence of names and titles under "Authorization" are properly authenticated electronic signatures conforming to the equivalent identification signatory requirements of ISO 17025:2005 5.10.2.j.*

## Authorization

Calibrated By:

Chance, Jason  
Metrologist

Approved By:

Aragon, Steven J.  
Metrologist

## End-of-Document

Distribution

1      MS0899      Technical Library      9536 (electronic copy)



**Sandia National Laboratories**