

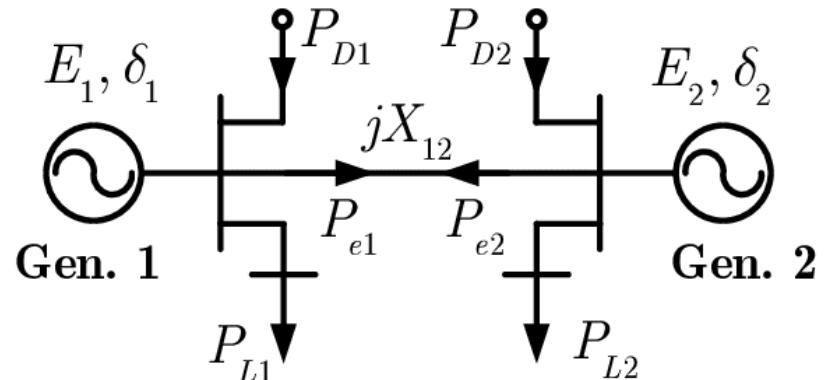
Time-Domain Analysis of Power System Stability with Damping Control and Asymmetric Feedback Delays

**David A. Copp, Felipe Wilches-Bernal, Ian Gravagne, and
David A. Schoenwald**

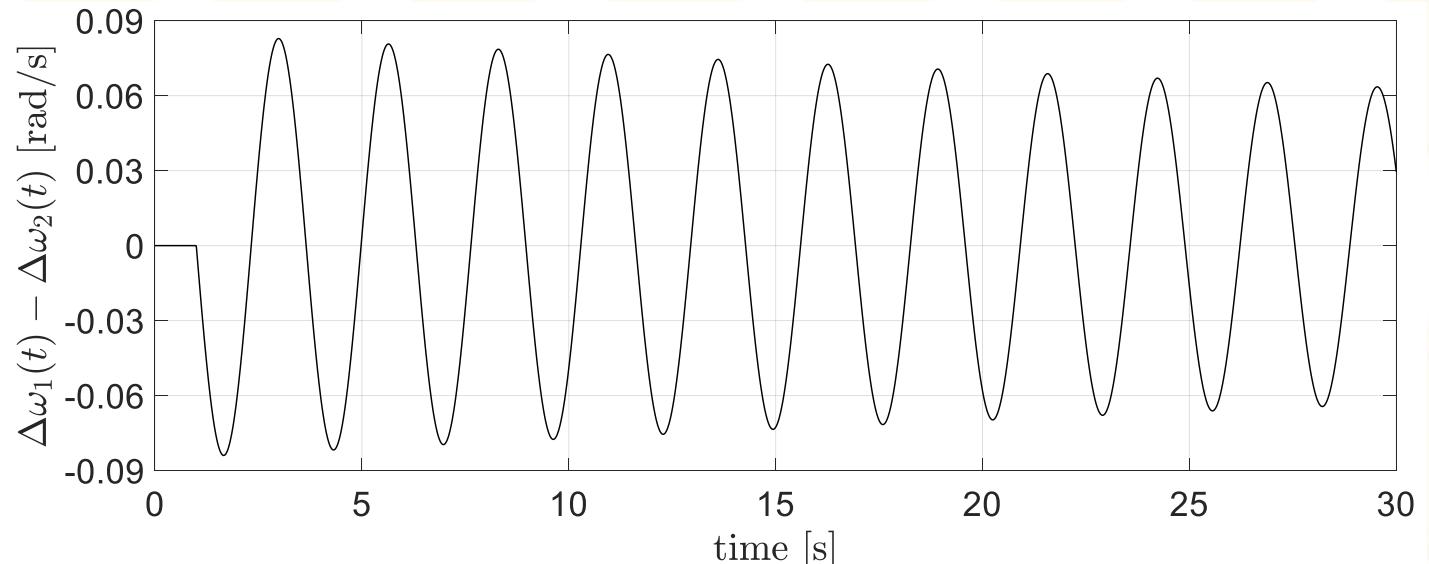
Sandia National Laboratories

Baylor
UNIVERSITY

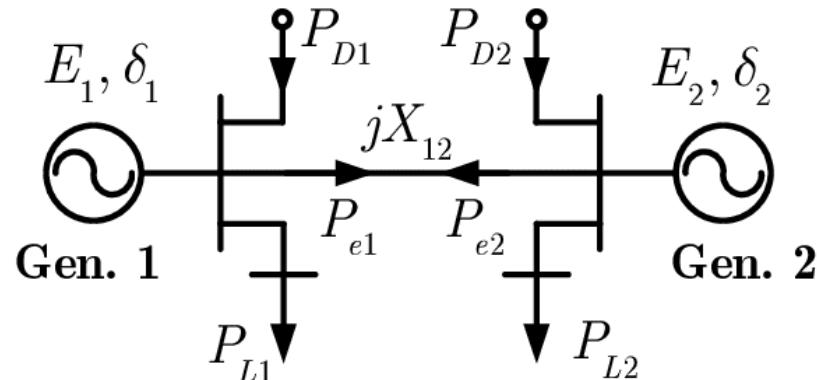
Small Signal Stability



- Inter-area oscillations occur with change in load, fault in system, loss of generation
- Power injections can be used to for damping
- Wide-area measurements (e.g. from PMUs) can be used for feedback



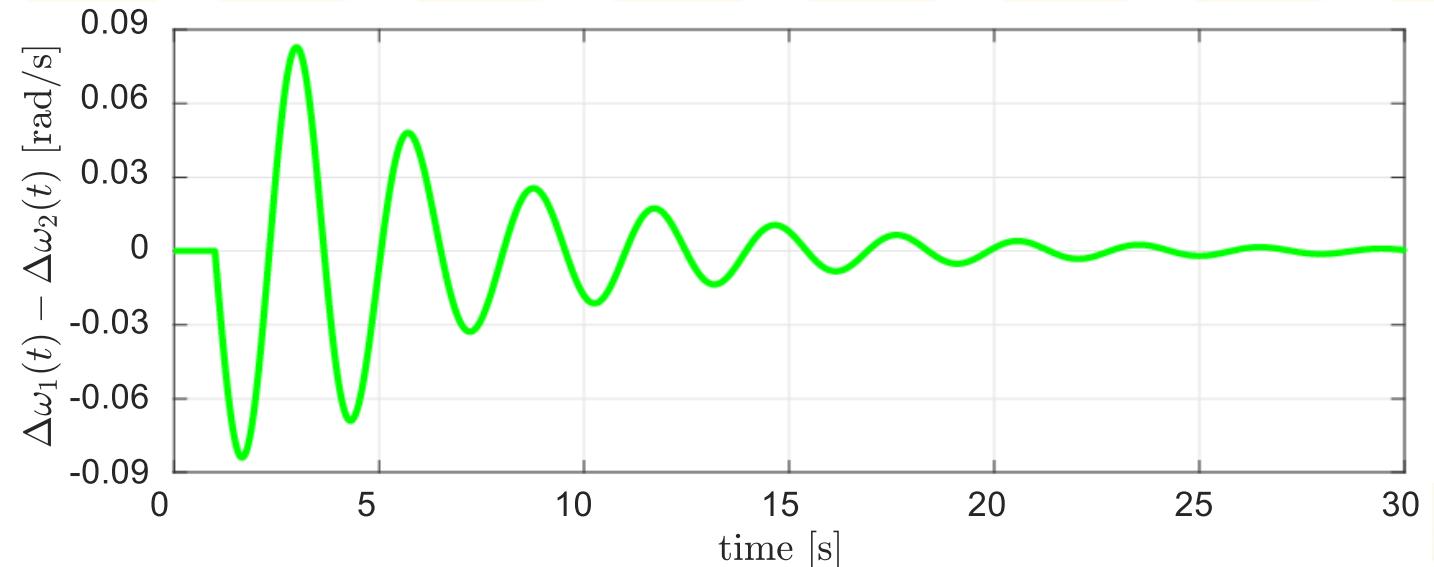
Small Signal Stability



- Inter-area oscillations occur with change in load, fault in system, loss of generation
- Power injections can be used to for damping
- Wide-area measurements (e.g. from PMUs) can be used for feedback

Injections can come from

- HVDC line
- Energy storage devices



Two-Area System Model

$$\dot{\delta}_i = \Omega \omega_i$$

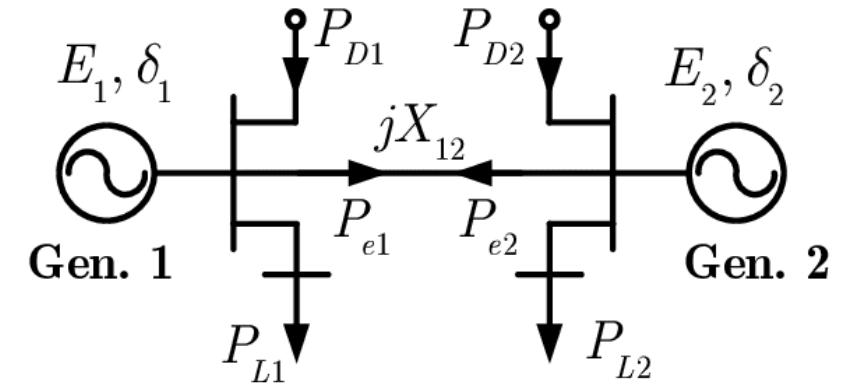
$$2H_i \dot{\omega}_i = P_{mi} - P_{ei} - D_i \omega_i - \frac{1}{R_i} \omega_i - P_{Li} + P_{Di}$$

Electromechanical model

States:

δ_i Generator rotor angle

ω_i Rotor angular velocity



$$P_{e1} = X_{12}^{-1} E_1 E_2 \sin(\delta_1 - \delta_2)$$

$$P_{e2} = X_{12}^{-1} E_2 E_1 \sin(\delta_2 - \delta_1)$$

Two-Area System Model

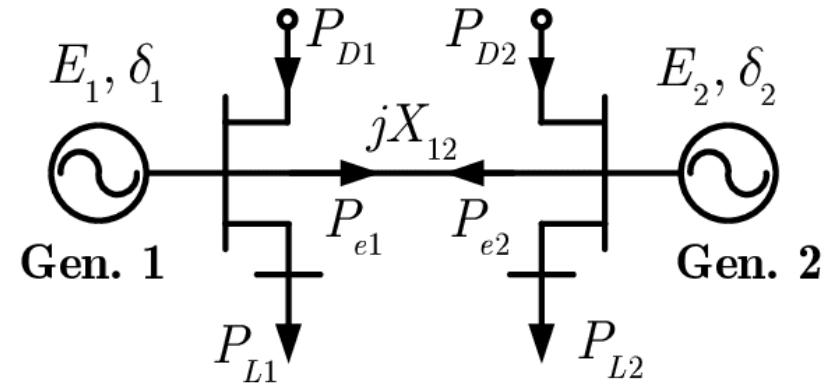
$$\dot{\delta}_i = \Omega \omega_i$$

$$2H_i\dot{\omega}_i = P_{mi} - P_{ei} - D_i\omega_i - \frac{1}{R_i}\omega_i - P_{Li} + P_{Di}$$

States:

δ_i Generator rotor angle

ω_i Rotor angular velocity



$$P_{e1} = X_{12}^{-1} E_1 E_2 \sin(\delta_1 - \delta_2)$$

$$P_{e2} = X_{12}^{-1} E_2 E_1 \sin(\delta_2 - \delta_1)$$

Linearized System

$$\dot{\delta}_i = \Omega \omega_i$$

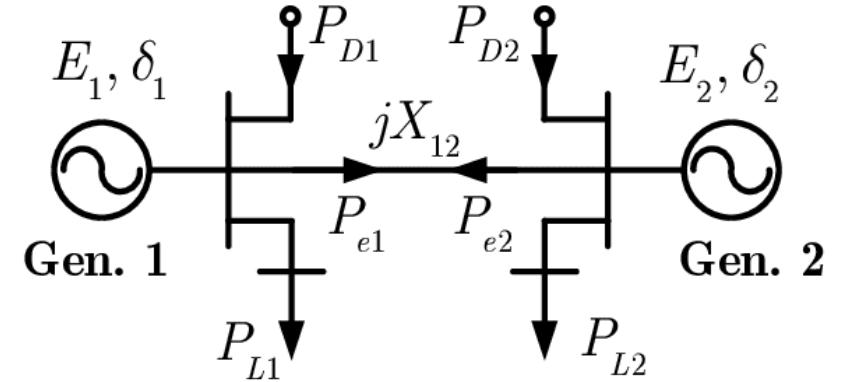
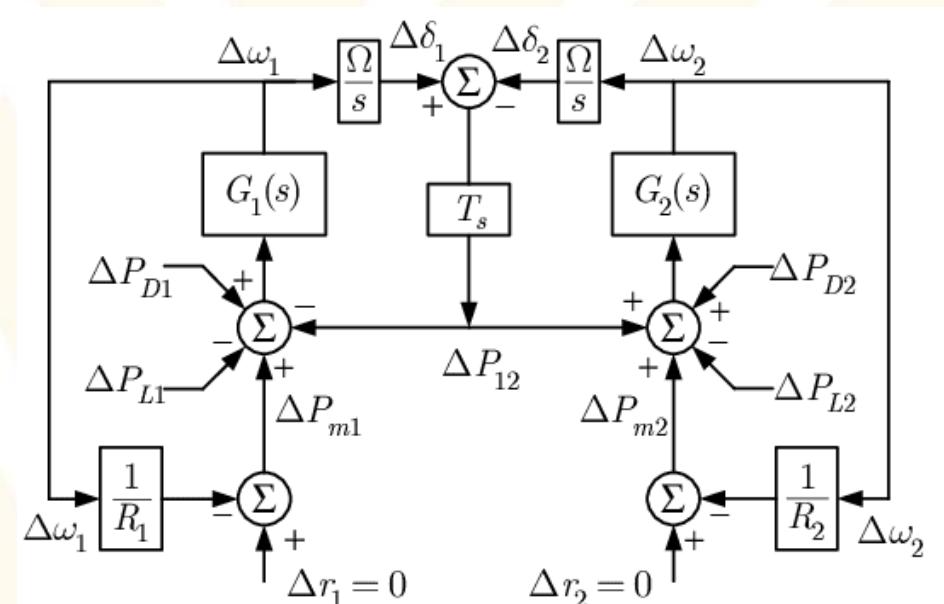
$$2H_i \dot{\omega}_i = P_{mi} - P_{ei} - D_i \omega_i - \frac{1}{R_i} \omega_i - P_{Li} + P_{Di}$$

$$\dot{x}(t) = Ax(t) + B(P_D(t) - P_L(t))$$

$$x(t) = \begin{bmatrix} \Delta\delta(t) \\ \Delta\omega(t) \end{bmatrix}$$

$$A = \begin{bmatrix} \mathbf{0} & \Omega I \\ -(2H)^{-1}T_s & -(2H)^{-1}(D + R^{-1}) \end{bmatrix}$$

$$B = \begin{bmatrix} \mathbf{0} \\ (2H)^{-1} \end{bmatrix}$$



$$G_i(s) = \frac{1}{2H_i s + D_i}$$

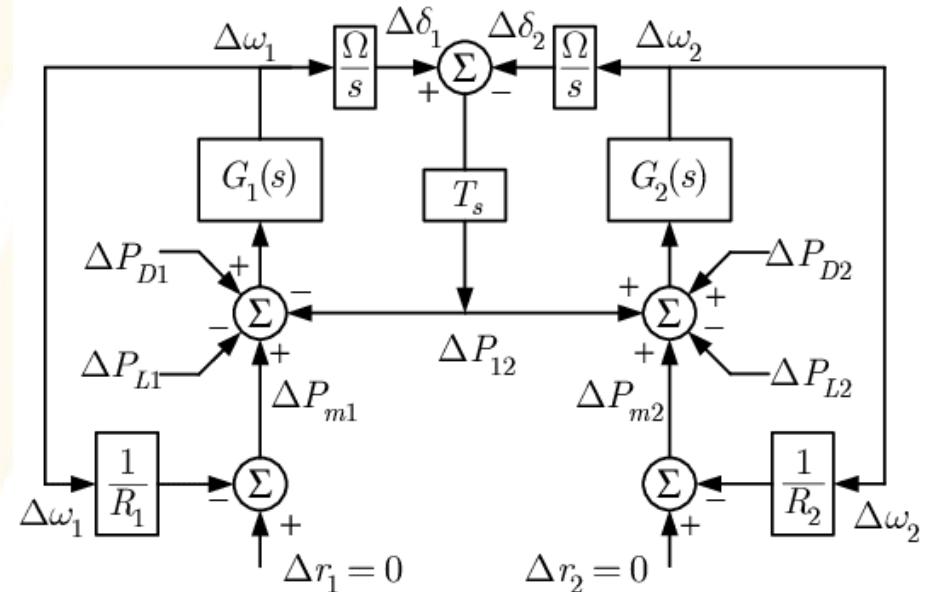
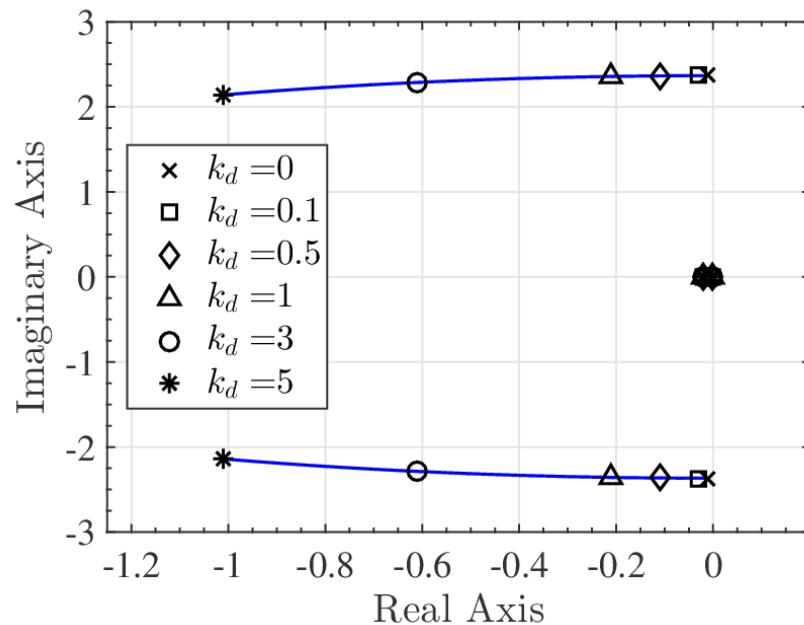
Damping Controller

$$\dot{x}(t) = Ax(t) + B(P_D(t) - P_L(t))$$

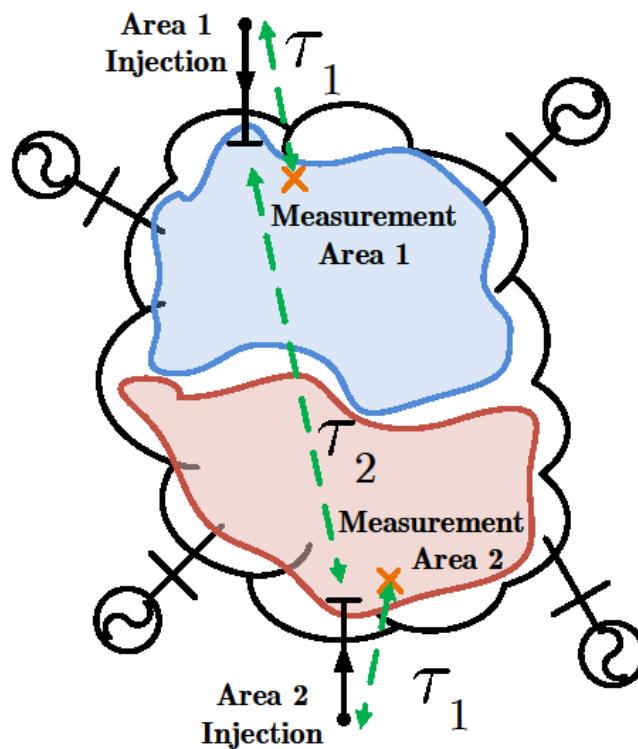
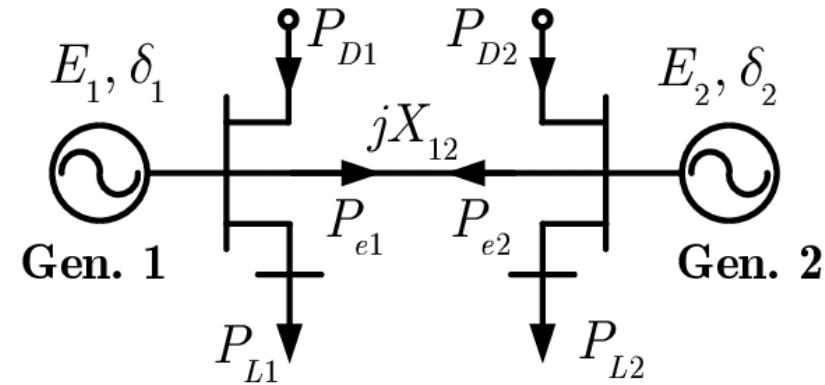
$$x(t) = \begin{bmatrix} \Delta\delta(t) \\ \Delta\omega(t) \end{bmatrix}$$

$$P_{D1}(t) = -k_d(\Delta\omega_1(t) - \Delta\omega_2(t))$$

$$P_{D2}(t) = -P_{D1}(t)$$



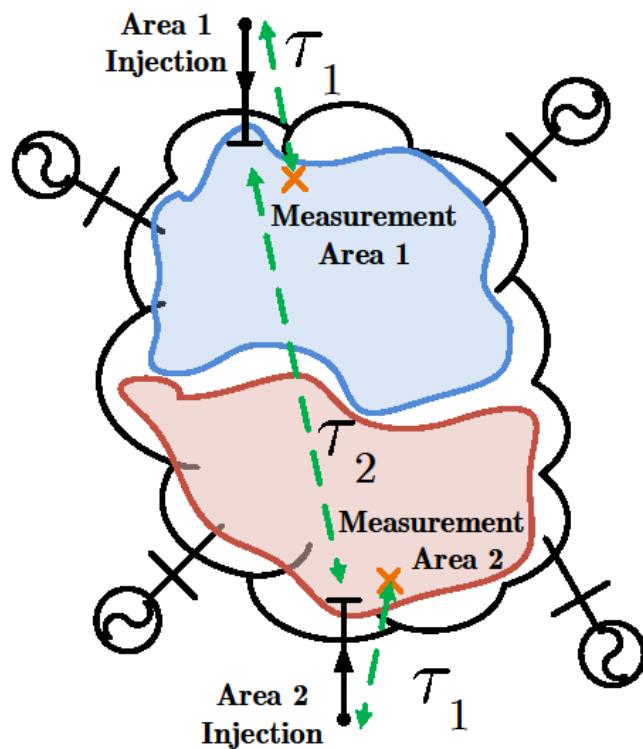
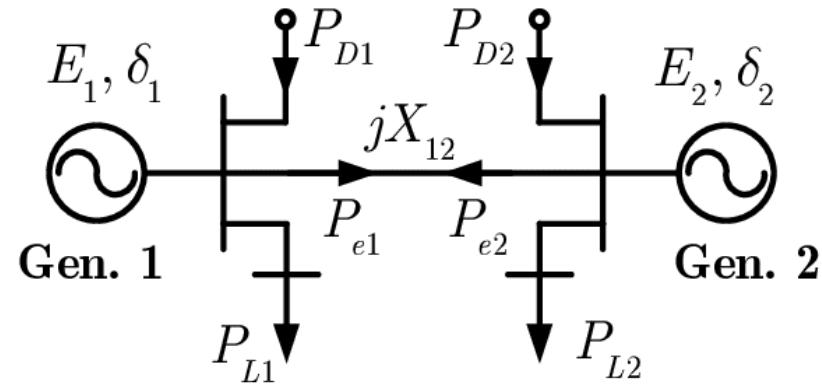
Time-delay System



Time-delay system can be written as a
Delay Differential Equation (DDE)

$$\dot{x}(t) = Ax(t) + A_1x(t - \tau_1) + A_2x(t - \tau_2)$$

Time-delay System

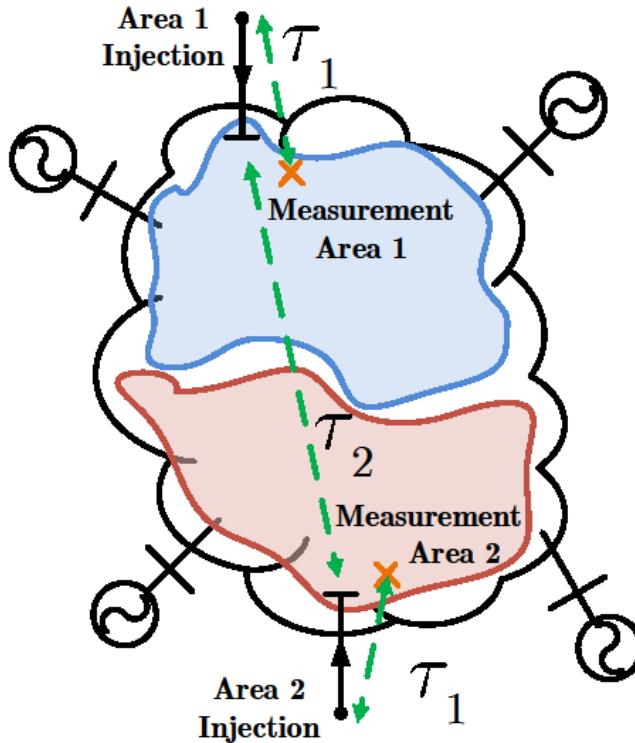


Time-delay system can be written as a Delay Differential Equation (DDE)

$$\dot{x}(t) = Ax(t) + A_1x(t - \tau_1) + A_2x(t - \tau_2)$$

- How much delay can the system handle?
- How does the distributed control action affect stability in the presence of delays?

Damping Controller with Delays



Damping control with HVDC:

$$P_{D1}(t) = -k_d(\Delta\omega_1(t - \tau_1) - \Delta\omega_2(t - \tau_2))$$

$$P_{D2}(t) = k_d(\Delta\omega_1(t - \tau_1) - \Delta\omega_2(t - \tau_2))$$

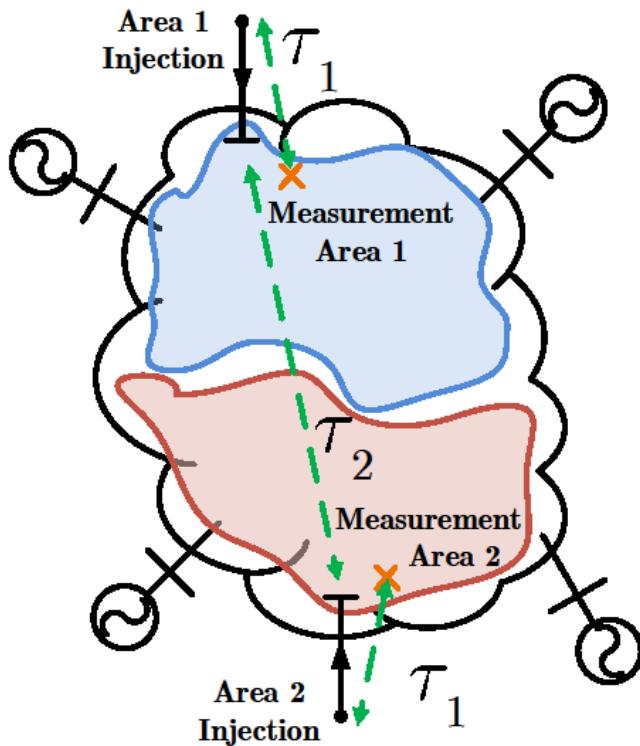
Damping control with ES:

$$P_{D1}(t) = -k_d(\Delta\omega_1(t - \tau_1) - \Delta\omega_2(t - \tau_2))$$

$$P_{D2}(t) = k_d(\Delta\omega_1(t - \tau_2) - \Delta\omega_2(t - \tau_1))$$

Closed-loop Dynamics with Delay

$$\dot{x}(t) = Ax(t) + A_1x(t - \tau_1) + A_2x(t - \tau_2) + B_L P_L(t)$$



HVDC:

$$A_1^{\text{HV}} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{-k_d}{2H_1} & 0 \\ 0 & 0 & \frac{k_d}{2H_2} & 0 \end{bmatrix}$$

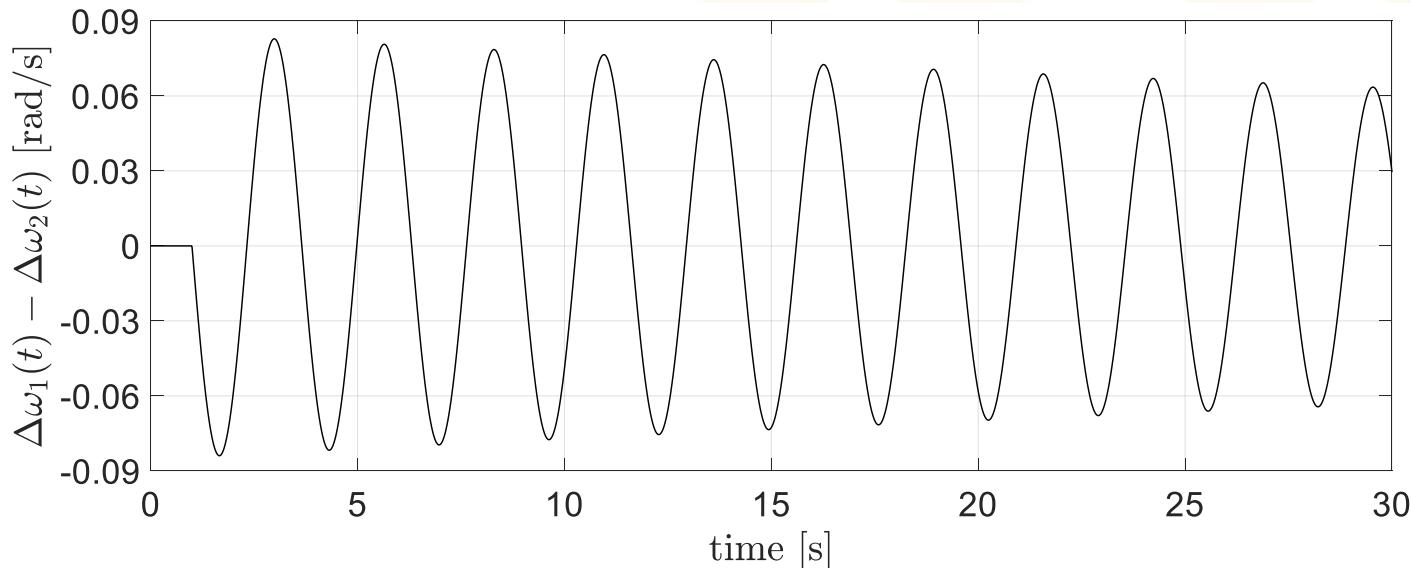
$$A_2^{\text{HV}} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{k_d}{2H_1} \\ 0 & 0 & 0 & \frac{-k_d}{2H_2} \end{bmatrix}$$

ES:

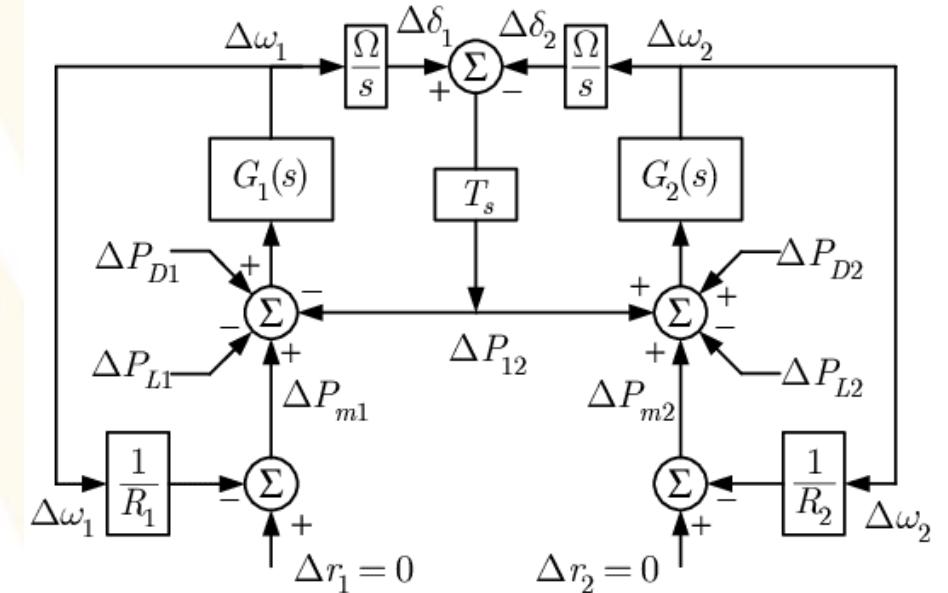
$$A_1^{\text{ES}} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{-k_d}{2H_1} & 0 \\ 0 & 0 & 0 & \frac{-k_d}{2H_2} \end{bmatrix}$$

$$A_2^{\text{ES}} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{k_d}{2H_1} \\ 0 & 0 & \frac{k_d}{2H_2} & 0 \end{bmatrix}$$

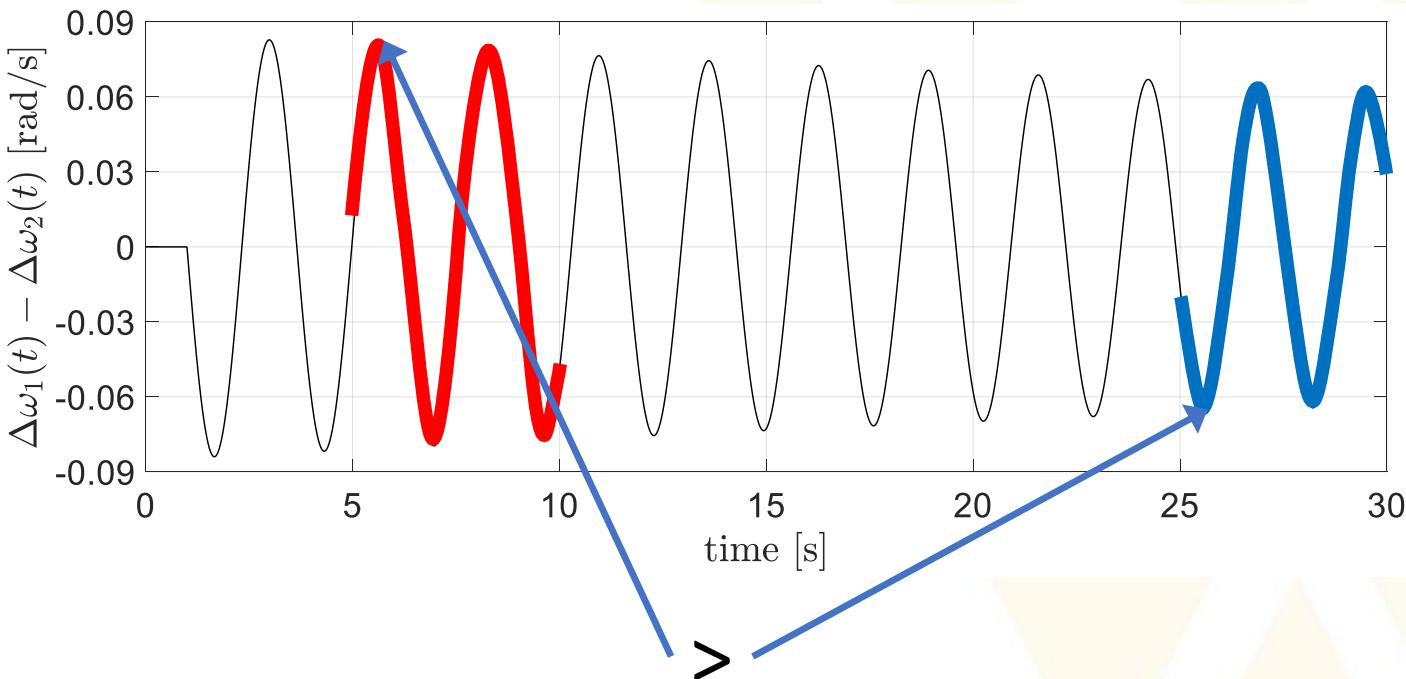
Stability Criterion



Natural system response after sudden change in load.

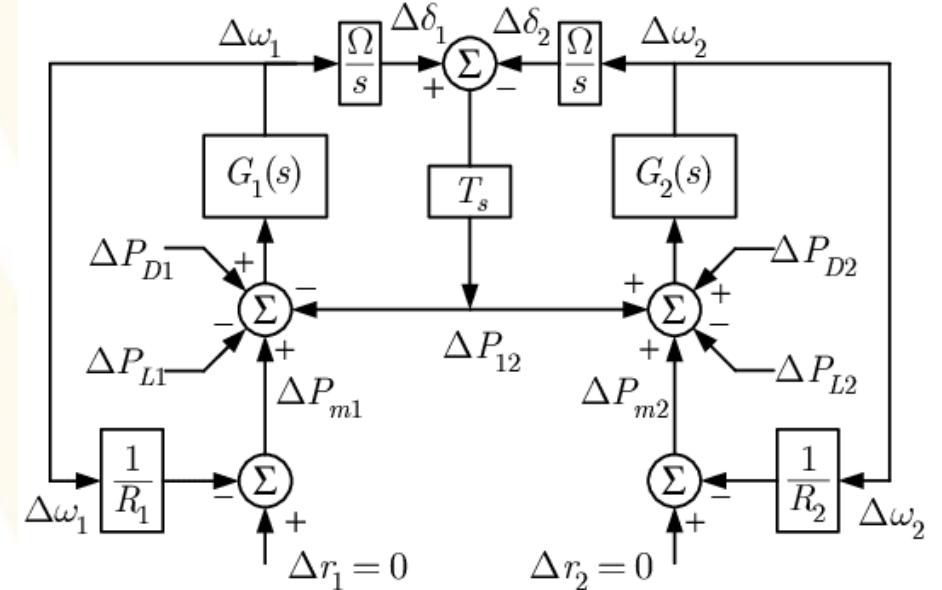


Stability Criterion



Largest amplitude in red > largest amplitude in blue \rightarrow stable

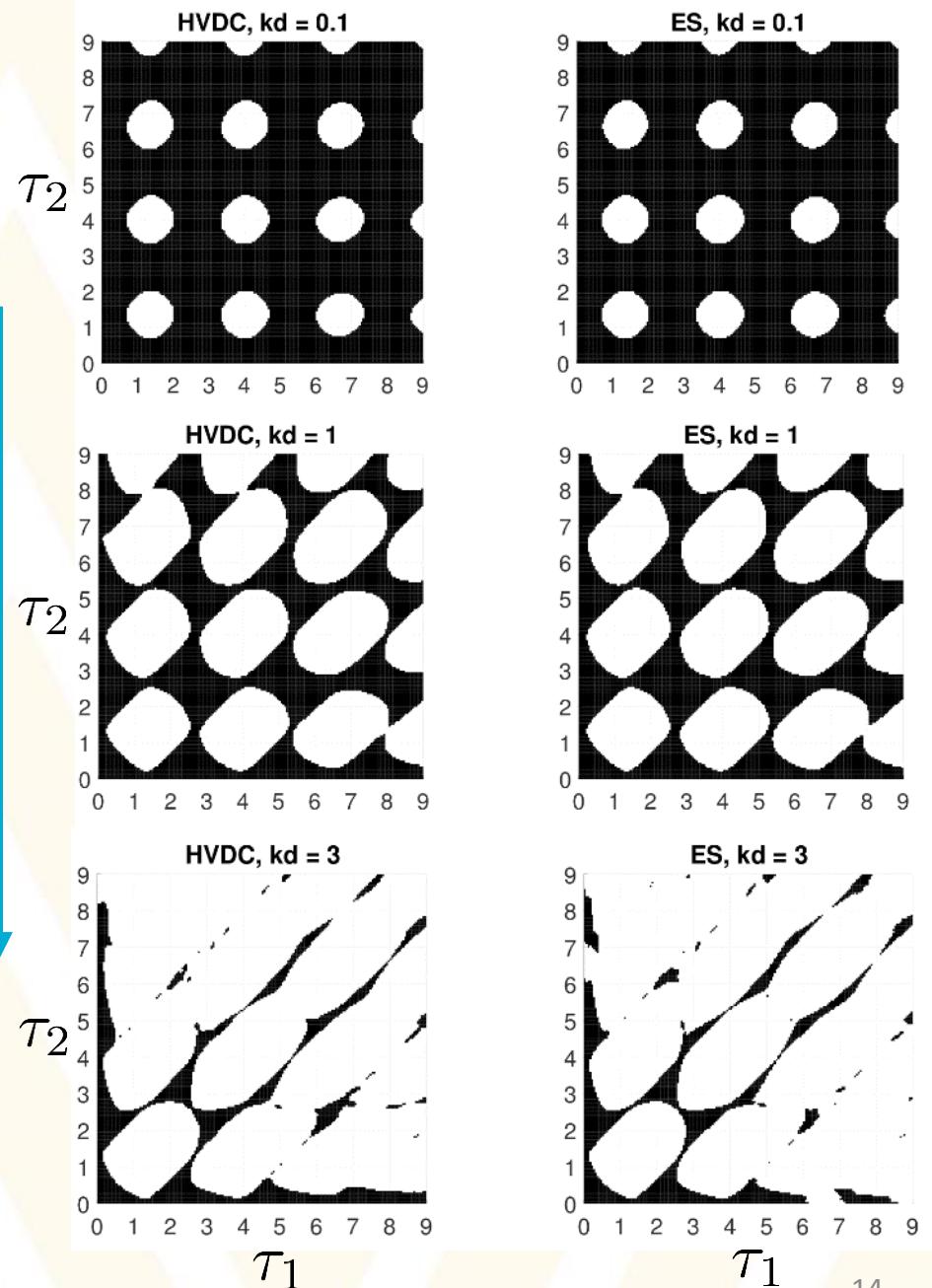
Using this criterion, determine regions of stability that depend on time delays τ_1, τ_2 and damping gain k_d .



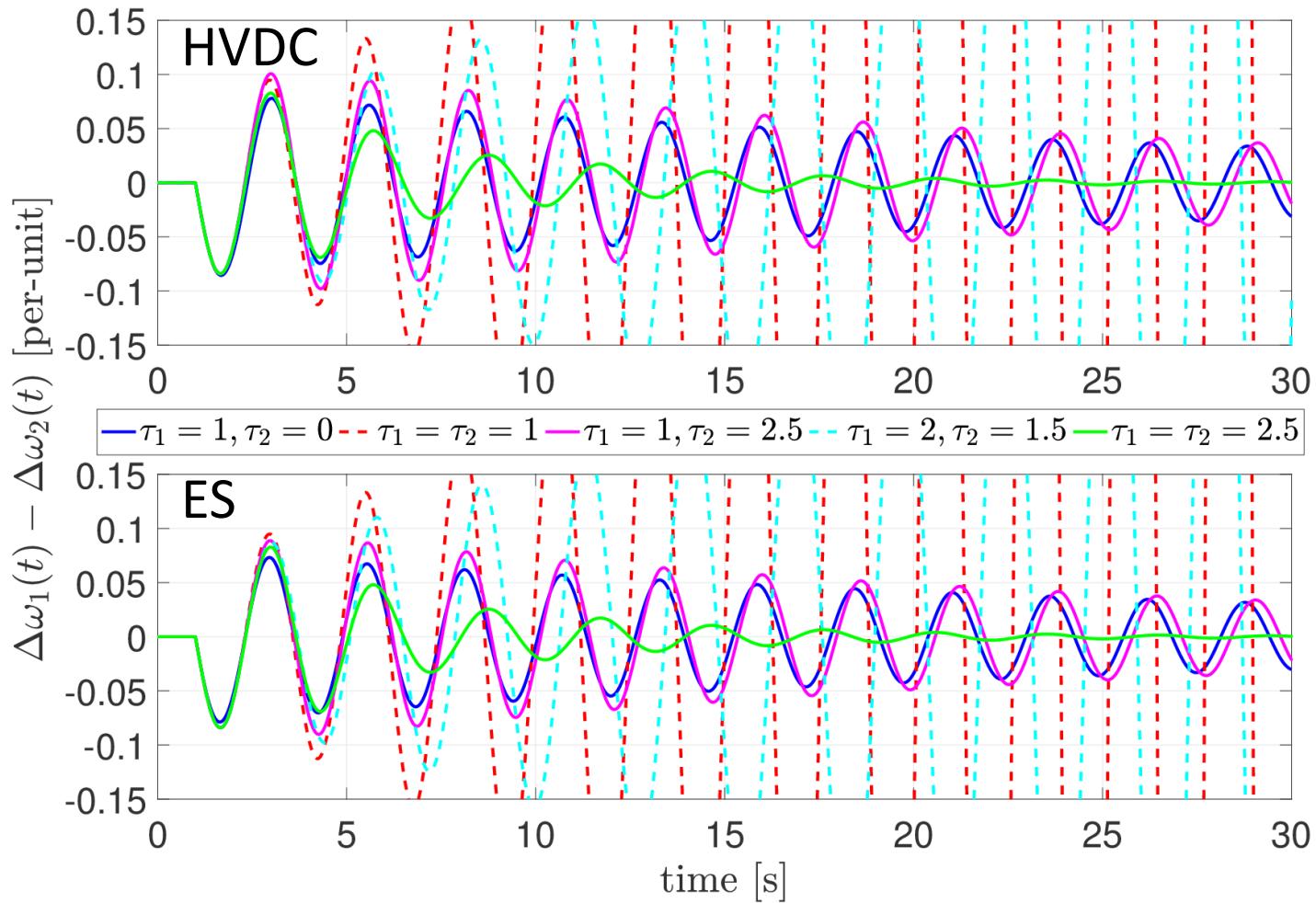
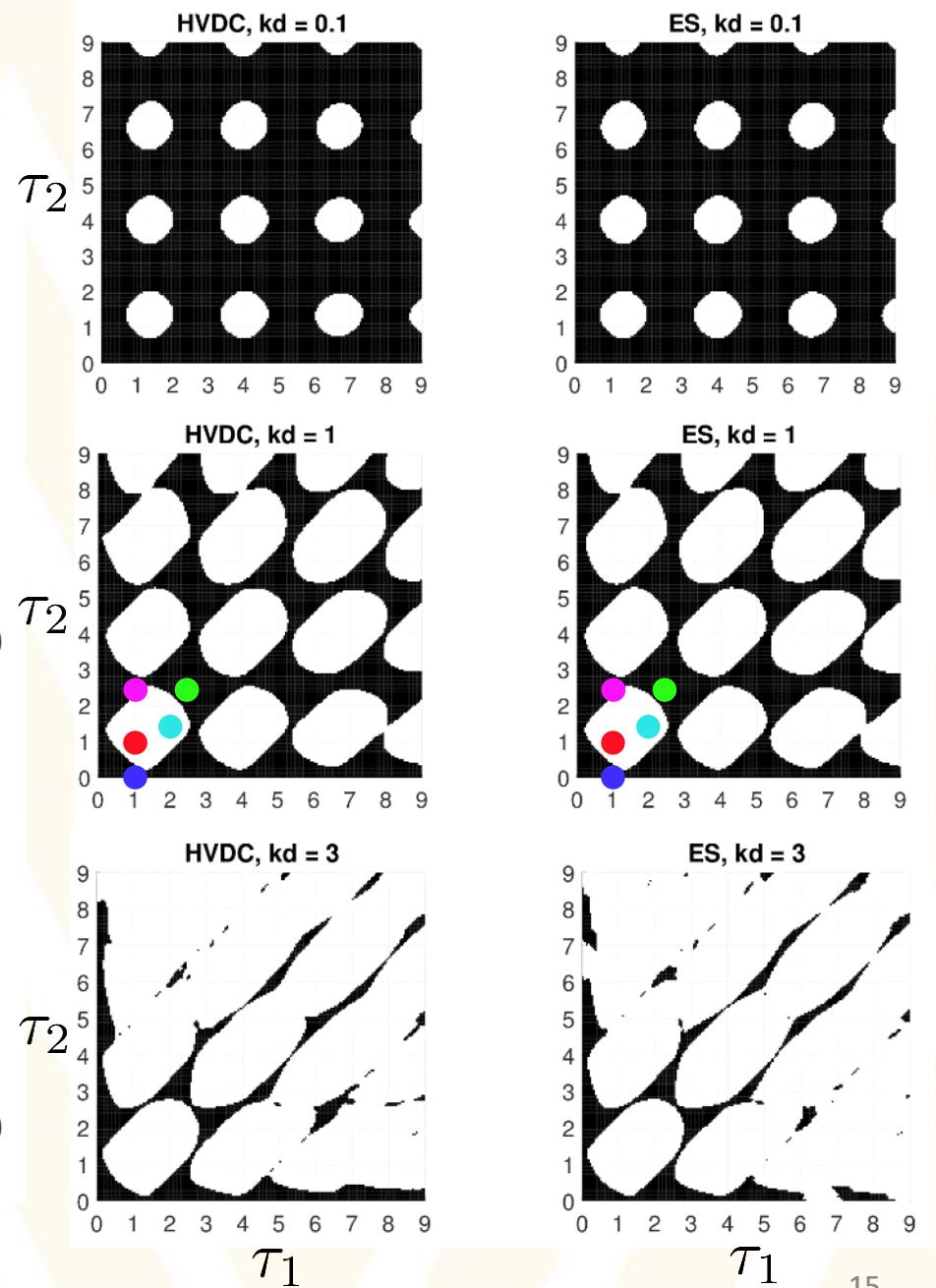
Stability Regions

Black: Stable
White: Unstable

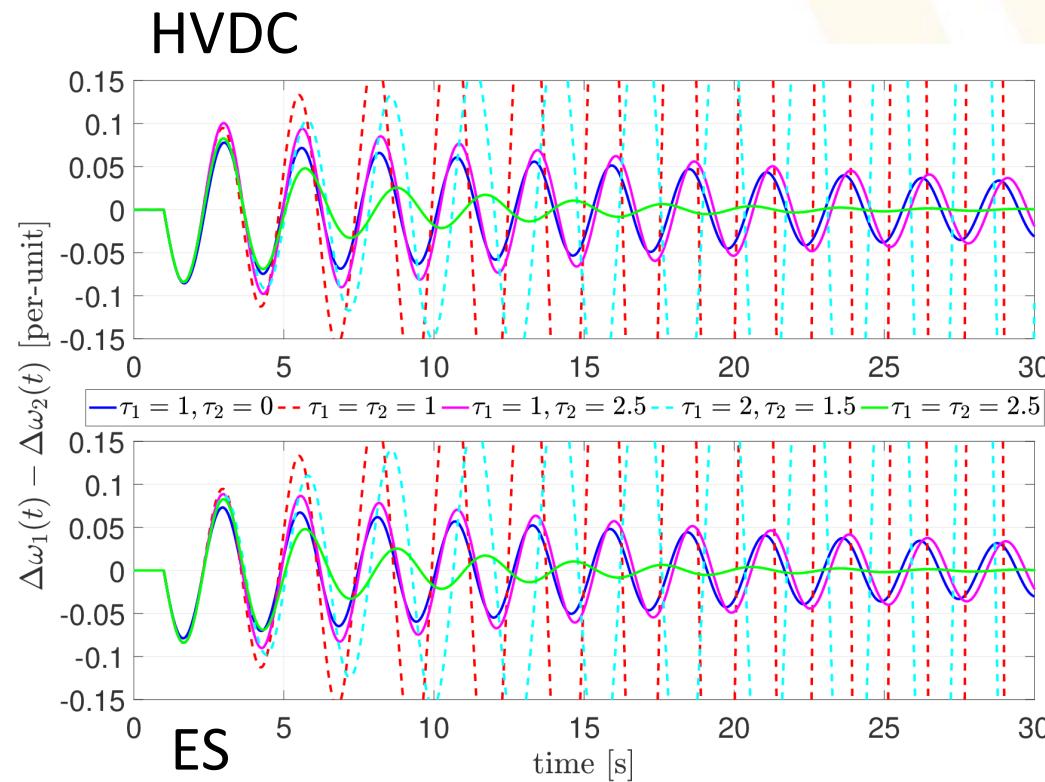
In the presence of delays, increasing damping may lead to instability.



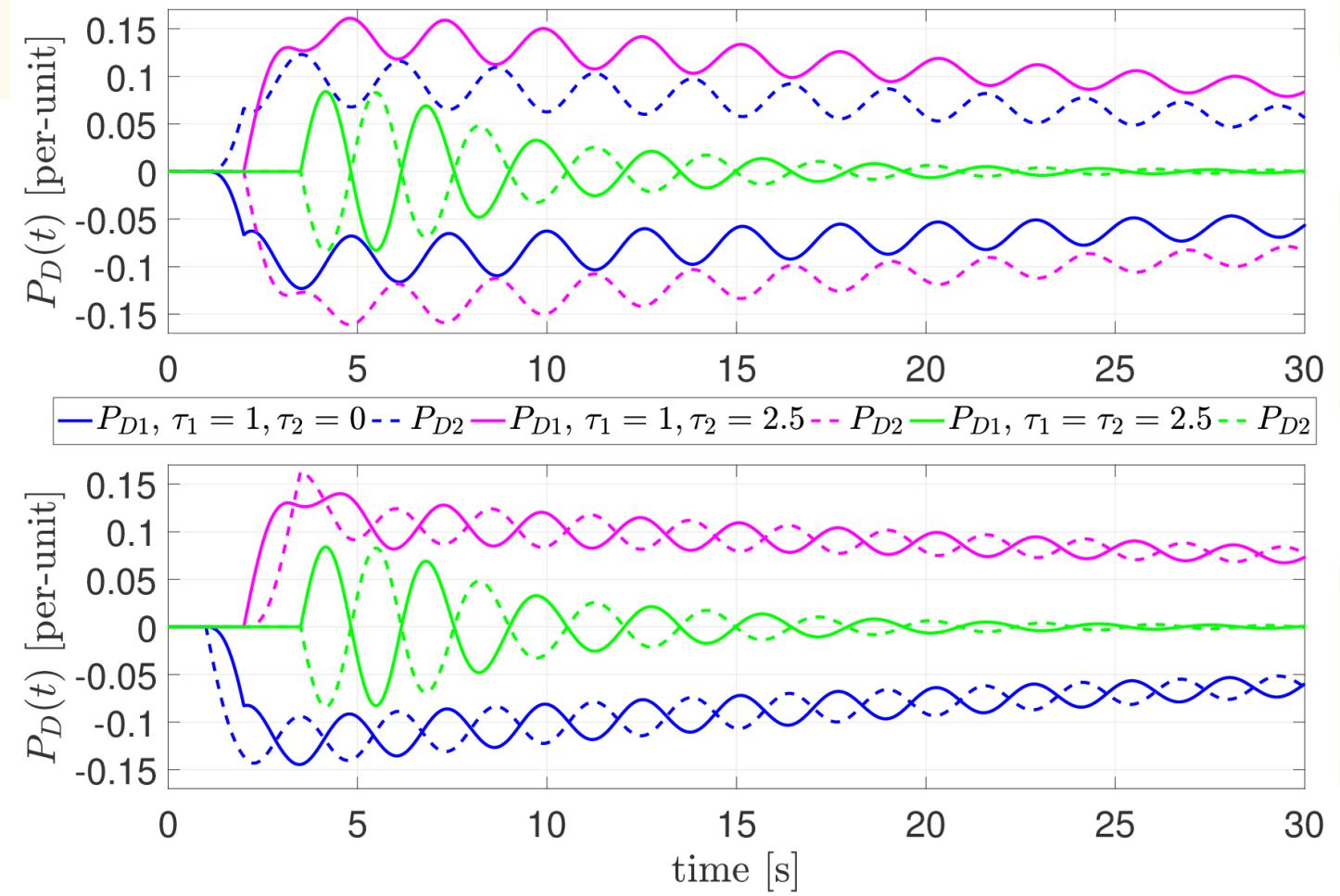
Time Simulations



Time Simulations

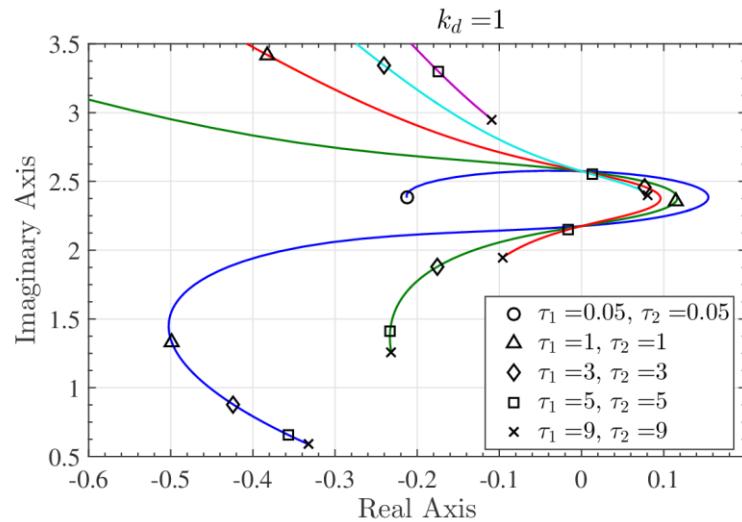
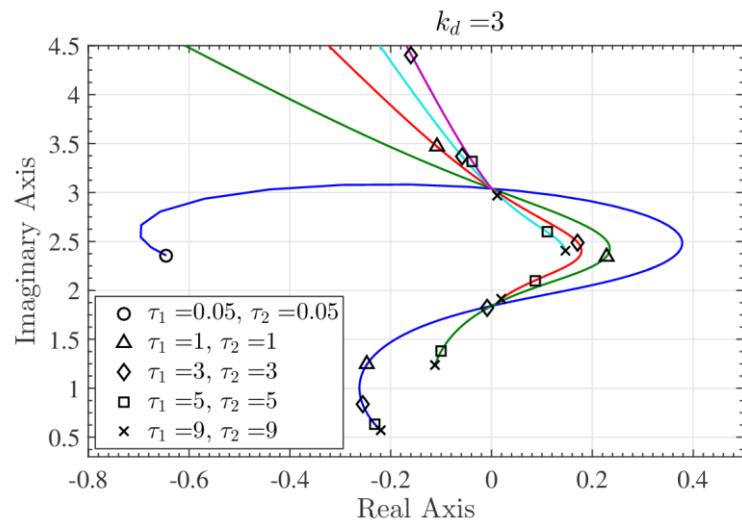


Injections



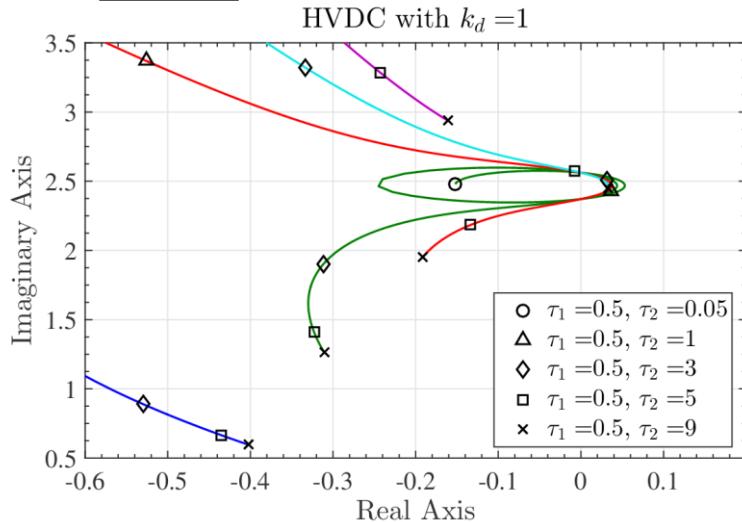
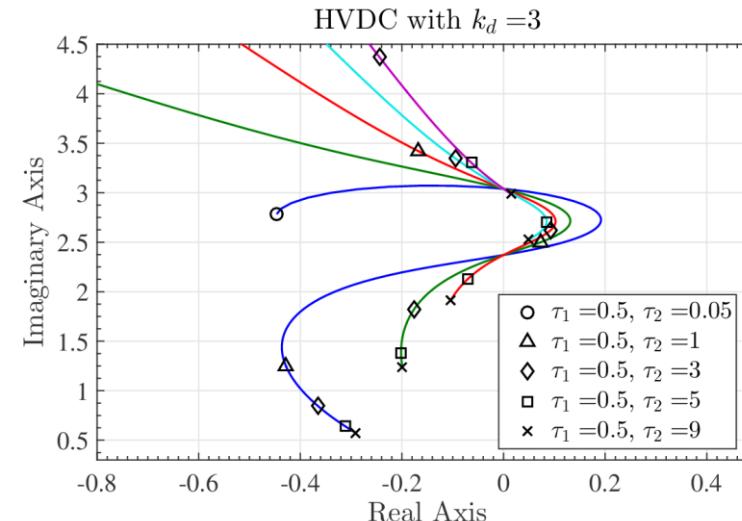
Eigenvalues

Equal Delays:

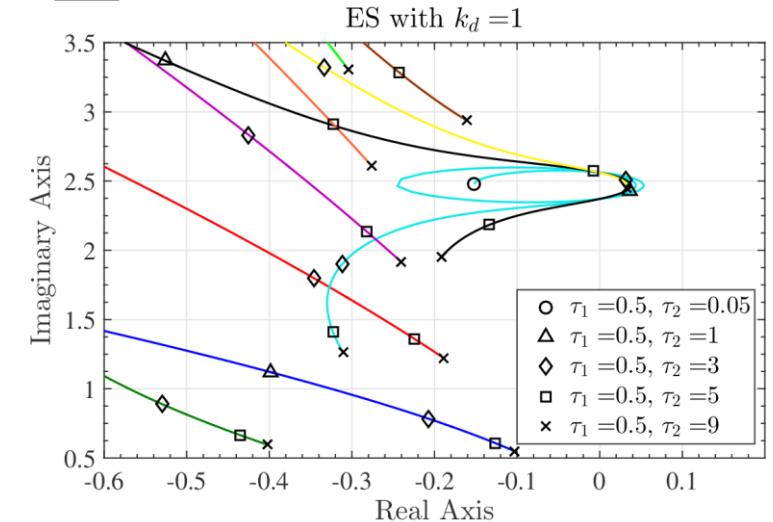
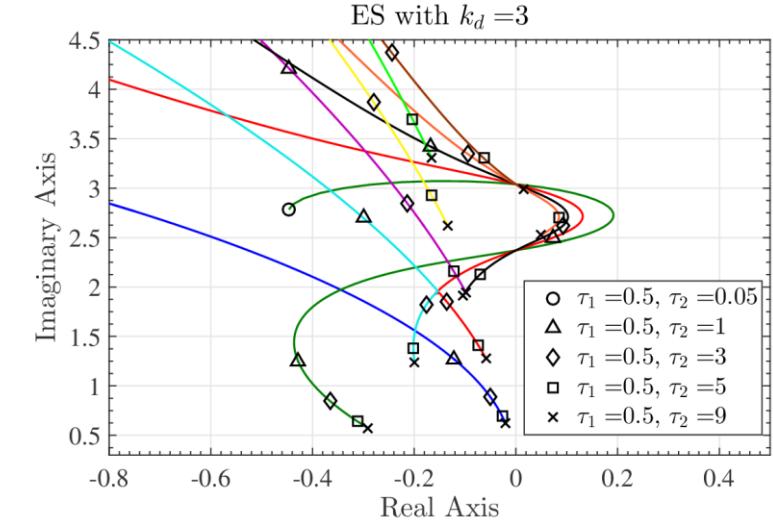


Asymmetric Delays:

HVDC:



ES:



Conclusions

- Wide-area damping control can be used to damp inter-area oscillations.
- Time delays in the feedback signals can cause the damping control to destabilize the system.
- Stability depends on the size of the time delays as well as the size of the damping control gain.
- Increasing the delay (e.g. to better match the period of oscillation) can have a stabilizing effect.

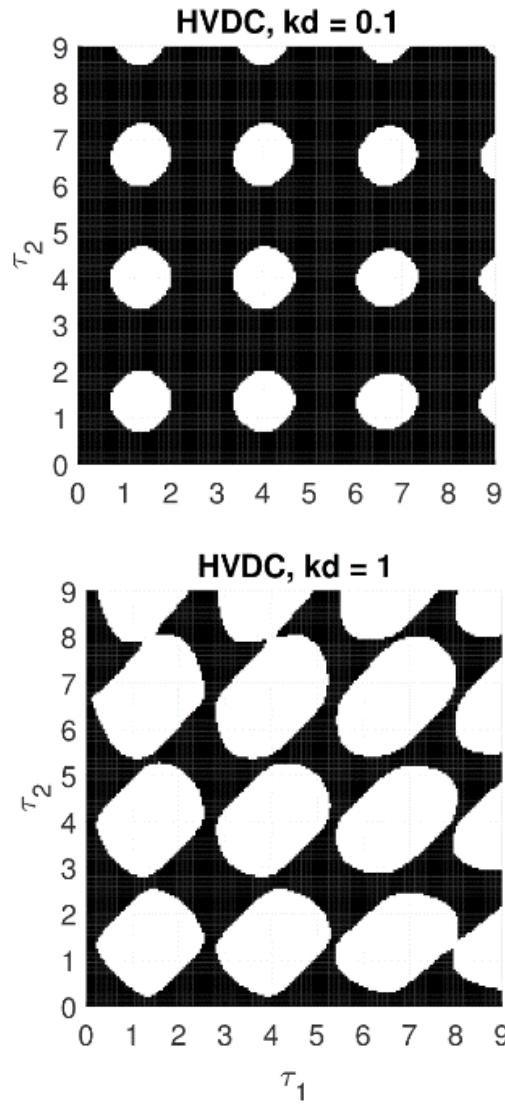
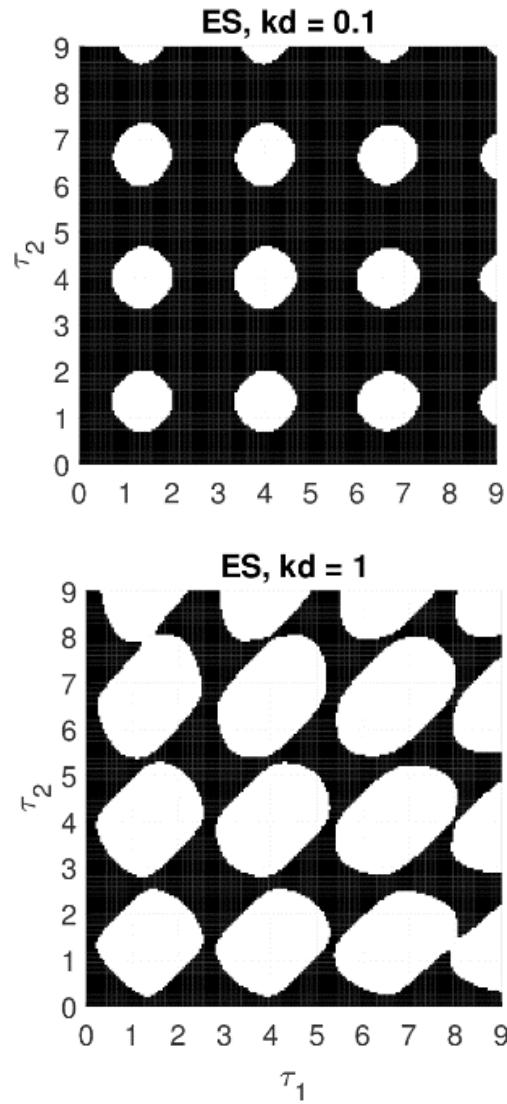
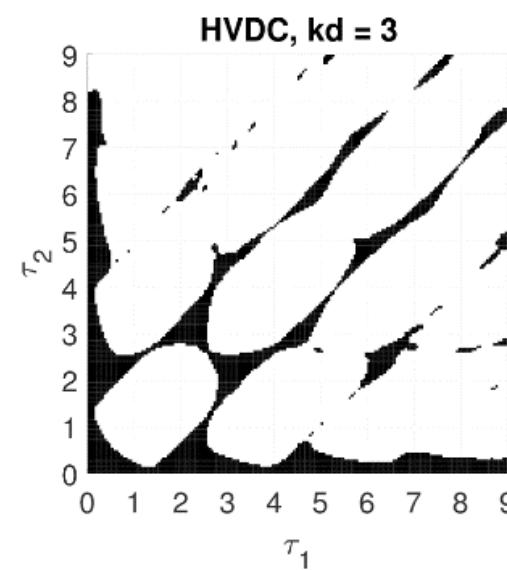
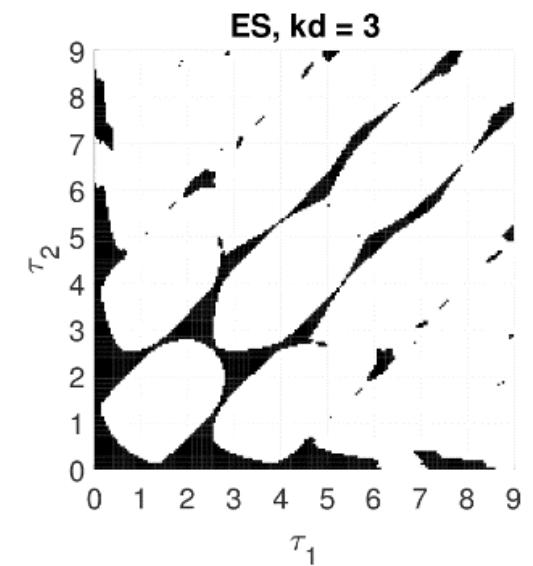
Acknowledgements

- Funding provided by US DOE Energy Storage Program managed by Dr. Imre Gyuk of the DOE Office of Electricity Delivery and Energy Reliability.

Thank you.

Extra Slides

Stability Regions



Parameters

$$\dot{\delta}_i = \Omega \omega_i$$

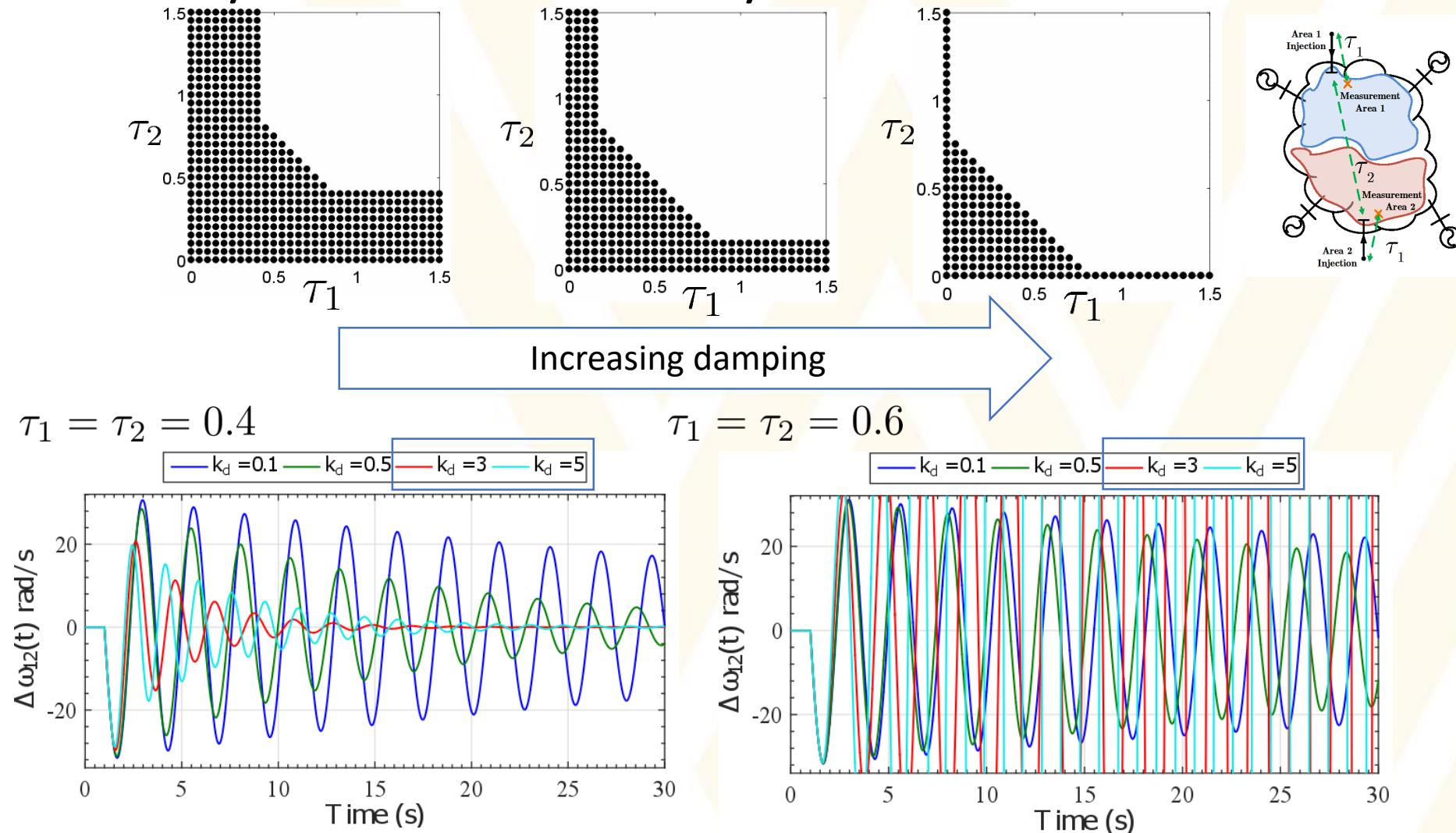
$$2H_i \dot{\omega}_i = P_{mi} - P_{ei} - D_i \omega_i - \frac{1}{R_i} \omega_i - P_{Li} + P_{Di}$$

$$\dot{x}(t) = Ax(t) + B(P_D(t) - P_L(t))$$

$$A = \begin{bmatrix} \mathbf{0} & \Omega I \\ -(2H)^{-1}T_s & -(2H)^{-1}(D + R^{-1}) \end{bmatrix}$$

$D_1 + R_1^{-1}$	$D_2 + R_2^{-1}$	H_1	H_2	T_s
0.1	0.1	2.5	2.5	14

Time Delays and Instability



- In the presence of time delays, increasing damping may lead to instability.

