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Why holes in GaAs quantum dots?

 Holes:

« Strongly anisotropic g*-factor (heavy-hole g*-factor tunable to zero
in appropriately oriented external magnetic field).

* Expect reduced coupling to nuclei compared to electrons.
« Strong spin-orbit interaction.

 GaAs:

» Traditional workhorse for spin qubits in quantum dots.

 Direct bandgap semiconductor that can host inter-band excitations
necessary for a photon-to-spin interface.

« Clean and readily available. m\\:é § ;
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Few-hole double quantum dot device in an undoped

GaAs/AlGaAs hetero-structure

L. A. Tracy et al., Appl. Phys. Lett. 104, 123101 (2014)
L. A. Tracy et al., Sandia Report SAND2015-8132 (2015)

Single-hole limit reached
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Resonant tunneling spectroscopy of two hole system

—0. 640 See Bogan et al., Phys. Rev. Lett. (2017)

out-of-plane B-field

Spin-flip tunneling (via spin-orbit)
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Resonant tunneling spectroscopy of two hole system

—0. 640 See Bogan et al., Phys. Rev. Lett. (2017)
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Resonant tunneling spectroscopy of two hole system

—0. 640 See Bogan et al., Phys. Rev. Lett. (2017)
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Spin-flip tunneling
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Resonant tunneling spectroscopy of two hole system

—0. 640 See Bogan et al., Phys. Rev. Lett. (2017)

out-of-plane B-field

More complex spin-flip tunneling
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Effective heavy-hole g*-factor in tilted magnetic field:
g*-factor anisotropy

See Bogan et al., Phys. Rev. Lett. (2017)

Two-Hole Transport Magneto-Spectroscopy
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Self-assembled dot [Belykh et al.]

A Si Nanowire [Voisin et al.]
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See recent review Gaudreau et al., Semicond. Sci. Technol. (2017)

Problem of long distance entanglement distribution

(a) BSM=Bell state measurement, SEP=Source of entangled photons
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Entanglement Distribution

Attractive Aspects: BSM node with for example atomic

ensemble quantum memory...

On schemes
D circuits

1. Photo-generated spins can be heralded
by  non-destructive charge  detection
techniques.

2. Long spin coherence time (aka native
quantum memory), e.g., 200 us [Bluhm Nat.
Phys. (2011)].

3. BSM with 100% success probability can in
principle be achieved [Engel & Loss Science
(200%5); Yokoshi Phys. Rev. B (2010)].

4. Spin-to-photon conversion not required.

Challenges:
itch Physica E (2001)
IEEE (2003)
hys. (2011)

1. Non-destructive signaling of successful
photon storage challenging.

2. Stored photons must be regenerated
before BSM which is an extra step.

3. BSM with linear optics succeeds with
probability of 50% at most.
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Polarization schemes

FARADAY CONFIG.
(a)

PHOTON
ph oo+ fa

U,
) &=

=

@
X SPIN

pi=alli+ gl
(b) ELECTRON ‘ﬁ' -

|\" =1 2:} _I_

3/ 3}1 t
HEAVY HOLE | =+372)

| jiy=—1/2) i Iy

!

—_1/2)

GAP

| =+1/2)

LIGHT HOLE

Vrijen & Yablonovitch, Physica E (2001)
Yablonovitch et al, Proc. IEEE (2003)

Kosaka, J. Appl. Phys. (2011)
Oiwa, J. Phys. Soc. Jpn (2017)

See also time-bin schemes: Kosaka Phys. Rev. A (2012) /

For transfer
of polarization-encoded state of photon

to spin state of QD

A (near) zero g-factor is an important
property to realize the necessary V- or A-
shaped three-level system for a coherent

photon-to-spin interface

Transfer
state of photon
polarization
—> state of electron

Transfer
state of photon
polarization
- state of heavy-hole

Need to engineer
electron g-factor ~0
[e.g., see Allison PRB

(2014)]
& strain...

Natural anisotropy gives
heavy-hole g-factor ~0
for in-plane B-field
[Bogan PRL (2017)].
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To demonstrate potential performance advantage
of full BSM capability in spin-based QD scheme

over optical scheme

Th rOUghpUt Scaling model with linear optics and atomic ensemble QMem

See Gaudreau et al., Semicond. Sci. Technol. (2017)
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Coherent hybrid interplay between phonon & spin in

piezoelectric material such as GaAs during manipulation &
measurement of QDs

See Korkusinski et al., Phys. Rev. Lett. (2017)
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Features related to coherent and incoherent driving by

phonon bath
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Detuning at pulse maximum (mV)

See Korkusinski et al.,
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