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Why holes in GaAs quantum dots?

NRC: Canada’s RTO2

• Holes:
• Strongly anisotropic g*-factor (heavy-hole g*-factor tunable to zero 

in appropriately oriented external magnetic field).

• Expect reduced coupling to nuclei compared to electrons.

• Strong spin-orbit interaction.

• GaAs:
• Traditional workhorse for spin qubits in quantum dots.

• Direct bandgap semiconductor that can host inter-band excitations 
necessary for a photon-to-spin interface.

• Clean and readily available.



Few-hole double quantum dot device in an undoped
GaAs/AlGaAs hetero-structure
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GaAs dots for holes:
Klochan Appl. Phys. Lett. (2010)
Mak Appl. Phys. Lett. (2013)
Komijani Phys. Rev. B (2013)
Wang Nanoletters (2016)
Wang Nanotechnology (2016)
…
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L. A. Tracy et al., Appl. Phys. Lett. 104, 123101 (2014)
L. A. Tracy et al., Sandia Report SAND2015-8132 (2015)

Single-hole limit reached



Resonant tunneling spectroscopy of two hole system
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Spin-flip tunneling (via spin-orbit)

(2,0) state is a singlet

See Bogan et al., Phys. Rev. Lett. (2017)
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Similar situation with electrons :
Pfund Phys. Rev. B (2007) [InAs nano-wire DQD]
…

EST~60 eV
BST~0.65 T



Resonant tunneling spectroscopy of two hole system
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Spin-conserving tunneling

See Bogan et al., Phys. Rev. Lett. (2017)

(2,0) state is a triplet
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Resonant tunneling spectroscopy of two hole system
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Spin-flip tunneling

See Bogan et al., Phys. Rev. Lett. (2017)
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Resonant tunneling spectroscopy of two hole system
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More complex spin-flip tunneling

See Bogan et al., Phys. Rev. Lett. (2017)

(2,0) state is a triplet

Magnetic field (T)

out-of-plane B-field



Effective heavy-hole g*-factor in tilted magnetic field:
g*-factor anisotropy
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See Bogan et al., Phys. Rev. Lett. (2017)

gmin=0.040.04 (for in-plane B-field)

~0.2

~1.45

g*()=g0 sin() +gmin

Minimal heavy-hole light-hole mixing

Two-Hole Transport Magneto-Spectroscopy



Problem of long distance entanglement distribution 
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BSM=Bell state measurement, SEP=Source of entangled photons

AE=Atomic ensemble
PD=Photon detector

Photon-to-spin 
conversion schemes 

with QD circuits

Vrijen & Yablonovitch Physica E (2001)
Yablonovitch Proc IEEE (2003)
Kosaka J. Appl. Phys. (2011)
Fujita arXiv (2015)
Oiwa J Phys Soc Jpn (2017)
…

QD=Quantum dot
CD=Charge detector

BSM node with for example atomic
ensemble quantum memory…

Challenges:

1. Non-destructive signaling of successful
photon storage challenging.
2. Stored photons must be regenerated
before BSM which is an extra step.
3. BSM with linear optics succeeds with
probability of 50% at most.

Attractive Aspects:

1. Photo-generated spins can be heralded
by non-destructive charge detection
techniques.
2. Long spin coherence time (aka native
quantum memory), e.g., 200 s [Bluhm Nat.
Phys. (2011)].
3. BSM with 100% success probability can in
principle be achieved [Engel & Loss Science
(2005); Yokoshi Phys. Rev. B (2010)].
4. Spin-to-photon conversion not required.

See recent review Gaudreau et al., Semicond. Sci. Technol. (2017)



Polarization schemes
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FARADAY CONFIG. FARADAY CONFIG.
FARADAY CONFIG.

VOIGT CONFIG.

VOIGT CONFIG.

Vrijen & Yablonovitch, Physica E (2001) 
Yablonovitch et al, Proc. IEEE (2003)

Kosaka, J. Appl. Phys. (2011)
Oiwa, J. Phys. Soc. Jpn (2017)

See also time-bin schemes: Kosaka Phys. Rev. A (2012)

For transfer 
of polarization-encoded state of photon 

to spin state of QD

Transfer 
state of photon 

polarization
 state of electron

Need to engineer
electron g-factor ~0
[e.g., see Allison PRB 

(2014)] 
& strain…

Transfer 
state of photon 

polarization
 state of heavy-hole

Natural anisotropy gives
heavy-hole g-factor ~0 

for in-plane B-field
[Bogan PRL (2017)]. 

A (near) zero g-factor is an important 
property to realize the necessary V- or -
shaped three-level system for a coherent 

photon-to-spin interface



Throughput scaling model
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Ph=Heralding probability
Rt=Transmission rate

To demonstrate potential performance advantage 
of full BSM capability in spin-based QD scheme 

over optical scheme 
with linear optics and atomic ensemble QMem

See Gaudreau et al., Semicond. Sci. Technol. (2017)



Coherent hybrid interplay between phonon & spin in 
piezoelectric material such as GaAs during manipulation & 
measurement of QDs
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See Korkusinski et al., Phys. Rev. Lett. (2017)
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=25 ns

For surface phonon velocity 2700 m/s, 
=2=8.6 m gives LOC=1.3 eV
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LZS 
spectroscopy 
of S-T+ qubit

PULSED 
GATES
ACT AS

PHONON 
CAVITY



NRC: Canada’s RTO13

E
n

e
rg

y

Detuning

INCOHERENT LOCALIZED PHONONS

Features related to phonon bath:

Features related to coherent and incoherent driving by 
phonon bath See Korkusinski et al., Phys. Rev. Lett. (2017)

Detuning

Landau-Zenner-Stückelberg (LZS) oscillations:
Petta Science (2010)
Studenikin Phys. Rev. Lett. (2012)
Nichol Nat Comm (2015)
…

spin-orbit + phonon

spin-orbit + phonon
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COHERENT DRIVEN RABI

“LZS”

● Visibility of LZS pattern (+ve detuning),
● New interference fringes (below anti-crossing), 

● Extra horizontal lines either side of anti-crossing.

COHERENT FREE RABI

hyp. plus
spin-orbit + phonon pulse 

separation

hyp.


