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Programmatic Drivers

 ASC/ATDM and the broader DOE Exascale Computing Project 
(ECP) are motivated by challenges presented by new 
computing architectures that are on the path to Exascale.

 There have been a number of “Exascale Challenges” 
workshops held in 2011/2012 as a build up to ATDM and ECP

 One such focus area was “Programming Challenges”
 Asynchronous programming paradigms were proposed as a possible 

way to address some of the challenges – productivity and 
performance.

 Asynchronous Many-Task Programming models have been a research 
area spread across many university (mostly) efforts.
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ASC/ATDM Application Drivers

EMPIRE

 Focused on system qualification to 
hostile-ionizing radiation environments

 Coupled Source Region ElectroMagnetic 
Pulse (SREMP) to System Generated 
ElectroMagnetic Pulse (SGEMP) 
simulation.  

 Physical spatial domain on the order of 
kilometers down to system geometry 
on the order of millimeters

 Embedded sensitivity analysis, uncertainty 
quantification and optimization

SPARC/SPARTA
 Virtual flight test simulations of re-entry 

vehicles from bus separation (exo-
atmospheric) to target for normal and 
hostile environments

 SPARC

 Time-accurate wall-modeled LES of 
high Reynolds number (100k-10M) 
hypersonic gas dynamics

 SPARTA

 DSMC code to model low-density 
gas flow in the upper atmosphere

 Embedded sensitivity analysis, 
uncertainty quantification and 
optimization
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ASC/IC Applications: Sierra and RAMSES
• Traditional engineering mechanics, electromagnetics, radiation effects, and circuit 

analysis



How Can AMT Impact Sandia’s ASC Applications?

 Provide an abstraction layer for AMT programming models
 Influence the broader AMT community

 Overarching Questions
 Is it portable across a variety of runtime system technologies?

 Is it interoperable with Kokkos?

 What is its performance and productivity compared to MPI?

7



Outline

 Motivation

 Milestone Overview

 AMT + DARMA Overview

 Milestone Results: Bottom Line Up front

 Deep Dive on Findings
 Generality of the Backend API

 Interoperability

 Performance and Productivity

 Conclusions

 Future Work



Asynchronous Many-Task (AMT) 
Software Stack Demonstration 

 This milestone will evaluate a DARMA-compliant AMT 
runtime software stack comprising ATDM ASD software 
components and existing community AMT runtime 
technologies (e.g., Charm++).  

 We will assess the performance and productivity of this 
software stack on kernels and proxy applications 
representative of the Sandia ATDM applications.  

 As part of the effort to assess the perceived strengths and 
weaknesses of AMT models compared to more traditional 
approaches, experiments will be performed on test bed 
machines and one or more ATS-x system (target is Trinity).   
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Outcomes of milestone

 An initial DARMA-compliant AMT software stack

 A clear understanding of the strength and limitations of
DARMA abstractions and DARMA-compliant software stack in
the context of SNL’s ATDM codes

 Information to guide our future research and development in
this area

10



Milestone Deliverables

1. DARMA-compliant AMT software stack on tests beds and one
or more ATS-x system (intent is to use Trinity).

2. Implementation of ATDM application kernels and proxies
developed for the AMT software stack.

3. An analysis of the productivity, performance, scalability, and
dynamic load balancing capability for the DARMA-compliant
runtime on those ATDM application kernels and proxies.

4. A report to inform the code development road map guiding
the (Sandia) ASC code strategy
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AMT research is focused on mitigating system 
complexities at the runtime system-level
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Image courtesy of www.cal-design.org

 Abstractions provide a 
separation of concerns

 Removal of system-level specifics 
from application code

 Task parallelism 

 Asynchrony, overlap of 
communication and computation

 Load balancing

AMT models require a shift from an imperative to declarative
programming paradigm



Imperative vs declarative programming: a simple 
example
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DeclarativeImperative
Make me a sandwichGet a piece of bread

If likes mustard
Add mustard

If not vegetarian
Add meat

Add cheese
Add veggies
Put more bread on top
Cut in half

Programmer uses explicit 
statements to control program 

state and prescribe order of 
operations

Programmer expresses logic 
without prescribing control-flow



 Directed acyclic graph (DAG) encodes data-
task dependencies

 Enables a runtime system to reason about
 Task and data parallelism

 Overlapping communication and computation

 Load balancing

 When and where to execute work and move data

What is it about AMT models that enables a declarative 
programming approach?

15
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What is DARMA?
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DARMA is a C++ abstraction layer for asynchronous many-task 
(AMT) runtimes.

It provides a set of abstractions to facilitate the expression of 
tasking that map to a variety of underlying AMT runtime system 

technologies. 
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What is DARMA?
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Milestone Deliverables

1. DARMA-compliant AMT software stack on tests beds and one
or more ATS-x system (intent is to use Trinity).

2. Implementation of ATDM application kernels and proxies
developed for the AMT software stack.

3. An analysis of the productivity, performance, scalability, and
dynamic load balancing capability for the DARMA-compliant
runtime on those ATDM application kernels and proxies.

4. A report to inform the code development road map guiding
the (Sandia) ASC code strategy
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Milestone Deliverable 1

A DARMA-compliant AMT software stack 
 We have three different stacks in various stages of development

 DARMA-Charm++: Fully distributed, focus of milestone performance analysis

 DARMA-OnNode: Development tool

 DARMA-HPX: Prototypes* (HPX3, HPX5)

including ATDM ASD components
 DARMA-OnNode+Kokkos (using OpenMP affinity layer for resource 

management) 

 Ongoing research and development with Kokkos and Resource manager 
teams on DARMA-Charm+++Kokkos*

on NGP testbeds and one or more ATS-x system (intent is to use 
Trinity)

 Analyses were performed on Trinity (ATS-1) and Mutrino (Trinity testbed)
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Milestone Deliverable 2

Implementation of ATDM application kernels and proxies developed
for the AMT system

 Three benchmarks
 Written by DARMA developers
 Purpose: highlight benefits/limitations of the programming model and runtime 

– Jacobi: memory-bound computation, latency-bound communication to 
expose overheads

– Molecular dynamics: compute-bound with more bandwidth-intensive 
communication to complement Jacobi

– Simulated Imbalance: assess load balancing capabilities

 Three proxy applications
 Written by application developers
 Purpose: co-development of APIs, acquire subjective feedback, requirements

– PIC: Direct collaboration with EMPIRE application team

» SimplePIC, MiniPIC*

– UQ*: Embedded analysis is a capability used by both applications
– Multiscale*: Ties to IC/Sierra
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Milestone Deliverable 3

An analysis of the productivity, performance, scalability, and
dynamic load balancing capability for the DARMA-compliant runtime
on those ATDM application kernels and proxies

 10000s of runs performed on ATS-1 systems (Haswell and KNL)

 Mutrino: scaling and profiling studies up to 64 nodes (2K cores Haswell), (4K cores KNL)

 Trinity KNL:  

– Scaling studies up to 2K nodes (131K cores)

– Limited access precluded full scaling studies to 4K nodes (262K cores), spot runs 
only at 4K completed

 Trinity Haswell: Some scaling results, given limited access we focused on KNL

 Two compilers: GCC6.3.0 and ICC18.0.0beta (ICC results NDA for now)

 Scaling studies, performance profiling to assess:

 Overheads in balanced use cases with imperative baselines (MPI-only)

 Scaling trends (focus on strong, weak scaling as time permitted)

 Load-balancing capabilities for load-imbalanced use cases

 Subjective feedback from application developers on productivity

 Summary of semantic information gain in DARMA program specification
22*exceeds criteria



Milestone Deliverable 4

A report to inform the code development road map guiding the
(Sandia) ASC code strategy

 Currently in draft form

 ~130 pages so far with details                                                             
regarding Deliverables 1, 2, and 3
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Conclusions

 Productivity:

 Easier to express communication overlap: no Isend/wait pairs, communication progress not 
explicit in application code

 Easier to express tunable granularity: data decomposition can mismatch execution resources 
(overdecomposition) without changing application code

 Easier to enable load balancing: migratable data and work chunks can be transparently 
rebalanced without explicit bookkeeping and rebalancing in application code

 Performance:

 DARMA is scalable (weak and strong) up to 2K nodes

 Load balancing shows major performance gains with minimal effort from app developer

 Deferred execution and sequential task model have overheads (~10% over MPI)

 Expect DARMA performance to improve as we tune the implementation

 Interoperability: It’s complicated, but the initial results are promising; major focus in 
Q1 FY18

 Generality: declarative backend specification facilitates mapping to different 
technologies, development of “common components” across backend 
implementations
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Runtime calls into DARMA to extract 

data-task dependencies 

Application

DARMA

Runtime

OS/ Hardware

Common API
across runtimes

Common API
across runt imes

Front End API
(Application User)

Translation Layer

Back End API
(Specificat ion for Runt ime)

Glue Code
(Specific to each runtime)

Runtime controls construction 

and execution of the DAG

P
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er

By design DARMA captures a declarative specification 
of the application that does not prescribe control-flow
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DARMA’s Backend Runtime System Responsibilities

 Manage data dependencies between tasks (data inputs and outputs) 

 Exploit data usage (write/read/etc.) and sequencing information from the 
frontend to schedule tasks without data conflicts

 Make scheduling decisions based on current state to copy, move, or stall data 
accesses to optimize performance and memory usage

 Determine and track placement of data, tasks, and task collections across distinct 
memory spaces

 Distributed reference counting of data to determine task readiness and schedule 
appropriately

 Manage location of task collection elements to efficiently transfer data for 
publishes (send) and fetches (receive) between elements

 Coordinate data movement utilizing the underlying communication transport layer

 Use frontend interface to serialize/de-serialize arbitrarily typed objects to move 
C++ object across memory spaces

 Implement collective operations (currently only reduce and all-reduce) 

27
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A runtime’s level of native support for these capabilities is a 

contributing factor to the thickness of the “glue code”



Currently there are three back ends in various stages of 
development
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Strategy and implementation details for backend 
mappings are included in the milestone report

 Details for current backends:
 Charm++

 OnNode (threads)

 HPX3 

 HPX5

 Strategy for other backends:
 REALM

 Legion  (Discussion of differences and 
similarities in programming model)

 MPI

30



DARMA-Charm++ Overview

 Manage data dependencies between tasks (data inputs and outputs) 

 Not a direct mapping: implements local and distributed schedulers in Charm++ 
user-space to schedule and track DARMA data

 Determine and track placement of data, tasks, and task collections across distinct 
memory spaces

 Not a direct mapping: utilizes Charm++’s groups, nodegroups, and chare arrays 
to manage DARMA tasks and data.

 Carefully passes DARMA task collections to Charm++ chare arrays to utilize LB 
effectively

 Coordinate data movement utilizing the underlying communication transport layer

 Close mapping: Uses Charm++’s native, platform-specific network layers (ugni, 
ibverbs, tcp/ip, mpi) to transfer data

 Close mapping: Performs serialization/de-serialization by passing data to 
Charm++’s extensive PUP (Pack/UnPack) interface

 Implement collective operations (currently only reduce and all-reduce)

 Not a direct mapping: Charm++ has a native reduce but not an all-reduce. Since 
Charm++ has vastly different collective semantics, reduce and all-reduce are re-
implemented, but re-use Charm++ topological spanning trees
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Interoperability: why is it important?

 Interoperability: The ability of separate 
software components to efficiently share 
execution resources, share memory 
spaces, and exchange information

 Sandia has adopted a component-based 
approach to application development

 Interoperability of independent 
components is crucial to the success of 
the program

33
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Interoperability: what is the underlying issue?

34

 Increases in system parallelism and 
heterogeneity drive increases in

 Number of tools, runtimes, and languages 
aimed at gleaning performance from new 
architectures

 Complexity of component based systems 
developed and deployed

 Challenge: Underlying assumption by 
many frameworks that all system 
resources are available for their use.

Image courtesy of 
www.cal-design.org



DARMA and its underlying runtime must be interoperable 
with node-level and network-level frameworks

 Node-level: Focus is interoperability with Kokkos 
 Kokkos provides performance portability across various architectures and 

has been adopted by Sandia’s ASC applications 

 Interoperability research and development includes:

 Execution-space interoperability

 Memory-space/data management interoperability

 Focus of this year’s milestone: Execution Space Interoperability

 Network-level: Focus is interoperability with MPI
 Handoff of network resources between imperative MPI codes and DARMA 

codes

 Leading AMT runtimes all support this handoff mechanism, Charm++ 
included

 DARMA abstractions naturally lend themselves to the handoff

 Not in this year’s milestone.  Next year will see engineering work on this 
deliverable. 35



Kokkos: performance portability

36

 Kokkos is a C++ library that provides node-level programming 
model abstractions to
 Identify / encapsulate grains of data and parallelizable operations 

 Aggregate these grains with data structure and parallel patterns

 Map aggregated grains onto memory and cores / threads 

 Design is agnostic to inter-node parallelism

 Use case drivers initially focused on integration with MPI until 
recent AMT integration with Uintah



A visual comparison of Imperative+Kokkos and 
AMT+Kokkos highlights differences in use-cases
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A visual comparison of Imperative+Kokkos and 
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A visual comparison of Imperative+Kokkos and 
AMT+Kokkos highlights differences in use-cases
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Plan: Node Resource Manager (NoRMa) for execution 
resources management between Kokkos+DARMA

 Low-level interface: thin layer on-top of HWLOC
 Maintains an inventory of available resources (cores and hardware 

threads)

 Responds to requests from software components for those resources

 Once resources are reserved, threads may be launched onto those 
resources directly by the owning component 

 Optional high-level interface: C++ std::threads

 Allows the “donation” of threads (bound to particular cores) between 
components (e.g. DARMA to Kokkos)

40



Ultimately the OpenMP affinity layer was chosen to 
manage execution resources between DARMA+Kokkos

 ATDM and IC application requirements regarding native 
vendor OpenMP libraries 
 Mixed Kokkos and OpenMP node programming (e.g., OpenMP-

enabled Intel Math Kernel Library calls)

 Precedent of using OpenMP affinity layer in Uintah+Kokkos
integration 

 Charm++ runtime library’s interference with HWLOC controls

41



DARMA-OnNode+Kokkos prototype integration details
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DARMA+Kokkos variant of the Jacobi benchmark used 
to demonstrate execution interoperability
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Preliminary experiments show that partition size 
impacts average iteration time on a KNL node
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This prototype DARMA-OnNode+Kokkos integration feeds 
into ongoing DARMA-Charm++ + Kokkos development work



DARMA-Charm++ + Kokkos research and development 
is in progress and a major focus of FY18 efforts

 Similar to other AMT frameworks, Charm++ is centered on 
explicitly managed pthreads
 OpenMP interoperability was via custom in-house libraries

 Work using vendor-supported OpenMP affinity layer in 
progress – joint with CharmWorks
 Support directly within Charm++ runtime

 Build and test support for integrated software stack
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Performance and Productivity Outline

 DARMA productivity goals

 DARMA performance goals

 How do DARMA’s abstractions enable these goals?

 System target: ATS1 Overview

 Proxy results

 Benchmark results
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DARMA productivity goals

 Application developers can focus on describing data 
decomposition and data effects, not managing execution 
resources (threads, network messages)

 Conflict-free programming model without explicit wait(…) calls

 Load balancing transparent to application, intrinsic to runtime

 Overlap of communication/computation transparent to 
application, intrinsic to runtime

 Ease transition from imperative to declarative programming 
style via deferred execution semantics
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DARMA performance goals

 Deferred execution through C++ templates should be 
lightweight

 Overdecomposition should enable efficient pipelining of 
communication, overlap with computation

 Automatic, application-agnostic load balancers should 
achieve ~80-90% of the benefit  of optimal load balancer

49



DARMA comprises abstractions for data and tasks 

 Asynchronous smart pointers wrap user data and 
track meta-data used to build and annotate the DAG
 darma::AccessHandle<T>

 darma::AccessHandleCollection<T>

 Tasks are annotated via several interfaces
 darma::create_work

 darma::create_concurrent_work

50



How do DARMA’s abstractions enable these goals?

 Automatically capture dependencies and data effects through 
C++ metaprogramming
 Visible code is just variables and functions, no tasks

 Creating DAG directly in user code is tedious and error-prone

 Each data block/variable tracked by logical identifier in 
runtime
 Enables automatic migration of data structures (data movement)

 Enables automatic load balancing

 create_concurrent_work boundaries are natural 
locations for load balancing
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 Parallel algorithms are written to a data decomposition, not 
execution units (process, rank, thread)
 Tunable granularity

 Overdecomposition (communication overlap, load-balancing 
flexibility)

 Communication pattern automatically determined from data 
effects
 Broadcast data if shared and read-only access

 Streaming communication pattern (not yet implemented) if 
commutative access

 Shared-memory optimizations for tasks/data in same process

52

How do DARMA’s abstractions enable these goals?



Trinity/Advanced Technology Systems (ATS)-1 is the 
performance analysis target for the milestone

53(Image courtesy of ACES)

Cray XC30 

KNL: enables emerging architecture,
workflow, runtime system research 

Haswell: enables support for
current ASC/IC programs 



Performance analysis results are captured for both 
Haswell and KNL architectures

54(Images courtesy of 
ACES)

KNL should do better on highly-
parallel, numerically intensive 
code

Haswell should have better serial 
performance, and perform better on 
system tasks (e.g., communication)



Proxy and benchmark overview

 Three benchmarks
 Written by DARMA developers
 Purpose: highlight benefits/limitations of the programming model and runtime 

 Jacobi: memory-bound computation, latency-bound communication to expose 
overheads

 Molecular dynamics: compute-bound with more bandwidth-intensive 
communication to complement Jacobi

 Simulated Imbalance: assess load balancing capabilities

 Three proxy applications
 Written by application developers
 Purpose: co-development of APIs, acquire subjective feedback, requirements

 PIC: Direct collaboration with EMPIRE application team
– SimplePIC, MiniPIC*

 UQ*: Embedded analysis is a capability used by both applications
 Multiscale*: Ties to IC/Sierra

55
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 SNL is developing a new code base for plasma simulations

 Component based approach using the Trilinos framework

 The PIC component of Empire is the basis for our proxy app work

 Two sets on unknowns, mesh data and particles
 Domain decomposition on the fields and the particles can be out of 

balance

 Calculations are localized so colocation is important

 Work can be created in one location and migrate to a different location 

 Potential solution – overdecomposition
 Overdecomposition breaks the problem up into more units than you have 

computational cores

 Load balance at a middle level of work

 Overlap computation and communication
56

EMPIRE: ElectroMagnetic Plasma In Radiation 
Environments



 MiniPIC is an electrostatic PIC miniapp build on MPI+Kokkos.

 In the scope of this L2, a proxy app SimplePIC was developed

 SimplePIC is a particle move kernel from MiniPIC on a structured 
mesh 
 MPI based version of SimplePIC was developed for benchmark purposes. 

 The current code design flow is: SimplePIC → MiniPIC → EMPIRE.

57

From EMPIRE to MiniPIC and SimplePIC



 In FY17 EMPIRE and DARMA teams hired Aram Markosyan
 with computational plasma physics and numerical analysis background

 shared postdoc

 bi-weakly meetings with EMPIRE team 

 Tightly integrated with DARMA team

 Aram’s role was to intensively communicate and represent the 
needs of EMPIRE team in the DARMA design processes 
 Designing and developing SimplePIC proxy app

 SimplePIC and the DARMA backend were built up together this year 

 Every single new and experimental feature of DARMA was first tested on 
the SimplePIC (performance/productivity feedback)

58

Co-Design Efforts 



Impact of tightly coupled collaboration

 Made DARMA a more performant, productive, feature rich 
and robust programming model

 Enabled app developer to look at PIC problem from 
completely new perspectives
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SimplePIC Proxy Overview

 PIC method allows the statistical representation of general 
distribution functions in phase space

 It uses the fundamental equations retaining the full nonlinear 
effects 

 SimplePIC includes only particle move kernel 

 Domain Decomposition: 2-level 3D structured grid 
 Px

☓Py☓Pz grid of boxes (patches), nx☓ny☓nz grid within each box

 Computational costs:
 O(Nparticle) computation (memory bound), O(Nparticle

☓ patchsurf/patchvol) 
communication, 

 Proxy goal: serve as test ground for PIC algorithm design and 
development on DARMA
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SimplePIC Proxy Algorithm

• Decompose problem into patches and assign them to processing units

• For every patch initialize the swarm (particles on that patch)

• For each time step do (iteration)
• For each particle in the swarm do

• Advance particle until it reaches the patch interface or time expires

• If time is not expired do

• Put particle in the migrants (a buffer, corresponding to that patch interface) 

• Remove particle from swarm

• Compute the total number of migrants in the entire domain

• While total number of migrants > 0 do (micro-iterations)

• For every patch interface exchange the migrants

• For each interface do

• For each particle in migrants do

• Advance particle until it reaches the patch interface or time expires

• If time expired add particle to swarm, otherwise put in migrants

• Compute the total number of migrants
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Balanced and Unbalanced SimplePIC Studies
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 Balanced use case assesses overheads with respect to MPI-only 
implementation
 Every computational cell has N randomly placed particles (5 - 30), with 

random velocities (|v| = const). 

 Imbalanced use case assesses benefits of overdecomposition
and load balancing
 Initially place 80% of particles into the 20% of the domain creating load 

imbalance in the system. 

 The computational experiment was designed such that the system will 
reach to a fully balanced state in 500 iterations and come to the initial 
state in 1000 iterations. 

 In all studies we kept CFL number to a value of 0.96, which 
translates into at most 2 micro-iterations per time step. 



KNL architecture provides many possibilities for on-
node parallelism

 Empirical exploration of cpu-binding and affinity tradeoffs

 Increasing number of communication threads/node 
 Fewer threads available for computation

 Communication is driven forward more quickly 

 Increasing number of hyperthreads/core
 More threads actively computing

 Potential cache conflicts

 Weakened serial performance per thread

 CPU binding options
 Binding tasks to physical cores only or to specific hyperthreads
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A CPU binding and affinity study determined proper 
settings on KNL for SimplePIC 
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A variety of settings were 
tested for MPI and DARMA.

Optimal settings:
MPI: 4-way hypertheading
with cpu_bind = threads

DARMA: 13 processes per 
node, each with 
• 16 compute threads (4 

compute cores) 
• 1 communication thread 



Strong scaling of balanced SimplePIC 
up to 131K cores/2K nodes (KNL)
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1.4B particles
143M cells

138B particles
4.6B cells

Mutrino (KNL, 4K cores) Trinity (KNL, 131K cores)

 DARMA overhead with respect to MPI is -5-24%.

 On 2K cores, grain size is too small and, hence, 
degraded scaling.

 MPI scaling degradation is likely due to MPI only 
launch on KNL. 

 DARMA scales super-linearly up to 131K 
cores. 



Strong scaling of balanced SimplePIC 
up to 32K cores/2K nodes (Haswell)
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4.2B particles
141M cells

136B particles
4.5B cells

Mutrino (Haswell, 2K cores) Trinity (Haswell, 32K cores)

 DARMA scales consistently good on up to 
32K cores. 

 Slight overheads can be explained by the 
small problem size on higher core counts. 

 DARMA overhead with respect to MPI is 12-
19%.

 On 2K cores, grain size is too small and, 
hence, DARMA does not have perfect linear 
scaling.

 MPI scales ideally on up to 2K cores.



DARMA Strong scaling of imbalanced SimplePIC 
up to 131K cores/2K nodes (KNL)
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1.8B particles
55M cells
ODF = 8

40B particles
3.4B cells
ODF = 4

Mutrino (KNL, 2K cores) Trinity (KNL, 131K cores)

 For lower core counts, load balancing 
provides around 50% speedup.

 For higher core counts, at least at this 
overdecomposition level, speed up due to a 
load balancer is 20%. 

 These trends are similar for Haswell. 

 Similar trends are present on Trinity at 
these higher scales. 
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DARMA Time Profile Graph of Balanced SimplePIC on 
2k Cores/64 nodes (Haswell) for 3 Iterations

 x-axis is time and 
y-axis are 
different cores

 Most of the time 
is spent executing 
application tasks

 There is a small 
amount of idle 
time (white) at 
the end of each 
iteration

ODF=1

ODF=8



69

DARMA Percentage Utilization Graph of Balanced
SimplePIC on 2k Cores/64 nodes (Haswell) for 3 Iterations

ODF=1

ODF=8

 x-axis is time and y-axis is the 
proportional aggregate of work 
type spent across the worker 
cores

 With an overdecomposition 
factor of 8 (ODF=8) the data 
transfer time is slightly increased

 The idle time at the end of the 
iteration is slightly reduced with 
ODF=8 because the system is 
able to overlap communication 
with computation
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DARMA Time Profile Graph of Balanced SimplePIC on 
2k Cores/64 nodes (Haswell) for last 2 micro iterations

ODF=1

ODF=8

 Processor utilization for 2 micro 
iterations 

 Note the scale: this is 25 
milliseconds

 Overdecomposition increases 
the execution time because data 
transfer is increased (note the 
increase in green and blue area) 

 More particles must cross the 
boundaries with smaller boxes

 Overall processor utilization is 
increased because there is more 
overlap with communication



DARMA Projection views of imbalanced SimplePIC 
on 2K cores (Haswell)
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 Significant improvement 
in load imbalance with 
more frequent calls to 
load balancer. 

 The overhead (cost) of 
load balancer is 
essentially constant. 

 Over 50% CPU utilization 
increase after the first 
load balancer call (in both 
cases).



Conclusions on SimplePIC Performance Study

 Balanced SimplePIC study stressed DARMA overheads with 
respect to MPI. In the worst cases we are off by 25%. 

 Balanced SimplePIC also showed excellent scalability on 131K 
cores (2K KNL nodes).

 Imbalanced SimplePIC demonstrated the benefits of 
overdecomposition and load balancing on 131k cores (2K KNL 
nodes), while maintaining strong scalability.
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Lessons learned on productivity for SimplePIC proxy

 “Manual (dynamic) overdecompositon and load balancing in 
MPI can be very tedious and error prone task even for 
structured PIC. For unstructured case, the situation is very 
complex.” 

 “Data decomposition in DARMA provides intuitive 
mechanisms for work load balancing, while runtime handles 
scheduling.”

 ”DARMA abstractions are fairly intuitive and provide a 
productive environment for code design and development.”

73Quotes from application developer



From SimplePIC to MiniPIC (and to EMPIRE)

 As designed, SimplePIC serves as a test ground for a algorithmic 
exploration for MiniPIC (EMPIRE).

 MiniPIC DARMA work is in progress 
 Move kernel DARMA-tized

 DSMC kernel in progress

 FY18  efforts will focus on full DARMA+Kokkos PIC kernels in MiniPIC for 
uptake into EMPIRE
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Uncertainty Quantification (UQ)

 UQ is identified as one of the main application-driven exascale targets due to:

 growing importance and impact on predictive modeling and simulations, 
e.g. reliability analysis

 challenges due to atypical workloads

 Both ATDM applications have an emphasis on embedded UQ capabilities (e.g., 
embedded sampling, sensitivity analysis, V&V) 

 Sampling-based UQ methods are the most common approaches currently used 
for exploring UQ in large application codes. 

 As part of FY17, we have started exploring how to tackle UQ in DARMA.
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Two Demonstrators Developed within UQ

 Monte Carlo Analysis for 1D stochastic diffusion equation
 Challenges and features:

 Scheduling/mapping of O(million) independent tasks 

 No point-to-point communication involved except for global collectives

 Multi Level Monte Carlo Analysis for 1D stochastic PDE
 Challenges and features:

 Multiple sets of independent tasks of varying computational cost 

 No communication involved except for global collectives

 Dynamic addition of new levels based

 Dynamically changing number of samples per level

 Potentially highly imbalanced application due to inhomogeneous 
convergence time of PDE solves 
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DARMA Strong Scaling for Monte Carlo
up to 64 nodes (2K cores)  Haswell

 n: number of PDE samples 
per DARMA index

 Total number of 
samples: N=n*2880, where 
2880 is tot # of threads (96 
nodes * 30 threads/node).

 Each PDE solve = linear 
system of 4,194,304 degrees 
of freedom.

 Good scaling (as expected). 
Cache/memory effects 
appear for larger problems.
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DARMA Strong Scaling for Multi Level Monte Carlo 
up to 96 Nodes (Haswell and KNL)
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 Adaptive MLMC starting from 4 
fixed initial number of levels.
Coarsest level has 4096 grid points.

 Workload varies from O(billion) 
``small’’ tasks for coarse level, to 
O(100) for finest level.

 Good scaling. Not enough runs to 
pinpoint the causes behind Haswell
trend.



Lessons Learned from UQ Studies

 “Forward problems are typically characterized by/treated with many 
independent samples, making them a natural fit for AMT models.”

 “Task/data reusability can be a key feature to leverage for sampling 
methods. E.g.: use as initial condition the final solution of other tasks to 
potentially accelerate convergence. This is a feature that we have not 
explored yet, but are planning to within the next fiscal year.”



 “Dynamic workload and load balancing for MLMC is a good feature to 
explore and for testing work scheduling and speculative execution 
techniques. “

 “Future work will involve more heterogeneous problems: impact of load 
balancing, dynamic parallelism, optimal task mapping.”

79Quotes from application developer



Multiscale Solid Mechanics Proxy

 Investigate the application of DARMA within an engineering analysis code 
that is representative of ASC IC codes (e.g., Sierra/SolidMechanics)

 Evaluate the performance of DARMA against other parallelization 
strategies (serial, MPI, Tpetra) under a variety of load imbalance scenarios

 Standard geometric partition schemes will lead to large load imbalance

Purpose

Modeling capabilities

 Lagrangian finite element code for the solution of dynamic solid 
mechanics problems on non-uniform meshes

 Single-scale and multiscale capabilities (like FE2)



Multiscale Solid Mechanics Proxy
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 FE squared (FE2) multiscale approach

 Representative volume elements (RVEs) are associated with material 
points in the macroscale model

 RVE models acts as high-fidelity constitutive models
 RVE models are solved as independent finite element problems

 Information exchange between macroscale model and the RVE models

DARMA has the potential to 
effectively manage the 

computational complexity of 
the multiscale problem



Overview of Multiscale Solid Mechanics Proxy 
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 Application code written from scratch in C++

 Minimal use of third-party libraries, no application-level MPI

 Compartmentalize data structures and procedures for use with DARMA 
concurrent work paradigm

 Virtually all data stored in simple, serializable containers



Lessons Learned in Multiscale Solid Mechanics Proxy
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 “Adoption of DARMA requires a shift is developer mindset and a 
revamping of conventional architecture for engineering analysis codes”

 “Moving toward an AMT runtime is best achieved by conceptualizing 
the application software as a set of tasks with well-defined 
dependencies”

 Division of labor:

 “Application developers are responsible for the design and implementation 
of compartmentalized tasks and data containers”

 “DARMA is responsible for the execution of tasks, parallelization, and many 
aspects of code performance”

Quotes from application developer



Summary of quotes on productivity from our 
application developers

 “DARMA provides an intuitive means to reason about your 
problem in an AMT way.” 

 “Deferred semantics is a significant help for those who are 
used to imperative programming only.”

 “Moving toward an AMT runtime is best achieved by 
conceptualizing the application software as a set of tasks with 
well-defined dependencies”

 “Future work should include focus on documentation and 
productivity tools (timers, performance profilers, debuggers)”
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2D Jacobi Linear Solve Benchmark
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• Solve Ax = b derived from basic 2D heat equation

• Nearest-neighbor communication of halo region on 2D grid
• 2D stencil computation within a patch

• Byte/flop ratio very high, only a few flops per grid point
• Only small halo region communicated
• Jacobi is memory-bound computation, with latency-bound communication



Haswell on Mutrino (64 nodes) shows good strong 
scaling, relative overhead increases at scale
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• Constant overhead (performance difference) relative to MPI
• Overhead percent increases at larger scales

5% difference

12% difference



Jacobi2D Haswell (up to 64 nodes) strong scaling trends 
are consistent across problem sizes
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• Percent difference decreases with larger 
problem sizes (task sizes)

• Larger task sizes better amortize 
scheduling overheads

6% difference

9% difference

2% difference

7% difference



Jacobi2D KNL (up to 64 Nodes/4K cores) shows super-
linear strong scaling for both MPI and DARMA
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• Memory footprint decreases as problem size per node shrinks at  
larger scales

• Super-linear effects likely related to better cache/MCDRAM usage



Jacobi2D KNL (up to 64 Nodes/4K cores) strong scaling 
trends are consistent across problem sizes
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• Superlinear discontinuity delayed at larger problem sizes
• Discontinuity corresponds exactly to 16GB threshold for 

MCDRAM capacity



Jacobi2D KNL (up to 2048 nodes/131K cores) also has 
super-linear strong scaling, relatively constant overhead
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6% difference

13% difference



Jacobi2D KNL (up to 2048 nodes/131K cores) weak 
scaling results consistent with MPI, but with outlier
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Outliers need additional runs on 
dedicated reservation

• Outliers were run on congested KNL session on Trinity
• DARMA performance stays relatively flat 
• No superlinear benefit from MCDRAM as in strong scaling



All-reduce every iteration limits asynchronous execution, 
blocks scheduling new computation/communication
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Overdecomposition factor = 1 

• Red is active computation, 
white is idle time

• Execution shows intermittent 
stalls between iterations

• Peaks show messages sent 
in a time interval

• Communication becomes 
bursty as messages wait for 
convergence check



Overdecomposition improves bursty communication, 
makes idle times worse performance
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Overdecomposition factor = 4 

• Red is active computation, 
white is idle time

• Execution shows intermittent 
stalls between iterations

• Overdecomposition makes 
all-reduce more expensive, 
increasing idle time

• Communication overlap with 
overdecomposition makes 
less bursty messages

• Cannot compensate 
synchronization cost of all-
reduce



Simulate “speculative execution”, perform all-reduce 
every N iterations. Idle time shrinks significantly.
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Overdecomposition factor = 4 

• Red is active computation, 
white is idle time

• All-reduce only done every 10 
iterations

• Stalls in execution is much 
less pronounced

• Communication overlap best 
when combining less frequent 
all-reduces with 
overdecomposition



Lessons learned on productivity for Jacobi benchmark

 Tunable granularity, overdecomposition, communication overlap occurs 
naturally in DARMA with no additional work

 MPI without overdecomposition is not difficult to write, but lacks any 
significant overlap of communication and computation

 MPI with overdecomposition is very difficult to write, requires error-prone or 
inefficient use of MPI_Test or MPI_Waitany

 Jacobi memory-bound, needs tiling more than communication overlap

 Some tiling naturally occurs in DARMA with tunable granularity, but auto-
tuning tiling optimizations to Mutrino not performed

 Tiling to L1 cache size is fine-grained, difficult for DARMA to do but 
theoretically possible without app changes given declarative model

 Non-optimized collectives combined with conditionals (while loop) limited 
DARMA scheduler performance

 Forced DARMA code changes (check convergence every N iterations)

 Developers should not be refactoring to optimize code with conditionals

 Better collectives, speculative execution needed in runtime
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Molecular Dynamics Benchmark Overview

 Stages:
 Exchange particles in neighboring cells (communication)

 Compute pairwise forces (Lennard-Jones potential) between all 
neighboring particles

 Accelerate particles and update atom positions

 Migrate particles that move outside their original cell (communication) 

 N particles per box: O(N) communication O(N^2) computation

 Benchmark goal: compute-bound with more bandwidth-
intensive communication to complement Jacobi2D
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Haswell (up to 64 nodes/2K cores) shows strong scaling 
with overheads dependent on work-grain size
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10%

-25%

-15%

39%

• More patches with fewer particles 
stresses communication system, 
particularly for MPI

• MPI shows superlinear scaling with 
fewer patches per core  

• DARMA performs better with larger 
patch sizes (more particles)

• MPI struggles with extra data 
movement in larger patches



KNL (up to 64 nodes) shows similar trends with decent 
strong scaling, overheads depend on work-grain size 
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-20%

22%10%

4%

• Superlinear scaling likely due to 
lower memory footprint, MCDRAM 

• MPI struggles with extra data 
movement in larger patches



KNL (up to 2048 nodes/131K cores) highlights strong 
scaling for DARMA-Charm++ backend
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• Consistent with Mutrino KNL, MPI struggles with communication at larger 
scales

• MPI implementation ̀ `best initial attempt’’ at overdecomposition in MPI
• Difficult to identify as DARMA performing well or MPI performing poorly



On KNL, DARMA consistently outperforms MPI
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Note differences in 
scales 

Mutrino Trinity

120 patches/node and 1200 particles/patch

• MPI implementation ̀ `best initial attempt’’ at overdecomposition in MPI
• Difficult to identify as DARMA performing well or MPI performing poorly



Lessons learned on productivity for molecular dynamics

 Some MPI codes overdecompose (many boxes per rank), but 
still aggregate all messages (box sends) to a given neighbor

 Message aggregation blocks computation until all particles 
are sent

 Avoiding message aggregation in MPI and pipelining 
communication was error prone, tedious tag matching of box 
send with box receive of same size

 Overdecomposition natural in DARMA with focus on data 
decomposition in application, runtime handles scheduling

 No need for message aggregation or tedious tag matching 
schemes
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Simulated Load Imbalance Benchmark Overview

 Generates adversarial imbalanced work distribution with 
known optimal solution

 Benchmark can be run in three modes
 Perfectly balanced known optimal distribution (best case)

 Adversarial imbalance with no load balancing (worst case)

 Adversarial imbalance with load balancing enabled

 Benchmark goal: Assess interplay of load balancing overheads 
and quality of load balancing 
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Tasks
Linear (Uniform)

Distribution of Sizes 
Worker 0 Worker 1 Worker 0 Worker 1

Imbalanced Balanced



Different load balancers have cost, scaling, and 
optimality tradeoffs
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LB Type LB Name Description Benefits Drawbacks

Centralized GreedyLB
Heap-based,
considers all tasks 
for redistribution

Provides high quality 
distribution

Not scalable, expensive 
in memory and space

Centralized RefineLB
Heap-based, 
considers only tasks 
above threshold

Fast for centralized 
load balancer

Not scalable, quality 
might be low

Distributed,
gossip-based

DistributedLB
Gossip-based,
probabilistic transfer

Extremely fast, fully 
decentralized

Quality may be low

Distributed,
tree-based

HierarchicalLB
Tree-based,
hierarchical transfer

Fast, typically provides 
high quality 

Greedy algorithm may
not be aggressive

Distributed,
group-based

HybridLB
Creates subgroups 
of processors and 
applies centralized

Can reuse centralized 
LB schemes

May be expensive and 
slow with large groups



Synthetic imbalance on Haswell (up to 64 nodes/2K 
cores) shows overheads, scalabilities of each balancer
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• Only Greedy, Hybrid load balancers competitive with optimal balance baseline
• All load balancers relatively scalable up to 64 nodes, different quality solutions 

though
• All load balancers better than worst-case baseline with no load balancing
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• Only Greedy, Hybrid load balancers competitive with optimal balance baseline
• All load balancers relatively scalable up to 64 nodes, different quality solutions 
• All load balancers better than worst-case baseline with no load balancing

Synthetic imbalance on KNL (up to 64 nodes/2K cores) 
shows overheads, scalabilities of each balancer



Large runs on Trinity (up to 2K nodes) highlight 
scalability differences between load balancers (KNL)
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• Refine load balancers skipped, could not finish in 30 minute time cutoff 
• All load balancers still relatively scalable, Hierarchical has best scalability but 

worse quality of load balance
• Only hybrid load balancer gets near optimal balance with low load balance 

overheads



Load balancers redistribute work, shrink idle time 
between iterations 
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• Red is active computation, 
white is idle time for each 
thread

• Execution shows certain 
threads idling while large 
tasks finish

• First iteration imbalanced, but 
idle time shrinks as load 
balancer finds nearly optimal 
solution on second iteration

No load balancing

Greedy load balancer



Some load balancers improve results, but solution is 
not optimal
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• Red is active computation, 
white is idle time for each 
thread

• Execution shows certain 
threads idling while large 
tasks finish

• First iteration imbalanced, but 
idle time shrinks as load 
balancer finds nearly optimal 
solution on second iteration

Hierarchical load balancer

Hybrid load balancer



Lessons learned on productivity for 
synthetic imbalance benchmark

 Even for very basic linear imbalance problem, there is no 
direct mapping to a scalable MPI collective, routine to derive 
optimal task distribution

 MPI_Gather-Sort-MPI_Scatter could be easily implemented 
for balancing, but is not scalable 

 Ad hoc implementation of app-specific load balancers would 
be tedious and error-prone

 Load balancing handled transparently in DARMA-Charm++ 
application, although some tuning may be required to select 
best load balancer for each application

 Hybrid balancer seems a good universal starting choice
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Conclusions

 Productivity:

 Easier to express communication overlap: no Isend/wait pairs, communication progress not 
explicit in application code

 Easier to express tunable granularity: data decomposition can mismatch execution resources 
(overdecomposition) without changing application code

 Easier to enable load balancing: migratable data and work chunks can be transparently 
rebalanced without explicit bookkeeping and rebalancing in application code

 Performance:

 DARMA is scalable (weak and strong) up to 2K nodes

 Load balancing shows major performance gains with minimal effort from app developer

 Deferred execution and sequential task model have overheads (~10% over MPI)

 Expect DARMA performance to improve as we tune the implementation

 Interoperability: It’s complicated, but the initial results are promising; major focus in 
Q1 FY18

 Generality: declarative backend specification facilitates mapping to different 
technologies, development of “common components” across backend 
implementations
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Future Work

 Focus of DARMA team next year
 Interoperability

 Hardening/Tuning

 Productivity tools (timers, performance profilers, debugging aides)

 Devops, documentation, and testing

 Focus on Empire and SPARC requirements 

 Continued engagement with UQ, Multiscale teams 

 Bigger picture/longer term efforts
 ATS-2

 Best practices and standards-based runtime solutions
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