SAND2017- 9790PE

ASC ATDM Level 2 Milestone #6015:
Asynchronous Many-Task Software Stack

Demonstration

Final Review
August 9, 2017
Sandia National Laboratories

@ENERGY VISA

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

The Milestone Team

= Janine C. Bennett

= Matt Bettencourt
= Robert Clay

= H. Carter Edwards
"= Micheal Glass

= David Hollman

= Hemanth Kolla

* Jonathan Lifflander
= David Littlewood

Aram H. Markosyan
Stan Moore
Stephen Olivier

J. Antonio Perez
Eric Phipps
Francesco Rizzi
Nicole Slattengren
Dan Sunderland
Jeremiah J. Wilke

The Review Committee

= Robert Armstrong, SNL (Committee Chair)
= Patricia Hough, SNL

= Michael Tupek, SNL

= David Daniel, LANL

= David Richards, LLNL

= Rajeev Thakur, ANL

Outline

= Motivation
= Milestone Overview
= AMT + DARMA Overview
= Milestone Results: Bottom Line Up front
= Deep Dive on Findings
= Generality of the Backend API

= |nteroperability
= Performance and Productivity

= Conclusions
= Future Work

7| Netora

Programmatic Drivers

= ASC/ATDM and the broader DOE Exascale Computing Project
(ECP) are motivated by challenges presented by new
computing architectures that are on the path to Exascale.

= There have been a number of “Exascale Challenges”
workshops held in 2011/2012 as a build up to ATDM and ECP

= One such focus area was “Programming Challenges”

= Asynchronous programming paradigms were proposed as a possible
way to address some of the challenges — productivity and
performance.

= Asynchronous Many-Task Programming models have been a research
area spread across many university (mostly) efforts.

ASC/ATDM Application Drivers) o

EMPIRE SPARC/SPARTA
" Focused on system qualification to = Virtual flight test simulations of re-entry
hostile-ionizing radiation environments vehicles from bus separation (exo-

atmospheric) to target for normal and
hostile environments

= SPARC
= Time-accurate wall-modeled LES of

= Coupled Source Region ElectroMagnetic
Pulse (SREMP) to System Generated
ElectroMagnetic Pulse (SGEMP)

simulation. high Reynolds number (100k-10M)
= Physical spatial domain on the order of hypersonic gas dynamics
kilometers down to system geometry = SPARTA

on the order of millimeters = DSMC code to model low-density

= Embedded sensitivity analysis, uncertainty gas flow in the upper atmosphere

quantification and optimization = Embedded sensitivity analysis,
uncertainty quantification and
optimization

ASC/IC Applications: Sierra and RAMSES

* Traditional engineering mechanics, electromagnetics, radiation effects, and circuit

analysis 6

How Can AMT Impact Sandia’s ASC Applications?)

= Provide an abstraction layer for AMT programming models
= |nfluence the broader AMT community
= Qverarching Questions

= |s it portable across a variety of runtime system technologies?
= |sitinteroperable with Kokkos?

= What is its performance and productivity compared to MPI?

. Sandia
Outline Natwl

= Motivation
= Milestone Overview
= AMT + DARMA Overview
= Milestone Results: Bottom Line Up front
= Deep Dive on Findings
= Generality of the Backend API

= |nteroperability
= Performance and Productivity

= Conclusions
= Future Work

Asynchronous Many-Task (AMT) A
Software Stack Demonstration

= This milestone will evaluate a DARMA-compliant AMT
runtime software stack comprising ATDM ASD software
components and existing community AMT runtime
technologies (e.g., Charm++).

= We will assess the performance and productivity of this
software stack on kernels and proxy applications
representative of the Sandia ATDM applications.

= As part of the effort to assess the perceived strengths and
weaknesses of AMT models compared to more traditional
approaches, experiments will be performed on test bed
machines and one or more ATS-x system (target is Trinity).

9

Sandia
Outcomes of milestone) o

= An initial DARMA-compliant AMT software stack

= A clear understanding of the strength and limitations of
DARMA abstractions and DARMA-compliant software stack in
the context of SNL's ATDM codes

= |nformation to guide our future research and development in
this area

Milestone Deliverables Pl et

1. DARMA-compliant AMT software stack on tests beds and one
or more ATS-x system (intent is to use Trinity).

2. Implementation of ATDM application kernels and proxies
developed for the AMT software stack.

3. An analysis of the productivity, performance, scalability, and
dynamic load balancing capability for the DARMA-compliant
runtime on those ATDM application kernels and proxies.

4. A report to inform the code development road map guiding
the (Sandia) ASC code strategy

. Sandia
Outline Natwl

= Motivation
= Milestone Overview
= AMT + DARMA Overview
= Milestone Results: Bottom Line Up front
= Deep Dive on Findings
= Generality of the Backend API

= |nteroperability
= Performance and Productivity

= Conclusions
= Future Work

AMT research is focused on mitigating system) e,
complexities at the runtime system-level

= Abstractions provide a '
separation of concerns or—

(High Capacity,
Memory I Low Bandwidth)

(Low Capacity, High Bandwidth)

= Removal of system-level specifics
from application code

= Task parallelism

Integrated NIC

= Asynchrony, overlap of
communication and computation comni

COMPUTER
Image courtesy of www.cal-design.org O S E

Core Coherence Domain

= Load balancing

AMT models require a shift from an imperative to declarative
programming paradigm

13

Imperative vs declarative programming: a simple) i,
example

Imperative Declarative

Get a piece of bread Make me a sandwich
If likes mustard
Add mustard
If not vegetarian
Add meat
Add cheese
Add veggies
Put more bread on top
Cut in half

Programmer uses explicit
statements to control program Programmer expresses logic
state and prescribe order of without prescribing control-flow
operations

14
-

What is it about AMT models that enables a declarative

) e,
programming approach?
= Directed acyclic graph (DAG) encodes data-
task dependencies data-task graph
\subset
= Enables a runtime system to reason about \ J
= Task and data parallelism v 1 . /
= Qverlapping communication and computation

\
reads% A
= Load balancing N

= \When and where to execute work and move data

& What is DARMA? i) e _

DARMA is a C++ abstraction layer for asynchronous many-task
(AMT) runtimes.

It provides a set of abstractions to facilitate the expression of
tasking that map to a variety of underlying AMT runtime system
technologies.

Sandia

What is DARMA? Laborors

Common API Front End API
across runtimes (Application User)

Translation Layer

Common API Back End API

(Specification for Runtime)

across runtimes

Runtime calls into DARMA to extract
data-task dependencies

Runtime controls construction
and execution of the DAG

17

. Sandia
Outline Natwl

= Motivation
= Milestone Overview
= AMT + DARMA Overview
= Milestone Results: Bottom Line Up front
= Deep Dive on Findings
= Generality of the Backend API

= |nteroperability
= Performance and Productivity

= Conclusions
= Future Work

Milestone Deliverables Pl et

1. DARMA-compliant AMT software stack on tests beds and one
or more ATS-x system (intent is to use Trinity).

2. Implementation of ATDM application kernels and proxies
developed for the AMT software stack.

3. An analysis of the productivity, performance, scalability, and
dynamic load balancing capability for the DARMA-compliant
runtime on those ATDM application kernels and proxies.

4. A report to inform the code development road map guiding
the (Sandia) ASC code strategy

Milestone Deliverable 1

A DARMA-compliant AMT software stack
= We have three different stacks in various stages of development
= DARMA-Charm++: Fully distributed, focus of milestone performance analysis
= DARMA-OnNode: Development tool
* DARMA-HPX: Prototypes* (HPX3, HPX5)

including ATDM ASD components

= DARMA-OnNode+Kokkos (using OpenMP affinity layer for resource
management)

= Ongoing research and development with Kokkos and Resource manager
teams on DARMA-Charm+++Kokkos*

on NGP testbeds and one or more ATS-x system (intent is to use

Trinity)

= Analyses were performed on Trinity (ATS-1) and Mutrino (Trinity testbed)

20

Milestone Deliverable 2 th s:"l:?';m

Implementation of ATDM application kernels and proxies developed

for the AMT system

= Three benchmarks
= Written by DARMA developers
= Purpose: highlight benefits/limitations of the programming model and runtime
— Jacobi: memory-bound computation, latency-bound communication to
expose overheads
— Molecular dynamics: compute-bound with more bandwidth-intensive
communication to complement Jacobi
— Simulated Imbalance: assess load balancing capabilities
= Three proxy applications
= Written by application developers
= Purpose: co-development of APIs, acquire subjective feedback, requirements
— PIC: Direct collaboration with EMPIRE application team
» SimplePIC, MiniPIC”
— UQ": Embedded analysis is a capability used by both applications
— Multiscale™: Ties to IC/Sierra

21
-

Milestone Deliverable 3) B

An analysis of the productivity, performance, scalability, and
dynamic load balancing capability for the DARMA-compliant runtime
on those ATDM application kernels and proxies

= 10000s of runs performed on ATS-1 systems (Haswell and KNL)

= Mutrino: scaling and profiling studies up to 64 nodes (2K cores Haswell), (4K cores KNL)
= Trinity KNL:
— Scaling studies up to 2K nodes (131K cores)

— Limited access precluded full scaling studies to 4K nodes (262K cores), spot runs
only at 4K completed

= Trinity Haswell: Some scaling results, given limited access we focused on KNL
= Two compilers: GCC6.3.0 and ICC18.0.0beta (ICC results NDA for now)
= Scaling studies, performance profiling to assess:
= Overheads in balanced use cases with imperative baselines (MPI-only)
= Scaling trends (focus on strong, weak scaling as time permitted)
» Load-balancing capabilities for load-imbalanced use cases
= Subjective feedback from application developers on productivity
= Summary of semantic information gain in DARMA program specification

E 3 . .
exceeds criteria 22
e

Milestone Deliverable 4) B

A report to inform the code development road map guiding the
(Sandia) ASC code strategy

= Currently in draft form]

= ~130 pages so far with details Do
regarding Deliverables 1, 2, and 3

ASC ATDM Level 2 Milestone #6015:
Asynchronous Many-Task Software Stack
Demonstration

@ Sandia National Laboratories

23

. |i|-| Sandia
Conclusions e

= Productivity:

= Easier to express communication overlap: no Isend/wait pairs, communication progress not
explicit in application code

= Easier to express tunable granularity: data decomposition can mismatch execution resources
(overdecomposition) without changing application code

= Easier to enable load balancing: migratable data and work chunks can be transparently
rebalanced without explicit bookkeeping and rebalancing in application code

= Performance:
= DARMA is scalable (weak and strong) up to 2K nodes
= Load balancing shows major performance gains with minimal effort from app developer
= Deferred execution and sequential task model have overheads (~10% over MPI)
= Expect DARMA performance to improve as we tune the implementation

= |nteroperability: It’s complicated, but the initial results are promising; major focus in
Q1 FY18

= Generality: declarative backend specification facilitates mapping to different
technologies, development of “common components” across backend
implementations

24
-

. Sandia
Outline Natwl

= Motivation
= Milestone Overview
= AMT + DARMA Overview
= Milestone Results: Bottom Line Up front
= Deep Dive on Findings
= Generality of the Backend API

= |nteroperability
= Performance and Productivity

= Conclusions
= Future Work

By design DARMA captures a declarative specification () i,
of the application that does not prescribe control-flow o

Common API Front End API
across runtimes (Application User)

Translation Layer

Common API Back End API
across runtimes L (Specification for Runtime)

Runtime calls into DARMA to extract
data-task dependencies

T~

Runtime controls construction
and execution of the DAG

7| Netora

DARMA'’s Backend Runtime System Responsibilities

= Manage data dependencies between tasks (data inputs and outputs)

= Exploit data usage (write/read/etc.) and sequencing information from the
frontend to schedule tasks without data conflicts

= Make scheduling decisions based on current state to copy, move, or stall data
accesses to optimize performance and memory usage

= Determine and track placement of data, tasks, and task collections across distinct
memory spaces

= Distributed reference counting of data to determine task readiness and schedule
appropriately

= Manage location of task collection elements to efficiently transfer data for
publishes (send) and fetches (receive) between elements

= Coordinate data movement utilizing the underlying communication transport layer

= Use frontend interface to serialize/de-serialize arbitrarily typed objects to move
C++ object across memory spaces

= Implement collective operations (currently only reduce and all-reduce)

27

Sandia
m National
Laboratories

DARMA'’s Backend Runtime System Responsibilities

Manage data dependencies between tasks (data inputs and outputs)

= Exploit data usage (write/read/etc.) and sequencing information from the
frontend to schedule tasks without data conflicts

= Make scheduling decisions based on current state to copy, move, or stall data
accesses to optimize performance and memory usage

Determine and track placement of data, tasks, and task collections across distinct
memory spaces

= Distributed reference counting of data to determine task readiness and schedule
appropriately

= Manage location of task collection elements to efficiently transfer data for
publishes (send) and fetches (receive) between elements

Coordinate data movement utilizing the underlying communication transport layer

= Use frontend interface to serialize/de-serialize arbitrarily typed objects to move
C++ object across memory spaces

Implement collective operations (currently only reduce and all-reduce)

A runtime’s level of native support for these capabilities is a .
contributing factor to the thickness of the “glue code” T

Currently there are three back ends in various stages of () i,
development

Common API Front End API
across runtimes (Application User)

Translation Layer

Common API Back End API

(Specification for Runtime)

across runtimes

focus of development prototype

milestone tool

29
-

Strategy and implementation details for backend) e,
mappings are included in the milestone report

= Details for current backends:

SANDIA REPORT
= Charm++
= OnNode (th reads) ASC ATDM Level 2 Milestone #6015:
Asynchronous Many-Task Software Stack
] H PX3 Demonstration

Janine C. Bennett, Matthew T. Bettencourt, Robert L. Clay,

Harold C. Edwards, Micheal W. Glass, David S. Hollman,

= H P X 5 Hermanth Kolla, Janathan J. Lifflander, David J. Littiewood,
Aram H. Markosyan, Stan G. Moore, Stephen L. Olivier,

J. Antonio Perez, Eric T. Phipps, Francesco Rizzi,

Nicole L. Daniel Sunderland, J iah J. Wilke

= Strategy for other backends:
= REALM

= Legion (Discussion of differences and

similarities in programming model) o laitae
ndia National ratories

P]
30

DARMA-Charm++ Overview i)

Manage data dependencies between tasks (data inputs and outputs)

= Not a direct mapping: implements local and distributed schedulers in Charm++
user-space to schedule and track DARMA data

= Determine and track placement of data, tasks, and task collections across distinct
memory spaces

= Not a direct mapping: utilizes Charm++’s groups, nodegroups, and chare arrays
to manage DARMA tasks and data.

= Carefully passes DARMA task collections to Charm++ chare arrays to utilize LB
effectively

= Coordinate data movement utilizing the underlying communication transport layer

= Close mapping: Uses Charm++’s native, platform-specific network layers (ugni,
ibverbs, tcp/ip, mpi) to transfer data

= Close mapping: Performs serialization/de-serialization by passing data to
Charm++’s extensive PUP (Pack/UnPack) interface

= Implement collective operations (currently only reduce and all-reduce)

= Not a direct mapping: Charm++ has a native reduce but not an all-reduce. Since
Charm++ has vastly different collective semantics, reduce and all-reduce are re-

implemented, but re-use Charm++ topological spanning trees i1

. Sandia
Outline Natwl

= Motivation
= Milestone Overview
= AMT + DARMA Overview
= Milestone Results: Bottom Line Up front
= Deep Dive on Findings
= Generality of the Backend API

= |nteroperability
= Performance and Productivity

= Conclusions
= Future Work

Interoperability: why is it important?

(Low Capacity, High Bandwidth)

= |nteroperability: The ability of separate e |
software components to efficiently share e
execution resources, share memory
spaces, and exchange information

Integrated NIC

for Off-Chip Coherence Domain

= Sandia has adopted a component-based Image courtesy of <
. . www.cal-design.org N ABORATORY |
approach to application development
- . . ¢ ”' ParaView
= |nteroperability of independent Wlalinos s
. . vpen - S
components is crucial to the success of CTMP ﬁ)‘

the program
Prog OpenACC

Directives for Accelerators

33

Interoperability: what is the underlying issue?

(Low Capacity, High Bandwidth)

= |ncreases in system parallelism and
heterogeneity drive increases in
= Number of tools, runtimes, and languages

aimed at gleaning performance from new
architectures

3D Stacked (High Capacity,
Low Bandwidth)

Integrated NIC
for Off-Chip

= Complexity of component based systems
Communication
developed and deployed Image courtesy of @

www.cal-design.org

Coherence Domain

= Challenge: Underlying assumption by W paraview
many frameworks that all system S Ol o,
resources are available for their use. STmPl [[Feas) iy

OpenACC

Directives for Accelerators

34

DARMA and its underlying runtime must be interoperable () a,
with node-level and network-level frameworks

= Node-level: Focus is interoperability with Kokkos

= Kokkos provides performance portability across various architectures and
has been adopted by Sandia’s ASC applications

= |nteroperability research and development includes:
= Execution-space interoperability
= Memory-space/data management interoperability

= Focus of this year’s milestone: Execution Space Interoperability

= Network-level: Focus is interoperability with MPI

= Handoff of network resources between imperative MPI| codes and DARMA
codes

= Leading AMT runtimes all support this handoff mechanism, Charm++
included

= DARMA abstractions naturally lend themselves to the handoff

= Not in this year’s milestone. Next year will see engineering work on this
deliverable. 35

Kokkos: performance portability) e

= Kokkos is a C++ library that provides node-level programming
model abstractions to
= |dentify / encapsulate grains of data and parallelizable operations
= Aggregate these grains with data structure and parallel patterns
= Map aggregated grains onto memory and cores / threads

= Design is agnostic to inter-node parallelism

= Use case drivers initially focused on integration with MPI until
recent AMT integration with Uintah

A visual comparison of Imperative+Kokkos and) =,
[[[[I'm-m
AMT+Kokkos highlights differences in use-cases
Imperative application AMT + Kokkos AMT + Kokkos
with Kokkos (2 partitions of width 8) (4 partitions of width 4)
& (7)) ()| e o R
% g e JEE=E=E
5 s f e e
time i time i time i
Serial work
Kokkos work
AMT work

37

A visual comparison of Imperative+Kokkos and) i,
AMT+Kokkos highlights differences in use-cases

Imperative application

with Kokkos
w
2
2
time
Fork-join of
resources

AMT + Kokkos AMT + Kokkos
(2 partitions of width 8) (4 partitions of width 4)
A T
(/] () eesss ooas EEEEEE
O O| e o m——
f E— ——— — f — T
IE=EE S
time - time -
AMT runtimes are threaded with Serial work
work scheduled dynamically, Kokkos work
making AMT work

resource handoff more complicated.
38

A visual comparison of Imperative+Kokkos and) i,
AMT+Kokkos highlights differences in use-cases

Imperative application AMT + Kokkos AMT + Kokkos
with Kokkos (2 partitions of width 8) (4 partitions of width 4)
N (2] ()| e s EEEEE S
% g e . Y ====
> IEEEEE e e —m
time i time i time i
Introduction of Kokkos: :partition master Serial work
to partition node enables overlap of AMT and Kokkos work
Kokkos work. AMT work

39

Plan: Node Resource Manager (NoRMa) for execution)
resources management between Kokkos+DARMA

= Low-level interface: thin layer on-top of HWLOC

= Maintains an inventory of available resources (cores and hardware
threads)

= Responds to requests from software components for those resources

= Once resources are reserved, threads may be launched onto those
resources directly by the owning component

= QOptional high-level interface: C++ std: : threads

= Allows the “donation” of threads (bound to particular cores) between
components (e.g. DARMA to Kokkos)

Ultimately the OpenMP affinity layer was chosen to e
manage execution resources between DARMA+Kokkos

= ATDM and IC application requirements regarding native
vendor OpenMP libraries

= Mixed Kokkos and OpenMP node programming (e.g., OpenMP-
enabled Intel Math Kernel Library calls)

= Precedent of using OpenMP affinity layer in Uintah+Kokkos
integration

= Charm++ runtime library’s interference with HWLOC controls

DARMA-OnNode+Kokkos prototype integration details i) e

DARMA+ Kokkos

(2 partitions of width 8) Synchronization via

structured blocks of
—— OpenMP parallel

WOIrkers

»-

- _ Kokkos work
Exiting and re-entering of DARMA and Kokkos work DARMA work

queues happens at function boundaries

DARMA+Kokkos variant of the Jacobi benchmark used () i,
to demonstrate execution interoperability o

// These could also be held in, e.g., Kokkos::Unmanaged Views
double const* prev_buf = prev.get_value () .data();

double* next_buf = next.get_reference () .datal();
max_residual.set_value (-1el2);

// since we marked this task as data_parallel, we can just call

Kokkos as usual here:

e r
int j = ij \% size_y;
if(not (i == || § == [l 1 == size_x-1 || j == size_x-1)) {
// compute the next iteration’s values
next_buf[ij] = 0.2 * (
prev_buf [INDEX(i,j)] + prev_buf[INDEX(i-1,3)]
+ prev_buf [INDEX (i, j-1)] + prev_buf[INDEX (i+1, j)]
+ prev_buf [INDEX (i, j+1)]
)i
// compute the local residual
double local_diff = fabs(next_buf[ij] - prev_buf([ij]);
// and see if it’s the maximum
resid = std::max(local_diff, resid);
1

}, Kokkos::Experimental::Max<double>(max_residual.get_reference()));

)i

43
-

Preliminary experiments show that partition size) i,
impacts average iteration time on a KNL node

of Partitions Partition size Average Time Per Iteration (s)

8 8 cores 2.115
16 4 cores 1.827
32 2 cores 1.985
64 1 cores 2.487

This prototype DARMA-OnNode+Kokkos integration feeds
into ongoing DARMA-Charm++ + Kokkos development work

DARMA-Charm++ + Kokkos research and development =)
is in progress and a major focus of FY18 efforts

= Similar to other AMT frameworks, Charm++ is centered on
explicitly managed pthreads

= OpenMP interoperability was via custom in-house libraries

= Work using vendor-supported OpenMP affinity layer in
progress — joint with CharmWorks

= Support directly within Charm++ runtime

= Build and test support for integrated software stack

. Sandia
Outline Natwl

= Motivation
= Milestone Overview
= AMT + DARMA Overview
= Milestone Results: Bottom Line Up front
= Deep Dive on Findings
= Generality of the Backend API

= |nteroperability
= Performance and Productivity

= Conclusions
= Future Work

Sandia
Performance and Productivity Outline i) for

= DARMA productivity goals

= DARMA performance goals

= How do DARMA’s abstractions enable these goals?
= System target: ATS1 Overview

= Proxy results

= Benchmark results

DARMA productivity goals i)

= Application developers can focus on describing data
decomposition and data effects, not managing execution
resources (threads, network messages)

= Conflict-free programming model without explicit wait(...) calls
= Load balancing transparent to application, intrinsic to runtime

= Qverlap of communication/computation transparent to
application, intrinsic to runtime

= Ease transition from imperative to declarative programming
style via deferred execution semantics

DARMA performance goals) e

= Deferred execution through C++ templates should be
lightweight

= Qverdecomposition should enable efficient pipelining of
communication, overlap with computation

= Automatic, application-agnostic load balancers should
achieve ~80-90% of the benefit of optimal load balancer

DARMA comprises abstractions for data and tasks)

= Asynchronous smart pointers wrap user data and
track meta-data used to build and annotate the DAG
" darma: :AccessHandle<T>

" darma: :AccessHandleCollection<T>

= Tasks are annotated via several interfaces
| darma::create_work

" darma::create concurrent work

50

How do DARMA’s abstractions enable these goals? (L s:"l:;"‘:au

= Automatically capture dependencies and data effects through
C++ metaprogramming
= Visible code is just variables and functions, no tasks
= Creating DAG directly in user code is tedious and error-prone

= Each data block/variable tracked by logical identifier in
runtime

= Enables automatic migration of data structures (data movement)
= Enables automatic load balancing

" create concurrent work boundaries are natural
locations for load balancing

7| Netora

How do DARMA’s abstractions enable these goals?

= Parallel algorithms are written to a data decomposition, not
execution units (process, rank, thread)

= Tunable granularity

= QOverdecomposition (communication overlap, load-balancing
flexibility)

= Communication pattern automatically determined from data

effects
= Broadcast data if shared and read-only access

= Streaming communication pattern (not yet implemented) if
commutative access

= Shared-memory optimizations for tasks/data in same process

52
-

Trinity/Advanced Technology Systems (ATS)-1 is the =)
performance analysis target for the milestone

Haswell: enables support for KNL: enables emerging architecture,
current ASC/IC programs workflow, runtime system research
Compute (Intel Haswell) Compute (Intel Xeon Phi)
9436 Nodes - 1.15 PiB memory 9984 Nodes— 0.91 PiB DDR + 0.15 PiB MCDRAM
11.1 PF/s theoretical peak 30.4 PF/s theoretical peak (26.1 PF/s actual peak)
41.5 PF/s Total Performance and 2.07 PiB of Total DDR Memory
Lustre Routers Burst Buffer
SatewayNodes 222 nodes 576 nodes
A
Cray XC30 \
3.7 PB Raw
\ GigE 3.3 TB/s BW
— 40 GigE
- FDRIB

40 GigE Network

*On Intel Xeon Phi, heavy use of
AVX (vector) instructions will
reduce operating frequency by
~15%, thus “actual peak” is lower

. than theoretical peak computed
78 PB Usable, 1.45 TB/sec — 2 Filesystems using nominal processor

(Image courtesy of ACES) 53

GigE Network

Performance analysis results are captured for both =)
Haswell and KNL architectures

Haswell should have better serial KNL should do better on highly-
performance, and perform better on parallel, numerically intensive
system tasks (e.g., communication) code

2x16 Xa
1x4 bmi t,mm ‘;ﬁm RAM

T T

128 GB, 2133 -
3

A j 36 Tiles
Haswell QPl J Haswell = connected by
16 Core \— 16 Core : H 2D Mesh
588GF) QP ~ 588GF Interconnect

%,\, Southbridge
Chip

(Images courtesy of 54

Proxy and benchmark overview) o

= Three benchmarks
= Written by DARMA developers

= Purpose: highlight benefits/limitations of the programming model and runtime

= Jacobi: memory-bound computation, latency-bound communication to expose
overheads

= Molecular dynamics: compute-bound with more bandwidth-intensive
communication to complement Jacobi
= Simulated Imbalance: assess load balancing capabilities

= Three proxy applications
= Written by application developers

= Purpose: co-development of APIs, acquire subjective feedback, requirements
= PIC: Direct collaboration with EMPIRE application team
— SimplePIC, MiniPIC”
= UQ": Embedded analysis is a capability used by both applications
= Multiscale™: Ties to IC/Sierra

* . .
exceeds criteria 55

EMPIRE: ElectroMagnetic Plasma In Radiation) =,
Environments

= SNL is developing a new code base for plasma simulations

= Component based approach using the Trilinos framework

= The PIC component of Empire is the basis for our proxy app work
= Two sets on unknowns, mesh data and particles

= Domain decomposition on the fields and the particles can be out of
balance

= Calculations are localized so colocation is important
= Work can be created in one location and migrate to a different location

= Potential solution — overdecomposition

= Qverdecomposition breaks the problem up into more units than you have
computational cores

= | oad balance at a middle level of work

= Qverlap computation and communication

56
-

From EMPIRE to MiniPIC and SimplePIC

= MiniPIC is an electrostatic PIC miniapp build on MPI+Kokkos.
= |n the scope of this L2, a proxy app SimplePIC was developed

= SimplePIC is a particle move kernel from MiniPIC on a structured
mesh

= MPI based version of SimplePIC was developed for benchmark purposes.

= The current code design flow is: SimplePIC - MiniPIC - EMPIRE.

Co-Design Efforts =

= |n FY17 EMPIRE and DARMA teams hired Aram Markosyan

= with computational plasma physics and numerical analysis background
= shared postdoc

= bi-weakly meetings with EMPIRE team

= Tightly integrated with DARMA team

= Aram’s role was to intensively communicate and represent the
needs of EMPIRE team in the DARMA design processes
= Designing and developing SimplePIC proxy app
= SimplePIC and the DARMA backend were built up together this year

= Every single new and experimental feature of DARMA was first tested on
the SimplePIC (performance/productivity feedback)

Impact of tightly coupled collaboration)

= Made DARMA a more performant, productive, feature rich
and robust programming model

= Enabled app developer to look at PIC problem from
completely new perspectives

SimplePIC Proxy Overview) e

= PIC method allows the statistical representation of general
distribution functions in phase space

= |t uses the fundamental equations retaining the full nonlinear
effects

= SimplePIC includes only particle move kernel
= Domain Decomposition: 2-level 3D structured grid
= PP, P,grid of boxes (patches), n,.n n, grid within each box

= Computational costs:

" O(N,articie) cOMputation (memory bound), O(N
communication,

<patch, ¢/ patch

particle vol)

= Proxy goal: serve as test ground for PIC algorithm design and
development on DARMA

60

SimplePIC Proxy Algorithm

 Decompose problem into patches and assign them to processing units
* For every patch initialize the swarm (particles on that patch)

* For each time step do (iteration)

* For each particle in the swarm do
* Advance particle until it reaches the patch interface or time expires

 If time is not expired do Z

* Put particle in the migrants (a buffer, corresponding to that patch interface) g

* Remove particle from swarm @ 2

// AN -

* Compute the total number of migrants in the entire domain BN Z
\ -

. . . . o ‘ : =

* While total number of migrants > 0 do (micro-iterations) f Z
. . R) %

* For every patch interface exchange the migrants Z

-

* For each interface do ~

* For each particle in migrants do 7
* Advance particle until it reaches the patch interface or time expires
* |f time expired add particle to swarm, otherwise put in migrants

* Compute the total number of migrants

61

Balanced and Unbalanced SimplePIC Studies) faor

= Balanced use case assesses overheads with respect to MPI-only
implementation
= Every computational cell has N randomly placed particles (5 - 30), with
random velocities (|v| = const).
= |mbalanced use case assesses benefits of overdecomposition
and load balancing

= |nitially place 80% of particles into the 20% of the domain creating load
imbalance in the system.

= The computational experiment was designed such that the system will
reach to a fully balanced state in 500 iterations and come to the initial
state in 1000 iterations.

= |n all studies we kept CFL number to a value of 0.96, which
translates into at most 2 micro-iterations per time step.

62
-

KNL architecture provides many possibilities for on-) e,
node parallelism

= Empirical exploration of cpu-binding and affinity tradeoffs

= |ncreasing number of communication threads/node
= Fewer threads available for computation

= Communication is driven forward more quickly

= |ncreasing number of hyperthreads/core
= More threads actively computing
= Potential cache conflicts
= Weakened serial performance per thread

= CPU binding options

= Binding tasks to physical cores only or to specific hyperthreads

63

Sandia
National
Laboratories

th

A CPU binding and affinity study determined proper

settings on KNL for SimplePIC

A variety of settings were

tested for MPI and DARMA.

(o)
S n
T ©
MM @©
¢ 9
S
U S
m,om.__
c >
s L C
2 =5
n T |
= > 3
1
e o
.Ihh
oo s
o= =2

DARMA: 13 processes per

node, each with

16 compute threads (4

T
N
m

T
o
m

(

T
Te}
o

s)

o Te}
o —

Swl] |[eM |ej0l

10 A

<
(o]
©
(g0]
(O]
S
-
)
[
7 2
)
UV o
o ©
O C
)
2 E
)
Q &
(@)
€ 8
O i
[)

8=4d0 ‘€9 X T ‘VINdvad

T X 26 ‘speatyi=puiq ndd ‘|di
T X 9 ‘speaiyi=puiq ndd ‘|d
¥=440 ‘€9 X T 'YIN4VvAQ

T X g§ ‘duou=pulg ndd ‘|dW

T X ZG ‘s1oypos=puiq ndd ‘|diA
8=4d0 ‘1€ X ¢ 'YWdvda
8=4d0 ‘v X €T 'VINdvdQ
¥=4d0 ‘v X €T ‘VINdVaA

T X ZG ‘sa10d=pulq ndd ‘|dIN

T X 9 ‘duou=pulq ndd ‘|di

T X $9 ‘s19ypos=puiq ndd ‘|diA
¥=4d0 ‘1€ X T 'VINdva
8=4d0 ‘ST X ¥ 'VYINdvd

T X ZG “uea=puiq ndd ‘|di
¥=4d0 ‘ST X ¥ ‘'ViNdvda

T X 9 ‘saJod=puiq ndd ‘|dIn

T X £9 “ued=puiq ndd ‘|dn
¥=4d0 ‘91 X €T 'YINYvd
Z=4A0 9T X €T ‘VINdvd
T=4A0 ‘91 X €T ‘VINdvd

T X 96 ‘speatyy=pulq ndd ‘idin

Strong scaling of balanced SimplePIC

Sandia
National
up to 131K cores/2K nodes (KNL) .
Mutrino (KNL, 4K cores) Trinity (KNL, 131K cores)
. 1.4B particles 138B particles
143M cells %0 4.6B cells
— _. 60
2 20 o
& 10 - £ Y
J —E DARMA RS N,
o L R NG
o] wen .
5I12 10I24 20I48 - 4(;'96 32I768 65;336 131I072
of Cores # of Cores

= DARMA overhead with respect to MPI is -5-24%. = DARMA scales super-linearly up to 131K

= On 2K cores, grain size is too small and, hence, cores.
degraded scaling.

= MPI scaling degradation is likely due to MPI only
launch on KNL.

65
-

Strong scaling of balanced SimplePIC s

National
up to 32K cores/2K nodes (Haswell) L
Mutrino (Haswell, 2K cores) Trinity (Haswell, 32K cores)
100 A
%0 4.2B particles 136B particles
60 141M cells % 4.5B cells
B 40 @ 60
S 20 g 40
10 A
25;6 5i2 10I24 20I48 81I92 16::384 32I768
of Cores # of Cores
= DARMA overhead with respect to MPI is 12- = DARMA scales consistently good on up to
19%. 32K cores.
= On 2K cores, grain size is too small and, = Slight overheads can be explained by the
hence, DARMA does not have perfect linear small problem size on higher core counts.

scaling.
= MPI scales ideally on up to 2K cores.

66
-

Total Wall Time (s)

200

100 -

80

DARMA Strong scaling of imbalanced SimplePIC
up to 131K cores/2K nodes (KNL)

Mutrino (KNL, 2K cores)

1.8B particles
55M cells
ODF =38

——&— HierarchicallLB

—&— HybridLB

—&— No Load Balancer

2048 4096

of Cores

1024

For lower core counts, load balancing
provides around 50% speedup.

For higher core counts, at least at this

overdecomposition level, speed up due to a

load balancer is 20%.
These trends are similar for Haswell.

Total Wall Time (s)

200

100 -

80

th

Trinity (KNL, 131K cores)

40B particles
3.4B cells
ODF =4

—$— HybridlB
—$— No Load Balancer
= Ideal

65536 131072

of Cores

32768

= Similar trends are present on Trinity at
these higher scales.

67

DARMA Time Profile Graph of Balanced SimplePICon () ik,

2k Cores/64 nodes (Haswell) for 3 Iterations

|

N
e |
|

Processors

s
" - =
=3 =i

0.000s 0.274s 0.548s 0.822s 1.096s 1.369s 1.643s 1917s 2.191s

Processors

0.000s 0.277s 0.554s 0.832s 1.109s 1.386s 1.664s 1.941s 2.218s

. Application Data transfer
work (tasks) (send/recv)

X-axis is time and
y-axis are
different cores

Most of the time
is spent executing
application tasks

There is a small
amount of idle

time (white) at

the end of each
iteration

68

SimplePIC on 2k Cores/64 nodes (Haswell) for 3 Iterations

Percentage Utilization

Percentage Utilization

100
90
80
70
60
50
40
30
20
10

0

0.000s 0.274s 0.548s 0.822s 1.096s

100
90
80
70
60
50
40
30
20
10

0

0.000s 0.277s 0.554s 0.832s

DARMA Percentage Utilization Graph of Balanced) e,

Fon

=3

Application
work (tasks)

1.109s 1.386s

1.369s 1.643s 1.917s 2.191s

1.664s 1.941s 2.218s

Data transfer
(send/recv)

X-axis is time and y-axis is the
proportional aggregate of work
type spent across the worker
cores

With an overdecomposition
factor of 8 (ODF=8) the data
transfer time is slightly increased

The idle time at the end of the
iteration is slightly reduced with
ODF=8 because the system is
able to overlap communication
with computation

69

DARMA Time Profile Graph of Balanced SimplePICon () ik,
2k Cores/64 nodes (Haswell) for last 2 micro iterations

= Processor utilization for 2 micro
iterations

= Note the scale: this is 25
milliseconds

Percentage Utilization

= QOverdecomposition increases
the execution time because data
transfer is increased (note the
increase in green and blue area)

2.159s 2.162s 2.165s 2.168s 2.171s 2.174s 2.178s 2.181s 2.184s
100 =

90
80 —
70
60 —
3 =
40
30 —

= More particles must cross the
boundaries with smaller boxes

= Qverall processor utilization is
increased because there is more
overlap with communication

Percentage Utilization

2.161s 2.168s 2.175s 2.182s 2.190s 2.197s 2.204s 2.211s 2.218s

. Application . Data transfer
work (tasks) (send/recv) 70

DARMA Projection views of imbalanced SimplePIC

100
20
80
70
60
50
40
30
20

Percentage Utilization

10
0
0.000s

100 =

90 —
80 —
70 —
60 =

Percentage Utilization

0.000s

100 iters

38.950s

47.406s

77.900s

I aF aF aF o aF a9 YL ar a2 o ar)
'L 200 iters ¢

94.813s

on 2K cores (Haswell)

116.850s 155.800s 194.750s 233.700s 272.650s 311.600s

* 100 iters
Wty
e
j | R

200 iters

i

142.219s 189.625s 237.031s 284.438s 331.844s

379.250s

th

Significant improvement
in load imbalance with
more frequent calls to
load balancer.

The overhead (cost) of
load balancer is
essentially constant.

Over 50% CPU utilization
increase after the first
load balancer call (in both
cases).

71

7| Netora

Conclusions on SimplePIC Performance Study

= Balanced SimplePIC study stressed DARMA overheads with
respect to MPI. In the worst cases we are off by 25%.

= Balanced SimplePIC also showed excellent scalability on 131K
cores (2K KNL nodes).

= |mbalanced SimplePIC demonstrated the benefits of
overdecomposition and load balancing on 131k cores (2K KNL
nodes), while maintaining strong scalability.

7| Netora

Lessons learned on productivity for SimplePIC proxy

= “Manual (dynamic) overdecompositon and load balancing in
MPI can be very tedious and error prone task even for
structured PIC. For unstructured case, the situation is very
complex.”

= “Data decomposition in DARMA provides intuitive
mechanisms for work load balancing, while runtime handles
scheduling.”

= "DARMA abstractions are fairly intuitive and provide a
productive environment for code design and development.”

Quotes from application developer 73

From SimplePIC to MiniPIC (and to EMPIRE)

= As designed, SimplePIC serves as a test ground for a algorithmic

exploration for MiniPIC (EMPIRE).

= MiniPIC DARMA work is in progress
= Move kernel DARMA-tized
= DSMC kernel in progress

= FY18 efforts will focus on full DARMA+Kokkos PIC kernels in MiniPIC for
uptake into EMPIRE

th

° L L] ° Sandia
Uncertainty Quantification (UQ) i) feema_

= UQis identified as one of the main application-driven exascale targets due to:
= growing importance and impact on predictive modeling and simulations,
e.g. reliability analysis
= challenges due to atypical workloads

= Both ATDM applications have an emphasis on embedded UQ capabilities (e.g.,
embedded sampling, sensitivity analysis, V&V)

= Sampling-based UQ methods are the most common approaches currently used
for exploring UQ in large application codes.

= As part of FY17, we have started exploring how to tackle UQ in DARMA.

Two Demonstrators Developed within UQ

= Monte Carlo Analysis for 1D stochastic diffusion equation

= Challenges and features:

Scheduling/mapping of O(million) independent tasks
No point-to-point communication involved except for global collectives

= Multi Level Monte Carlo Analysis for 1D stochastic PDE

= Challenges and features:

Multiple sets of independent tasks of varying computational cost
No communication involved except for global collectives
Dynamic addition of new levels based

Dynamically changing number of samples per level

Potentially highly imbalanced application due to inhomogeneous
convergence time of PDE solves

76

DARMA Strong Scaling for Monte Carlo) e,
up to 64 nodes (2K cores) Haswell

= n: number of PDE samples
per DARMA index

= Total number of
samples: N=n*2880, where
2880 is tot # of threads (96
nodes * 30 threads/node).

= Each PDE solve = linear
system of 4,194,304 degrees

200 ;

100 A

Normalized Time
[e)] [e0]
o o

D
o

of freedom.
T 512 1024 2048 = Good scaling (as expected).
of Cores
% 12 10,000 Cache/memory effects
E appear for larger problems.
~$— n=50

== |deal

77
-

Time (s)

DARMA Strong Scaling for Multi Level Monte Carlo) i,
up to 96 Nodes (Haswell and KNL)

32
of Nodes

64

—$— Haswell
—$— KNL

= |deal

Adaptive MLMC starting from 4
fixed initial number of levels.
Coarsest level has 4096 grid points.

Workload varies from O(billion)

“small”’ tasks for coarse level, to
O(100) for finest level.

Good scaling. Not enough runs to

pinpoint the causes behind Haswell
trend.

Lessons Learned from UQ Studies

= “Forward problems are typically characterized by/treated with many
independent samples, making them a natural fit for AMT models.”

= “Task/data reusability can be a key feature to leverage for sampling
methods. E.g.: use as initial condition the final solution of other tasks to
potentially accelerate convergence. This is a feature that we have not
explored yet, but are planning to within the next fiscal year.”

= “Dynamic workload and load balancing for MLMC is a good feature to
explore and for testing work scheduling and speculative execution
techniques. “

= “Future work will involve more heterogeneous problems: impact of load
balancing, dynamic parallelism, optimal task mapping.”

Quotes from application developer 79

Multiscale Solid Mechanics Proxy

Purpose

= |nvestigate the application of DARMA within an engineering analysis code
that is representative of ASC IC codes (e.g., Sierra/SolidMechanics)

= Evaluate the performance of DARMA against other parallelization
strategies (serial, MPI, Tpetra) under a variety of load imbalance scenarios

= Standard geometric partition schemes will lead to large load imbalance

Modeling capabilities

= Lagrangian finite element code for the solution of dynamic solid
mechanics problems on non-uniform meshes

= Single-scale and multiscale capabilities (like FE?)

Multiscale Solid Mechanics Proxy i) feema_

= FE squared (FE2) multiscale approach

= Representative volume elements (RVEs) are associated with material
points in the macroscale model

= RVE models acts as high-fidelity constitutive models
= RVE models are solved as independent finite element problems
= Information exchange between macroscale model and the RVE models

DARMA has the potential to
effectively manage the
computational complexity of
the multiscale problem

Overview of Multiscale Solid Mechanics Proxy

= Application code written from scratch in C++
= Minimal use of third-party libraries, no application-level MPI

= Compartmentalize data structures and procedures for use with DARMA
concurrent work paradigm

= Virtually all data stored in simple, serializable containers

Table 5.1: Multiscale technology demonstrator classes that can be serialized for use with DARMA.

Class Purpose

GenesisMesh Input mesh data, file reading

ExodusOutput Output data, file writing

DataManager Node data, element data

Block Material model, element calculations
DerivedElementData Secondary data for output

BoundaryCondition Manager Boundary conditions, node sets

BoundaryCondition User-defined data for a boundary condition
LinearSolver Vector, matrix, and (serial) solver for RVE submodels

82

Lessons Learned in Multiscale Solid Mechanics Proxy

= “Adoption of DARMA requires a shift is developer mindset and a
revamping of conventional architecture for engineering analysis codes”

= “Moving toward an AMT runtime is best achieved by conceptualizing
the application software as a set of tasks with well-defined
dependencies”

= Division of labor:

= “Application developers are responsible for the design and implementation
of compartmentalized tasks and data containers”

= “DARMA is responsible for the execution of tasks, parallelization, and many
aspects of code performance”

Quotes from application developer 83

Summary of quotes on productivity from our A
application developers

= “DARMA provides an intuitive means to reason about your
problem in an AMT way.”

= “Deferred semantics is a significant help for those who are
used to imperative programming only.”

= “Moving toward an AMT runtime is best achieved by
conceptualizing the application software as a set of tasks with
well-defined dependencies”

= “Future work should include focus on documentation and
productivity tools (timers, performance profilers, debuggers)”

2D Jacobi Linear Solve Benchmark th ::m

« Solve Ax = b derived from basic 2D heat equation

(k+n) _ 1 (0 (k) (k) (k)
w0y = (il +aly +xl)

i—i,j " ij—1
* Nearest-neighbor communication of halo region on 2D grid
» 2D stencil computation within a patch

Al

« Byte/flop ratio very high, only a few flops per grid point
* Only small halo region communicated

« Jacobi is memory-bound computation, with /latency-bound communication
85

Haswell on Mutrino (64 nodes) shows good strong)
scaling, relative overhead increases at scale

Jacobi2D Strong Scaling on Haswell
Approx. 32e9 total cells

1
- 5% difference

0.8 1

0.6 1
o —4— DARMA
S 0.4 —4— MP|
g === |deal
g
()
£
= 0.2

0'1 - 1 1 1 1

256 512 1024 2048
of Cores
« Constant overhead (performance difference) relative to MPI
« Overhead percent increases at larger scales
86

Jacobi2D Haswell (up to 64 nodes) strong scaling trends ()
are consistent across problem sizes

Jacobi2D Strong Scaling on Haswell
Approx. 64e9 total cells

6% difference

0.8
:@ 0.6
£
'_

9% difference
02 512 1024 2048
of Cores

« Percent difference decreases with larger

problem sizes (task sizes)

» Larger task sizes better amortize

scheduling overheads

Time Per lteration (s)

0.8 1

0.6 1

0.4

Jacobi2D Strong Scaling on Haswell
Approx. 128e9 total cells

% difference

7% difference

512

1024 2048

of Cores
——— DARMA
—$— MPI
=== |deal

Jacobi2D KNL (up to 64 Nodes/4K cores) shows super- =)
linear strong scaling for both MPl and DARMA

Jacobi2D Strong Scaling on KNL
Approx. 16e9 total cells

0.6 1

0.4 1

s ——$— DARMA
= 0.2
%~ wP
. == |deal
&
Q
£
= 0.1
0.08
0.06

512 1024 2048 4096
of Cores

« Memory footprint decreases as problem size per node shrinks at
larger scales

« Super-linear effects likely related to better cache/MCDRAM usage o8

Jacobi2D KNL (up to 64 Nodes/4K cores) strong scaling e
trends are consistent across problem sizes

Jacobi2D Strong Scaling on KNL Jacobi2D Strong Scaling on KNL
Approx. 32e9 total cells Approx. 64e9 total cells
1+ 14
0.8]
0.8 1
0.6
0 4 0.6
12 204
0.2
0.1+
0.08
512 1024 2048 4096 1024 2048 4096
of Cores # of Cores
- Superlinear discontinuity delayed at larger problem sizes —$— DARMA
- Discontinuity corresponds exactly to 16GB threshold for —$— MPI
MCDRAM capacity === Ideal

89

Jacobi2D KNL (up to 2048 nodes/131K cores) also has)
super-linear strong scaling, relatively constant overhead

Jacobi2D Strong Scaling on KNL (Trinity)
Approx. 515e9 total cells

0.2 6% difference
é —$— DARMA
® 0.1 —$— MPI
2 === |deal
S 0.081
()]
£
~ 0.06

0.041 13% difference

32I768 65!I536 131I072

of Cores

90
-

Jacobi2D KNL (up to 2048 nodes/131K cores) weak)
scaling results consistent with MPI, but with outlier

)

——— DARMA
—4— MP|

=sm |deal

Jacobi2D Weak Scaling on KNL (Trinity)
Approx. 101e7 cells per core

© o o o o o
N (65 [e)] ~ (o] ()
1 1 1

Time Per Iteration (s)

o
(¥

©
N

O-l T T T T
16384 32768 65536 131072

of Cores

* Qutliers were run on congested KNL session on Trinity
 DARMA performance stays relatively flat
* No superlinear benefit from MCDRAM as in strong scaling

91

: T : Snda
All-reduce every iteration limits asynchronous execution, () s
blocks scheduling new computation/communication

1 (]
- ; ; ' ; Red is active computation,
2 1 | | white is idle time
S | | | - Execution shows intermittent
& l i ; stalls between iterations
; l | i- i
0.000s 0.076s 0.153s 0.229s 0.305s 0.381s 0.457s 0.534s 0.610s
Time
Py 9
&2 & -
8 6 « Peaks show messages sent
piil in a time interval
Sh « Communication becomes
B | bursty as messages wait for
= o . 1 . i | . . convergence check
0.000s 0.076s 0.153s 0.229s 0.305s 0.381s 0.457s 0.534s 0.610s
Time

Overdecomposition factor = 1 9

oy . . . Sandia
Overdecomposition improves bursty communication, () e
makes idle times worse performance

1 E * Red is active computation,
o ¥ white is idle time
2 F » Execution shows intermittent
S iji stalls between iterations
& b « Overdecomposition makes
t all-reduce more expensive,
Ul increasing idle time
0.000s 0.101s 0.203s 0.304s 0.405s 0.506s 0.608s 0.709s 0.810s
Time
Py 12
Ef: 107 « Communication overlap with
C§> B I overdecomposition makes
s 6 less bursty messages
1 a0 . « Cannot compensate
g 2 -J j | L synchronization cost of all-
o4 S ' — i reduce

0.000s 0.101s 0.203s 0.304s 0.405s 0.506s 0.608s 0.709s 0.810s
" Time
Overdecomposition factor = 4

93

Simulate “speculative execution”, perform all-reduce)
every N iterations. Idle time shrinks significantly.

1 : _ _
S B 3 = =8 - Red is active computation,
z = = E =] white isidle time
Z = = = =8 * All-reduce only done every 1t
S s 5 E = =8 iterations
& E = E =8 - Stalls in execution is much
z = = E = less pronounced
0 = = = E =
0.000s 0.067s 0.135s 0.202s 0.270s 0.338s 0.405s 0.472s 0.540s
Time
850

"E 708 —

A 567 — ST

% « Communication overlap best

Sh4as when combining less frequent

% 283 all-reduces with

= 142 - overdecomposition

i 'y ; ,
0.000s 0.067s 0.135s 0.202s 0.270s 0.338s 0.405s 0.472s 0.540s
Time

Overdecomposition factor = 4 94

Lessons learned on productivity for Jacobi benchmark ;) iz%,

= Tunable granularity, overdecomposition, communication overlap occurs
naturally in DARMA with no additional work

= MPI without overdecomposition is not difficult to write, but lacks any
significant overlap of communication and computation

= MPI with overdecomposition is very difficult to write, requires error-prone or
inefficient use of MPI_Test or MPl_Waitany

= Jacobi memory-bound, needs tiling more than communication overlap

= Some tiling naturally occurs in DARMA with tunable granularity, but auto-
tuning tiling optimizations to Mutrino not performed

= Tiling to L1 cache size is fine-grained, difficult for DARMA to do but
theoretically possible without app changes given declarative model

= Non-optimized collectives combined with conditionals (while loop) limited
DARMA scheduler performance
= Forced DARMA code changes (check convergence every N iterations)
= Developers should not be refactoring to optimize code with conditionals
= Better collectives, speculative execution needed in runtime

95

Sandia
Molecular Dynamics Benchmark Overview) el

= Stages:
= Exchange particles in neighboring cells (communication)

= Compute pairwise forces (Lennard-Jones potential) between all
neighboring particles

= Accelerate particles and update atom positions
= Migrate particles that move outside their original cell (communication)

A

5

= N particles per box: O(N) communication O(N”2) computation

= Benchmark goal: compute-bound with more bandwidth-

intensive communication to complement Jacobi2D
96

Total Time (s)

400 1

200 1

40 1

Haswell (up to 64 nodes/2K cores) shows strong scaling () s
with overheads dependent on work-grain size

Particle Benchmark Strong Scaling on Haswell
40000 patches, 600 particles per patch

-15%
——— DARMA
—6— MPI

256 512 1024 2048
of Cores

» More patches with fewer particles

stresses communication system,
particularly for MPI

« MPI shows superlinear scaling with

fewer patches per core

Total Time (s)

Particle Benchmark Strong Scaling on Haswell
1920 patches, 1500 particles per patch

10%

256 512 1024 2048
of Cores

DARMA performs better with larger
patch sizes (more particles)

MPI struggles with extra data
movement in larger patches

97

Total Time (s)

KNL (up to 64 nodes) shows similar trends with decent

strong scaling, overheads depend on work-grain size

600

400

200

100

80

60

Particle Benchmark Strong Scaling on KNL
53248 patches, 400 particles per patch

10%

>

4%

512 1024 2048

of Cores

Superlinear scaling likely due to
lower memory footprint, MCDRAM

Total Time (s)

400 1

N
o
o

100 A
80 1

60 1

Particle Benchmark Strong Scaling on KNL
7680 patches, 1200 particles per patch

22%

&

1024 2048

of Cores
MPI struggles with extra data
movement in larger patches
98

KNL (up to 2048 nodes/131K cores) highlights strong)
scaling for DARMA-Charm++ backend

Particle Benchmark Strong Scaling on KNL (Trinity)
245760 patches, 1200 particles per patch

200 1
0 ——— DARMA
£ 1001 —$- MPI
% === |deal
S 80

60 1
32%68 65.‘|336 131|072
of Cores

« Consistent with Mutrino KNL, MPI struggles with communication at larger

scales
 MPI implementation ""best initial attempt” at overdecomposition in MPI
« Difficult to identify as DARMA performing well or MPI performing poorly 99

On KNL, DARMA consistently outperforms MPI

Mutrino Note differences in Trinity
Particle Benchmark Weak Scaling on KNSCaIeS Particle Benchmark Weak Scaling on KNL (Trinity)
120 patches per node, 1200 particles per patch 120 patches per node, 1200 particles per patch
85s{ |
65 80 ¢

~
o
1

Total Time (s)
Total Time (s)
o
w

)]
o
!

T

2

501 = = 501 = - ¥ T
L I\I
45 1
512 1024 2048 4096 4096 8192 16384 32768 65536 131072
of Cores # of Cores

120 patches/node and 1200 particles/patch

MPI implementation ""best initial attempt” at overdecomposition in MPI —§— DARMA
Difficult to identify as DARMA performing well or MPI performing poorly —¢— MPI

=== |deal

Sandia
Lessons learned on productivity for molecular dynamics i) fesma

= Some MPI codes overdecompose (many boxes per rank), but
still aggregate all messages (box sends) to a given neighbor

= Message aggregation blocks computation until all particles
are sent

= Avoiding message aggregation in MPI and pipelining
communication was error prone, tedious tag matching of box
send with box receive of same size

= Qverdecomposition natural in DARMA with focus on data
decomposition in application, runtime handles scheduling

= No need for message aggregation or tedious tag matching
schemes

101

Simulated Load Imbalance Benchmark Overview th ::m

= Generates adversarial imbalanced work distribution with

known optimal solution

Tasks Imbalanced Balanced
Linear (Uniform) Worker 0 Worker 1 Worker 0 Worker 1

Distribution of Sizes I . I I

= Benchmark can be run in three modes

= Perfectly balanced known optimal distribution (best case)

= Adversarial imbalance with no load balancing (worst case)
= Adversarial imbalance with load balancing enabled

= Benchmark goal: Assess interplay of load balancing overheads
and quality of load balancing

102

Different load balancers have cost, scaling, and) e,

optimality tradeoffs

Heap-based,
Centralized GreedyLB considers all tasks
for redistribution

Provides high quality
distribution

Heap-based,
Centralized RefinelB considers only tasks
above threshold

Fast for centralized
load balancer

Distributed, .. Gossip-based, Extremely fast, fully
D LB e s .
gossip-based Bl probabilistic transfer decentralized
Distributed, . . Tree-based, Fast, typically provides
H hicallB |
tree-based lerarchica hierarchical transfer high quality

Creates subgroups
HybridLB of processors and
applies centralized

Can reuse centralized
LB schemes

Distributed,
group-based

Not scalable, expensive
in memory and space

Not scalable, quality
might be low

Quality may be low

Greedy algorithm may
not be aggressive

May be expensive and
slow with large groups

103

Synthetic imbalance on Haswell (up to 64 nodes/2K) i
cores) shows overheads, scalabilities of each balancer

Synthetic Imbalance Strong Scaling on Haswell
15360 Total Work Units

600 1
——4— DARMA, No LB
400 1 —$— MPI, No LB
—$— DARMA, HierarchicalLB
—&— DARMA, HybridLB
- —&— DARMA, GreedylLB
2 —&— DARMA, RefinelB
_qé 200 —&— DARMA, Ideal Balance
[MPI, Ideal Balance
E = |deal
o
|_
100 A
80 1
60 1
40 1
256 512 1024 2048
of Cores

« Only Greedy, Hybrid load balancers competitive with optimal balance baseline

« All load balancers relatively scalable up to 64 nodes, different quality solutions
though 104

Synthetic imbalance on KNL (up to 64 nodes/2K cores)) i

shows overheads, scalabilities of each balancer

Synthetic Imbalance Strong Scaling on KNL
106496 Total Work Units

1000 A
800 1
600 1 —§— DARMA, No LB
—$— MPI, No LB
Y 400, —&— DARMA, HierarchicallLB
GE) —$— DARMA, HybridLB
= ——&— DARMA, GreedylLB
T —$— DARMA, RefinelB
o —&— DARMA, Ideal Balance
200 1 MPI, Ideal Balance
= |deal
100 ~
80 1

512 1024 2048
of Cores

« Only Greedy, Hybrid load balancers competitive with optimal balance baseline
« All load balancers relatively scalable up to 64 nodes, different quality solutions
« All load balancers better than worst-case baseline with no load balancing

105

Large runs on Trinity (up to 2K nodes) highlight A

scalability differences between load balancers (KNL)

Synthetic Imbalance Strong Scaling on KNL (Trinity)
1703936 Total Work Units

600 1

400 1

——$— DARMA, No LB
—$— MPI, No LB
—&— DARMA, DistributedLB
—&— DARMA, HierarchicallLB
——$— DARMA, HybridLB
—$— DARMA, Ideal Balance
——$— MPI, Ideal Balance

= |deal

200 1

Total Time (s)

100 A
80 1

60 1

40 1

16384 32768 65536
of Cores

» Refine load balancers skipped, could not finish in 30 minute time cutoff
« All load balancers still relatively scalable, Hierarchical has best scalability but
worse quality of load balance

* Only hybrid load balancer gets near optimal balance with low load balance
overheads 106

Load balancers redistribute work, shrink idle time) e,
between iterations

nnnnnnnnnnnnnnnnnn

white is idle time for each
thread

 EXxecution shows certain
- ggéagg threads idling while large
g s i g tasks finish

g * Red is active computation,
=

nnnnnnnnnnnnnnnnnn

* First iteration imbalanced, but
idle time shrinks as load
balancer finds nearly optimal
solution on second iteration

107

Some load balancers improve results, but solution is) e,
not optimal

<<<<<<<<<<<<<<<<<<

* Red is active computation,
white is idle time for each
thread

» Execution shows certain
threads idling while large
tasks finish

Hierarchical load balancer

* First iteration imbalanced, but
idle time shrinks as load
balancer finds nearly optimal
solution on second iteration

Hybrid load balancer
108

Lessons learned on productivity for e
synthetic imbalance benchmark

= Even for very basic linear imbalance problem, there is no
direct mapping to a scalable MPI collective, routine to derive
optimal task distribution

= MPI_Gather-Sort-MPI_Scatter could be easily implemented
for balancing, but is not scalable

= Ad hoc implementation of app-specific load balancers would
be tedious and error-prone

= Load balancing handled transparently in DARMA-Charm++
application, although some tuning may be required to select
best load balancer for each application

= Hybrid balancer seems a good universal starting choice

109
-

. Sandia
Outline Natwl

= Motivation
= Milestone Overview
= AMT + DARMA Overview
= Milestone Results: Bottom Line Up front
= Deep Dive on Findings
= Generality of the Backend API

= |nteroperability
= Performance and Productivity

= Conclusions
= Future Work

. |i|-| Sandia
Conclusions e

= Productivity:

= Easier to express communication overlap: no Isend/wait pairs, communication progress not
explicit in application code

= Easier to express tunable granularity: data decomposition can mismatch execution resources
(overdecomposition) without changing application code

= Easier to enable load balancing: migratable data and work chunks can be transparently
rebalanced without explicit bookkeeping and rebalancing in application code

= Performance:
= DARMA is scalable (weak and strong) up to 2K nodes
= Load balancing shows major performance gains with minimal effort from app developer
= Deferred execution and sequential task model have overheads (~10% over MPI)
= Expect DARMA performance to improve as we tune the implementation

= |nteroperability: It’s complicated, but the initial results are promising; major focus in
Q1 FY18

= Generality: declarative backend specification facilitates mapping to different
technologies, development of “common components” across backend
implementations

111
-

. Sandia
Outline Natwl

= Motivation
= Milestone Overview
= AMT + DARMA Overview
= Milestone Results: Bottom Line Up front
= Deep Dive on Findings
= Generality of the Backend API

= |nteroperability
= Performance and Productivity

= Conclusions
= Future Work

Future Work th ?:;.?';m

= Focus of DARMA team next year
= |nteroperability
= Hardening/Tuning
= Productivity tools (timers, performance profilers, debugging aides)
= Devops, documentation, and testing
= Focus on Empire and SPARC requirements
= Continued engagement with UQ, Multiscale teams

= Bigger picture/longer term efforts
= ATS-2
= Best practices and standards-based runtime solutions

113
-

