
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

ASC ATDM Level 2 Milestone #6015:

Asynchronous Many-Task Software Stack

Demonstration

Final Review

August 9, 2017

Sandia National Laboratories

SAND2017-9790PE

The Milestone Team

 Janine C. Bennett

 Matt Bettencourt

 Robert Clay

 H. Carter Edwards

 Micheal Glass

 David Hollman

 Hemanth Kolla

 Jonathan Lifflander

 David Littlewood

 Aram H. Markosyan

 Stan Moore

 Stephen Olivier

 J. Antonio Perez

 Eric Phipps

 Francesco Rizzi

 Nicole Slattengren

 Dan Sunderland

 Jeremiah J. Wilke

The Review Committee

 Robert Armstrong, SNL (Committee Chair)

 Patricia Hough, SNL

 Michael Tupek, SNL

 David Daniel, LANL

 David Richards, LLNL

 Rajeev Thakur, ANL

3

Outline

 Motivation

 Milestone Overview

 AMT + DARMA Overview

 Milestone Results: Bottom Line Up front

 Deep Dive on Findings
 Generality of the Backend API

 Interoperability

 Performance and Productivity

 Conclusions

 Future Work

Programmatic Drivers

 ASC/ATDM and the broader DOE Exascale Computing Project
(ECP) are motivated by challenges presented by new
computing architectures that are on the path to Exascale.

 There have been a number of “Exascale Challenges”
workshops held in 2011/2012 as a build up to ATDM and ECP

 One such focus area was “Programming Challenges”
 Asynchronous programming paradigms were proposed as a possible

way to address some of the challenges – productivity and
performance.

 Asynchronous Many-Task Programming models have been a research
area spread across many university (mostly) efforts.

5

ASC/ATDM Application Drivers

EMPIRE

 Focused on system qualification to
hostile-ionizing radiation environments

 Coupled Source Region ElectroMagnetic
Pulse (SREMP) to System Generated
ElectroMagnetic Pulse (SGEMP)
simulation.

 Physical spatial domain on the order of
kilometers down to system geometry
on the order of millimeters

 Embedded sensitivity analysis, uncertainty
quantification and optimization

SPARC/SPARTA
 Virtual flight test simulations of re-entry

vehicles from bus separation (exo-
atmospheric) to target for normal and
hostile environments

 SPARC

 Time-accurate wall-modeled LES of
high Reynolds number (100k-10M)
hypersonic gas dynamics

 SPARTA

 DSMC code to model low-density
gas flow in the upper atmosphere

 Embedded sensitivity analysis,
uncertainty quantification and
optimization

6

ASC/IC Applications: Sierra and RAMSES
• Traditional engineering mechanics, electromagnetics, radiation effects, and circuit

analysis

How Can AMT Impact Sandia’s ASC Applications?

 Provide an abstraction layer for AMT programming models
 Influence the broader AMT community

 Overarching Questions
 Is it portable across a variety of runtime system technologies?

 Is it interoperable with Kokkos?

 What is its performance and productivity compared to MPI?

7

Outline

 Motivation

 Milestone Overview

 AMT + DARMA Overview

 Milestone Results: Bottom Line Up front

 Deep Dive on Findings
 Generality of the Backend API

 Interoperability

 Performance and Productivity

 Conclusions

 Future Work

Asynchronous Many-Task (AMT)
Software Stack Demonstration

 This milestone will evaluate a DARMA-compliant AMT
runtime software stack comprising ATDM ASD software
components and existing community AMT runtime
technologies (e.g., Charm++).

 We will assess the performance and productivity of this
software stack on kernels and proxy applications
representative of the Sandia ATDM applications.

 As part of the effort to assess the perceived strengths and
weaknesses of AMT models compared to more traditional
approaches, experiments will be performed on test bed
machines and one or more ATS-x system (target is Trinity).

9

Outcomes of milestone

 An initial DARMA-compliant AMT software stack

 A clear understanding of the strength and limitations of
DARMA abstractions and DARMA-compliant software stack in
the context of SNL’s ATDM codes

 Information to guide our future research and development in
this area

10

Milestone Deliverables

1. DARMA-compliant AMT software stack on tests beds and one
or more ATS-x system (intent is to use Trinity).

2. Implementation of ATDM application kernels and proxies
developed for the AMT software stack.

3. An analysis of the productivity, performance, scalability, and
dynamic load balancing capability for the DARMA-compliant
runtime on those ATDM application kernels and proxies.

4. A report to inform the code development road map guiding
the (Sandia) ASC code strategy

11

Outline

 Motivation

 Milestone Overview

 AMT + DARMA Overview

 Milestone Results: Bottom Line Up front

 Deep Dive on Findings
 Generality of the Backend API

 Interoperability

 Performance and Productivity

 Conclusions

 Future Work

AMT research is focused on mitigating system
complexities at the runtime system-level

13

Image courtesy of www.cal-design.org

 Abstractions provide a
separation of concerns

 Removal of system-level specifics
from application code

 Task parallelism

 Asynchrony, overlap of
communication and computation

 Load balancing

AMT models require a shift from an imperative to declarative
programming paradigm

Imperative vs declarative programming: a simple
example

14

DeclarativeImperative
Make me a sandwichGet a piece of bread

If likes mustard
Add mustard

If not vegetarian
Add meat

Add cheese
Add veggies
Put more bread on top
Cut in half

Programmer uses explicit
statements to control program

state and prescribe order of
operations

Programmer expresses logic
without prescribing control-flow

 Directed acyclic graph (DAG) encodes data-
task dependencies

 Enables a runtime system to reason about
 Task and data parallelism

 Overlapping communication and computation

 Load balancing

 When and where to execute work and move data

What is it about AMT models that enables a declarative
programming approach?

15

data-task graph

subset

reads

What is DARMA?

16

DARMA is a C++ abstraction layer for asynchronous many-task
(AMT) runtimes.

It provides a set of abstractions to facilitate the expression of
tasking that map to a variety of underlying AMT runtime system

technologies.

17

What is DARMA?

Outline

 Motivation

 Milestone Overview

 AMT + DARMA Overview

 Milestone Results: Bottom Line Up front

 Deep Dive on Findings
 Generality of the Backend API

 Interoperability

 Performance and Productivity

 Conclusions

 Future Work

Milestone Deliverables

1. DARMA-compliant AMT software stack on tests beds and one
or more ATS-x system (intent is to use Trinity).

2. Implementation of ATDM application kernels and proxies
developed for the AMT software stack.

3. An analysis of the productivity, performance, scalability, and
dynamic load balancing capability for the DARMA-compliant
runtime on those ATDM application kernels and proxies.

4. A report to inform the code development road map guiding
the (Sandia) ASC code strategy

19

Milestone Deliverable 1

A DARMA-compliant AMT software stack
 We have three different stacks in various stages of development

 DARMA-Charm++: Fully distributed, focus of milestone performance analysis

 DARMA-OnNode: Development tool

 DARMA-HPX: Prototypes* (HPX3, HPX5)

including ATDM ASD components
 DARMA-OnNode+Kokkos (using OpenMP affinity layer for resource

management)

 Ongoing research and development with Kokkos and Resource manager
teams on DARMA-Charm+++Kokkos*

on NGP testbeds and one or more ATS-x system (intent is to use
Trinity)

 Analyses were performed on Trinity (ATS-1) and Mutrino (Trinity testbed)

20

Milestone Deliverable 2

Implementation of ATDM application kernels and proxies developed
for the AMT system

 Three benchmarks
 Written by DARMA developers
 Purpose: highlight benefits/limitations of the programming model and runtime

– Jacobi: memory-bound computation, latency-bound communication to
expose overheads

– Molecular dynamics: compute-bound with more bandwidth-intensive
communication to complement Jacobi

– Simulated Imbalance: assess load balancing capabilities

 Three proxy applications
 Written by application developers
 Purpose: co-development of APIs, acquire subjective feedback, requirements

– PIC: Direct collaboration with EMPIRE application team

» SimplePIC, MiniPIC*

– UQ*: Embedded analysis is a capability used by both applications
– Multiscale*: Ties to IC/Sierra

21

Milestone Deliverable 3

An analysis of the productivity, performance, scalability, and
dynamic load balancing capability for the DARMA-compliant runtime
on those ATDM application kernels and proxies

 10000s of runs performed on ATS-1 systems (Haswell and KNL)

 Mutrino: scaling and profiling studies up to 64 nodes (2K cores Haswell), (4K cores KNL)

 Trinity KNL:

– Scaling studies up to 2K nodes (131K cores)

– Limited access precluded full scaling studies to 4K nodes (262K cores), spot runs
only at 4K completed

 Trinity Haswell: Some scaling results, given limited access we focused on KNL

 Two compilers: GCC6.3.0 and ICC18.0.0beta (ICC results NDA for now)

 Scaling studies, performance profiling to assess:

 Overheads in balanced use cases with imperative baselines (MPI-only)

 Scaling trends (focus on strong, weak scaling as time permitted)

 Load-balancing capabilities for load-imbalanced use cases

 Subjective feedback from application developers on productivity

 Summary of semantic information gain in DARMA program specification
22*exceeds criteria

Milestone Deliverable 4

A report to inform the code development road map guiding the
(Sandia) ASC code strategy

 Currently in draft form

 ~130 pages so far with details
regarding Deliverables 1, 2, and 3

23

Conclusions

 Productivity:

 Easier to express communication overlap: no Isend/wait pairs, communication progress not
explicit in application code

 Easier to express tunable granularity: data decomposition can mismatch execution resources
(overdecomposition) without changing application code

 Easier to enable load balancing: migratable data and work chunks can be transparently
rebalanced without explicit bookkeeping and rebalancing in application code

 Performance:

 DARMA is scalable (weak and strong) up to 2K nodes

 Load balancing shows major performance gains with minimal effort from app developer

 Deferred execution and sequential task model have overheads (~10% over MPI)

 Expect DARMA performance to improve as we tune the implementation

 Interoperability: It’s complicated, but the initial results are promising; major focus in
Q1 FY18

 Generality: declarative backend specification facilitates mapping to different
technologies, development of “common components” across backend
implementations

24

Outline

 Motivation

 Milestone Overview

 AMT + DARMA Overview

 Milestone Results: Bottom Line Up front

 Deep Dive on Findings
 Generality of the Backend API

 Interoperability

 Performance and Productivity

 Conclusions

 Future Work

Runtime calls into DARMA to extract

data-task dependencies

Application

DARMA

Runtime

OS/ Hardware

Common API
across runtimes

Common API
across runt imes

Front End API
(Application User)

Translation Layer

Back End API
(Specificat ion for Runt ime)

Glue Code
(Specific to each runtime)

Runtime controls construction

and execution of the DAG

P
ro

d
u
ce

r
C

on
su

m
er

By design DARMA captures a declarative specification
of the application that does not prescribe control-flow

26

DARMA’s Backend Runtime System Responsibilities

 Manage data dependencies between tasks (data inputs and outputs)

 Exploit data usage (write/read/etc.) and sequencing information from the
frontend to schedule tasks without data conflicts

 Make scheduling decisions based on current state to copy, move, or stall data
accesses to optimize performance and memory usage

 Determine and track placement of data, tasks, and task collections across distinct
memory spaces

 Distributed reference counting of data to determine task readiness and schedule
appropriately

 Manage location of task collection elements to efficiently transfer data for
publishes (send) and fetches (receive) between elements

 Coordinate data movement utilizing the underlying communication transport layer

 Use frontend interface to serialize/de-serialize arbitrarily typed objects to move
C++ object across memory spaces

 Implement collective operations (currently only reduce and all-reduce)

27

DARMA’s Backend Runtime System Responsibilities

 Manage data dependencies between tasks (data inputs and outputs)

 Exploit data usage (write/read/etc.) and sequencing information from the
frontend to schedule tasks without data conflicts

 Make scheduling decisions based on current state to copy, move, or stall data
accesses to optimize performance and memory usage

 Determine and track placement of data, tasks, and task collections across distinct
memory spaces

 Distributed reference counting of data to determine task readiness and schedule
appropriately

 Manage location of task collection elements to efficiently transfer data for
publishes (send) and fetches (receive) between elements

 Coordinate data movement utilizing the underlying communication transport layer

 Use frontend interface to serialize/de-serialize arbitrarily typed objects to move
C++ object across memory spaces

 Implement collective operations (currently only reduce and all-reduce)

28
A runtime’s level of native support for these capabilities is a

contributing factor to the thickness of the “glue code”

Currently there are three back ends in various stages of
development

29

Strategy and implementation details for backend
mappings are included in the milestone report

 Details for current backends:
 Charm++

 OnNode (threads)

 HPX3

 HPX5

 Strategy for other backends:
 REALM

 Legion (Discussion of differences and
similarities in programming model)

 MPI

30

DARMA-Charm++ Overview

 Manage data dependencies between tasks (data inputs and outputs)

 Not a direct mapping: implements local and distributed schedulers in Charm++
user-space to schedule and track DARMA data

 Determine and track placement of data, tasks, and task collections across distinct
memory spaces

 Not a direct mapping: utilizes Charm++’s groups, nodegroups, and chare arrays
to manage DARMA tasks and data.

 Carefully passes DARMA task collections to Charm++ chare arrays to utilize LB
effectively

 Coordinate data movement utilizing the underlying communication transport layer

 Close mapping: Uses Charm++’s native, platform-specific network layers (ugni,
ibverbs, tcp/ip, mpi) to transfer data

 Close mapping: Performs serialization/de-serialization by passing data to
Charm++’s extensive PUP (Pack/UnPack) interface

 Implement collective operations (currently only reduce and all-reduce)

 Not a direct mapping: Charm++ has a native reduce but not an all-reduce. Since
Charm++ has vastly different collective semantics, reduce and all-reduce are re-
implemented, but re-use Charm++ topological spanning trees

31

Outline

 Motivation

 Milestone Overview

 AMT + DARMA Overview

 Milestone Results: Bottom Line Up front

 Deep Dive on Findings
 Generality of the Backend API

 Interoperability

 Performance and Productivity

 Conclusions

 Future Work

Interoperability: why is it important?

 Interoperability: The ability of separate
software components to efficiently share
execution resources, share memory
spaces, and exchange information

 Sandia has adopted a component-based
approach to application development

 Interoperability of independent
components is crucial to the success of
the program

33

Image courtesy of
www.cal-design.org

Interoperability: what is the underlying issue?

34

 Increases in system parallelism and
heterogeneity drive increases in

 Number of tools, runtimes, and languages
aimed at gleaning performance from new
architectures

 Complexity of component based systems
developed and deployed

 Challenge: Underlying assumption by
many frameworks that all system
resources are available for their use.

Image courtesy of
www.cal-design.org

DARMA and its underlying runtime must be interoperable
with node-level and network-level frameworks

 Node-level: Focus is interoperability with Kokkos
 Kokkos provides performance portability across various architectures and

has been adopted by Sandia’s ASC applications

 Interoperability research and development includes:

 Execution-space interoperability

 Memory-space/data management interoperability

 Focus of this year’s milestone: Execution Space Interoperability

 Network-level: Focus is interoperability with MPI
 Handoff of network resources between imperative MPI codes and DARMA

codes

 Leading AMT runtimes all support this handoff mechanism, Charm++
included

 DARMA abstractions naturally lend themselves to the handoff

 Not in this year’s milestone. Next year will see engineering work on this
deliverable. 35

Kokkos: performance portability

36

 Kokkos is a C++ library that provides node-level programming
model abstractions to
 Identify / encapsulate grains of data and parallelizable operations

 Aggregate these grains with data structure and parallel patterns

 Map aggregated grains onto memory and cores / threads

 Design is agnostic to inter-node parallelism

 Use case drivers initially focused on integration with MPI until
recent AMT integration with Uintah

A visual comparison of Imperative+Kokkos and
AMT+Kokkos highlights differences in use-cases

37

t ime

w
or

ke
rs

AMT+ Kokkos

(4 part it ions of width 4)

time

w
or

ke
rs

AMT+ Kokkos

(2 part it ions of width 8)

time

w
or

ke
rs

Imperative applicat ion

with Kokkos

Serial work

Kokkos work

AMT work

A visual comparison of Imperative+Kokkos and
AMT+Kokkos highlights differences in use-cases

38

t ime

w
or

ke
rs

AMT+ Kokkos

(4 part it ions of width 4)

time

w
or

ke
rs

AMT+ Kokkos

(2 part it ions of width 8)

time

w
or

ke
rs

Imperative applicat ion

with Kokkos

Serial work

Kokkos work

AMT work

Fork-join of
resources

AMT runtimes are threaded with
work scheduled dynamically,
making
resource handoff more complicated.

A visual comparison of Imperative+Kokkos and
AMT+Kokkos highlights differences in use-cases

39

t ime

w
or

ke
rs

AMT+ Kokkos

(4 part it ions of width 4)

time

w
or

ke
rs

AMT+ Kokkos

(2 part it ions of width 8)

time

w
or

ke
rs

Imperative applicat ion

with Kokkos

Serial work

Kokkos work

AMT work

Introduction of Kokkos::partition_master

to partition node enables overlap of AMT and
Kokkos work.

Plan: Node Resource Manager (NoRMa) for execution
resources management between Kokkos+DARMA

 Low-level interface: thin layer on-top of HWLOC
 Maintains an inventory of available resources (cores and hardware

threads)

 Responds to requests from software components for those resources

 Once resources are reserved, threads may be launched onto those
resources directly by the owning component

 Optional high-level interface: C++ std::threads

 Allows the “donation” of threads (bound to particular cores) between
components (e.g. DARMA to Kokkos)

40

Ultimately the OpenMP affinity layer was chosen to
manage execution resources between DARMA+Kokkos

 ATDM and IC application requirements regarding native
vendor OpenMP libraries
 Mixed Kokkos and OpenMP node programming (e.g., OpenMP-

enabled Intel Math Kernel Library calls)

 Precedent of using OpenMP affinity layer in Uintah+Kokkos
integration

 Charm++ runtime library’s interference with HWLOC controls

41

DARMA-OnNode+Kokkos prototype integration details

42

Kokkos work

DARMA work

t ime

w
or

ke
rs

DARMA+ Kokkos

(2 partit ions of width 8)

Exiting and re-entering of DARMA and Kokkos work
queues happens at function boundaries

Synchronization via
structured blocks of
OpenMP parallel
regions

DARMA+Kokkos variant of the Jacobi benchmark used
to demonstrate execution interoperability

43

Preliminary experiments show that partition size
impacts average iteration time on a KNL node

44

This prototype DARMA-OnNode+Kokkos integration feeds
into ongoing DARMA-Charm++ + Kokkos development work

DARMA-Charm++ + Kokkos research and development
is in progress and a major focus of FY18 efforts

 Similar to other AMT frameworks, Charm++ is centered on
explicitly managed pthreads
 OpenMP interoperability was via custom in-house libraries

 Work using vendor-supported OpenMP affinity layer in
progress – joint with CharmWorks
 Support directly within Charm++ runtime

 Build and test support for integrated software stack

45

Outline

 Motivation

 Milestone Overview

 AMT + DARMA Overview

 Milestone Results: Bottom Line Up front

 Deep Dive on Findings
 Generality of the Backend API

 Interoperability

 Performance and Productivity

 Conclusions

 Future Work

Performance and Productivity Outline

 DARMA productivity goals

 DARMA performance goals

 How do DARMA’s abstractions enable these goals?

 System target: ATS1 Overview

 Proxy results

 Benchmark results

47

DARMA productivity goals

 Application developers can focus on describing data
decomposition and data effects, not managing execution
resources (threads, network messages)

 Conflict-free programming model without explicit wait(…) calls

 Load balancing transparent to application, intrinsic to runtime

 Overlap of communication/computation transparent to
application, intrinsic to runtime

 Ease transition from imperative to declarative programming
style via deferred execution semantics

48

DARMA performance goals

 Deferred execution through C++ templates should be
lightweight

 Overdecomposition should enable efficient pipelining of
communication, overlap with computation

 Automatic, application-agnostic load balancers should
achieve ~80-90% of the benefit of optimal load balancer

49

DARMA comprises abstractions for data and tasks

 Asynchronous smart pointers wrap user data and
track meta-data used to build and annotate the DAG
 darma::AccessHandle<T>

 darma::AccessHandleCollection<T>

 Tasks are annotated via several interfaces
 darma::create_work

 darma::create_concurrent_work

50

How do DARMA’s abstractions enable these goals?

 Automatically capture dependencies and data effects through
C++ metaprogramming
 Visible code is just variables and functions, no tasks

 Creating DAG directly in user code is tedious and error-prone

 Each data block/variable tracked by logical identifier in
runtime
 Enables automatic migration of data structures (data movement)

 Enables automatic load balancing

 create_concurrent_work boundaries are natural
locations for load balancing

51

 Parallel algorithms are written to a data decomposition, not
execution units (process, rank, thread)
 Tunable granularity

 Overdecomposition (communication overlap, load-balancing
flexibility)

 Communication pattern automatically determined from data
effects
 Broadcast data if shared and read-only access

 Streaming communication pattern (not yet implemented) if
commutative access

 Shared-memory optimizations for tasks/data in same process

52

How do DARMA’s abstractions enable these goals?

Trinity/Advanced Technology Systems (ATS)-1 is the
performance analysis target for the milestone

53(Image courtesy of ACES)

Cray XC30

KNL: enables emerging architecture,
workflow, runtime system research

Haswell: enables support for
current ASC/IC programs

Performance analysis results are captured for both
Haswell and KNL architectures

54(Images courtesy of
ACES)

KNL should do better on highly-
parallel, numerically intensive
code

Haswell should have better serial
performance, and perform better on
system tasks (e.g., communication)

Proxy and benchmark overview

 Three benchmarks
 Written by DARMA developers
 Purpose: highlight benefits/limitations of the programming model and runtime

 Jacobi: memory-bound computation, latency-bound communication to expose
overheads

 Molecular dynamics: compute-bound with more bandwidth-intensive
communication to complement Jacobi

 Simulated Imbalance: assess load balancing capabilities

 Three proxy applications
 Written by application developers
 Purpose: co-development of APIs, acquire subjective feedback, requirements

 PIC: Direct collaboration with EMPIRE application team
– SimplePIC, MiniPIC*

 UQ*: Embedded analysis is a capability used by both applications
 Multiscale*: Ties to IC/Sierra

55
*exceeds criteria

 SNL is developing a new code base for plasma simulations

 Component based approach using the Trilinos framework

 The PIC component of Empire is the basis for our proxy app work

 Two sets on unknowns, mesh data and particles
 Domain decomposition on the fields and the particles can be out of

balance

 Calculations are localized so colocation is important

 Work can be created in one location and migrate to a different location

 Potential solution – overdecomposition
 Overdecomposition breaks the problem up into more units than you have

computational cores

 Load balance at a middle level of work

 Overlap computation and communication
56

EMPIRE: ElectroMagnetic Plasma In Radiation
Environments

 MiniPIC is an electrostatic PIC miniapp build on MPI+Kokkos.

 In the scope of this L2, a proxy app SimplePIC was developed

 SimplePIC is a particle move kernel from MiniPIC on a structured
mesh
 MPI based version of SimplePIC was developed for benchmark purposes.

 The current code design flow is: SimplePIC → MiniPIC → EMPIRE.

57

From EMPIRE to MiniPIC and SimplePIC

 In FY17 EMPIRE and DARMA teams hired Aram Markosyan
 with computational plasma physics and numerical analysis background

 shared postdoc

 bi-weakly meetings with EMPIRE team

 Tightly integrated with DARMA team

 Aram’s role was to intensively communicate and represent the
needs of EMPIRE team in the DARMA design processes
 Designing and developing SimplePIC proxy app

 SimplePIC and the DARMA backend were built up together this year

 Every single new and experimental feature of DARMA was first tested on
the SimplePIC (performance/productivity feedback)

58

Co-Design Efforts

Impact of tightly coupled collaboration

 Made DARMA a more performant, productive, feature rich
and robust programming model

 Enabled app developer to look at PIC problem from
completely new perspectives

59

SimplePIC Proxy Overview

 PIC method allows the statistical representation of general
distribution functions in phase space

 It uses the fundamental equations retaining the full nonlinear
effects

 SimplePIC includes only particle move kernel

 Domain Decomposition: 2-level 3D structured grid
 Px

☓Py☓Pz grid of boxes (patches), nx☓ny☓nz grid within each box

 Computational costs:
 O(Nparticle) computation (memory bound), O(Nparticle

☓ patchsurf/patchvol)
communication,

 Proxy goal: serve as test ground for PIC algorithm design and
development on DARMA

60

SimplePIC Proxy Algorithm

• Decompose problem into patches and assign them to processing units

• For every patch initialize the swarm (particles on that patch)

• For each time step do (iteration)
• For each particle in the swarm do

• Advance particle until it reaches the patch interface or time expires

• If time is not expired do

• Put particle in the migrants (a buffer, corresponding to that patch interface)

• Remove particle from swarm

• Compute the total number of migrants in the entire domain

• While total number of migrants > 0 do (micro-iterations)

• For every patch interface exchange the migrants

• For each interface do

• For each particle in migrants do

• Advance particle until it reaches the patch interface or time expires

• If time expired add particle to swarm, otherwise put in migrants

• Compute the total number of migrants

61

Balanced and Unbalanced SimplePIC Studies

62

 Balanced use case assesses overheads with respect to MPI-only
implementation
 Every computational cell has N randomly placed particles (5 - 30), with

random velocities (|v| = const).

 Imbalanced use case assesses benefits of overdecomposition
and load balancing
 Initially place 80% of particles into the 20% of the domain creating load

imbalance in the system.

 The computational experiment was designed such that the system will
reach to a fully balanced state in 500 iterations and come to the initial
state in 1000 iterations.

 In all studies we kept CFL number to a value of 0.96, which
translates into at most 2 micro-iterations per time step.

KNL architecture provides many possibilities for on-
node parallelism

 Empirical exploration of cpu-binding and affinity tradeoffs

 Increasing number of communication threads/node
 Fewer threads available for computation

 Communication is driven forward more quickly

 Increasing number of hyperthreads/core
 More threads actively computing

 Potential cache conflicts

 Weakened serial performance per thread

 CPU binding options
 Binding tasks to physical cores only or to specific hyperthreads

63

A CPU binding and affinity study determined proper
settings on KNL for SimplePIC

64

A variety of settings were
tested for MPI and DARMA.

Optimal settings:
MPI: 4-way hypertheading
with cpu_bind = threads

DARMA: 13 processes per
node, each with
• 16 compute threads (4

compute cores)
• 1 communication thread

Strong scaling of balanced SimplePIC
up to 131K cores/2K nodes (KNL)

65

1.4B particles
143M cells

138B particles
4.6B cells

Mutrino (KNL, 4K cores) Trinity (KNL, 131K cores)

 DARMA overhead with respect to MPI is -5-24%.

 On 2K cores, grain size is too small and, hence,
degraded scaling.

 MPI scaling degradation is likely due to MPI only
launch on KNL.

 DARMA scales super-linearly up to 131K
cores.

Strong scaling of balanced SimplePIC
up to 32K cores/2K nodes (Haswell)

66

4.2B particles
141M cells

136B particles
4.5B cells

Mutrino (Haswell, 2K cores) Trinity (Haswell, 32K cores)

 DARMA scales consistently good on up to
32K cores.

 Slight overheads can be explained by the
small problem size on higher core counts.

 DARMA overhead with respect to MPI is 12-
19%.

 On 2K cores, grain size is too small and,
hence, DARMA does not have perfect linear
scaling.

 MPI scales ideally on up to 2K cores.

DARMA Strong scaling of imbalanced SimplePIC
up to 131K cores/2K nodes (KNL)

67

1.8B particles
55M cells
ODF = 8

40B particles
3.4B cells
ODF = 4

Mutrino (KNL, 2K cores) Trinity (KNL, 131K cores)

 For lower core counts, load balancing
provides around 50% speedup.

 For higher core counts, at least at this
overdecomposition level, speed up due to a
load balancer is 20%.

 These trends are similar for Haswell.

 Similar trends are present on Trinity at
these higher scales.

68

DARMA Time Profile Graph of Balanced SimplePIC on
2k Cores/64 nodes (Haswell) for 3 Iterations

 x-axis is time and
y-axis are
different cores

 Most of the time
is spent executing
application tasks

 There is a small
amount of idle
time (white) at
the end of each
iteration

ODF=1

ODF=8

69

DARMA Percentage Utilization Graph of Balanced
SimplePIC on 2k Cores/64 nodes (Haswell) for 3 Iterations

ODF=1

ODF=8

 x-axis is time and y-axis is the
proportional aggregate of work
type spent across the worker
cores

 With an overdecomposition
factor of 8 (ODF=8) the data
transfer time is slightly increased

 The idle time at the end of the
iteration is slightly reduced with
ODF=8 because the system is
able to overlap communication
with computation

70

DARMA Time Profile Graph of Balanced SimplePIC on
2k Cores/64 nodes (Haswell) for last 2 micro iterations

ODF=1

ODF=8

 Processor utilization for 2 micro
iterations

 Note the scale: this is 25
milliseconds

 Overdecomposition increases
the execution time because data
transfer is increased (note the
increase in green and blue area)

 More particles must cross the
boundaries with smaller boxes

 Overall processor utilization is
increased because there is more
overlap with communication

DARMA Projection views of imbalanced SimplePIC
on 2K cores (Haswell)

71

 Significant improvement
in load imbalance with
more frequent calls to
load balancer.

 The overhead (cost) of
load balancer is
essentially constant.

 Over 50% CPU utilization
increase after the first
load balancer call (in both
cases).

Conclusions on SimplePIC Performance Study

 Balanced SimplePIC study stressed DARMA overheads with
respect to MPI. In the worst cases we are off by 25%.

 Balanced SimplePIC also showed excellent scalability on 131K
cores (2K KNL nodes).

 Imbalanced SimplePIC demonstrated the benefits of
overdecomposition and load balancing on 131k cores (2K KNL
nodes), while maintaining strong scalability.

72

Lessons learned on productivity for SimplePIC proxy

 “Manual (dynamic) overdecompositon and load balancing in
MPI can be very tedious and error prone task even for
structured PIC. For unstructured case, the situation is very
complex.”

 “Data decomposition in DARMA provides intuitive
mechanisms for work load balancing, while runtime handles
scheduling.”

 ”DARMA abstractions are fairly intuitive and provide a
productive environment for code design and development.”

73Quotes from application developer

From SimplePIC to MiniPIC (and to EMPIRE)

 As designed, SimplePIC serves as a test ground for a algorithmic
exploration for MiniPIC (EMPIRE).

 MiniPIC DARMA work is in progress
 Move kernel DARMA-tized

 DSMC kernel in progress

 FY18 efforts will focus on full DARMA+Kokkos PIC kernels in MiniPIC for
uptake into EMPIRE

74

Uncertainty Quantification (UQ)

 UQ is identified as one of the main application-driven exascale targets due to:

 growing importance and impact on predictive modeling and simulations,
e.g. reliability analysis

 challenges due to atypical workloads

 Both ATDM applications have an emphasis on embedded UQ capabilities (e.g.,
embedded sampling, sensitivity analysis, V&V)

 Sampling-based UQ methods are the most common approaches currently used
for exploring UQ in large application codes.

 As part of FY17, we have started exploring how to tackle UQ in DARMA.

75

Two Demonstrators Developed within UQ

 Monte Carlo Analysis for 1D stochastic diffusion equation
 Challenges and features:

 Scheduling/mapping of O(million) independent tasks

 No point-to-point communication involved except for global collectives

 Multi Level Monte Carlo Analysis for 1D stochastic PDE
 Challenges and features:

 Multiple sets of independent tasks of varying computational cost

 No communication involved except for global collectives

 Dynamic addition of new levels based

 Dynamically changing number of samples per level

 Potentially highly imbalanced application due to inhomogeneous
convergence time of PDE solves

76

DARMA Strong Scaling for Monte Carlo
up to 64 nodes (2K cores) Haswell

 n: number of PDE samples
per DARMA index

 Total number of
samples: N=n*2880, where
2880 is tot # of threads (96
nodes * 30 threads/node).

 Each PDE solve = linear
system of 4,194,304 degrees
of freedom.

 Good scaling (as expected).
Cache/memory effects
appear for larger problems.

77

DARMA Strong Scaling for Multi Level Monte Carlo
up to 96 Nodes (Haswell and KNL)

78

 Adaptive MLMC starting from 4
fixed initial number of levels.
Coarsest level has 4096 grid points.

 Workload varies from O(billion)
``small’’ tasks for coarse level, to
O(100) for finest level.

 Good scaling. Not enough runs to
pinpoint the causes behind Haswell
trend.

Lessons Learned from UQ Studies

 “Forward problems are typically characterized by/treated with many
independent samples, making them a natural fit for AMT models.”

 “Task/data reusability can be a key feature to leverage for sampling
methods. E.g.: use as initial condition the final solution of other tasks to
potentially accelerate convergence. This is a feature that we have not
explored yet, but are planning to within the next fiscal year.”



 “Dynamic workload and load balancing for MLMC is a good feature to
explore and for testing work scheduling and speculative execution
techniques. “

 “Future work will involve more heterogeneous problems: impact of load
balancing, dynamic parallelism, optimal task mapping.”

79Quotes from application developer

Multiscale Solid Mechanics Proxy

 Investigate the application of DARMA within an engineering analysis code
that is representative of ASC IC codes (e.g., Sierra/SolidMechanics)

 Evaluate the performance of DARMA against other parallelization
strategies (serial, MPI, Tpetra) under a variety of load imbalance scenarios

 Standard geometric partition schemes will lead to large load imbalance

Purpose

Modeling capabilities

 Lagrangian finite element code for the solution of dynamic solid
mechanics problems on non-uniform meshes

 Single-scale and multiscale capabilities (like FE2)

Multiscale Solid Mechanics Proxy

81

 FE squared (FE2) multiscale approach

 Representative volume elements (RVEs) are associated with material
points in the macroscale model

 RVE models acts as high-fidelity constitutive models
 RVE models are solved as independent finite element problems

 Information exchange between macroscale model and the RVE models

DARMA has the potential to
effectively manage the

computational complexity of
the multiscale problem

Overview of Multiscale Solid Mechanics Proxy

82

 Application code written from scratch in C++

 Minimal use of third-party libraries, no application-level MPI

 Compartmentalize data structures and procedures for use with DARMA
concurrent work paradigm

 Virtually all data stored in simple, serializable containers

Lessons Learned in Multiscale Solid Mechanics Proxy

83

 “Adoption of DARMA requires a shift is developer mindset and a
revamping of conventional architecture for engineering analysis codes”

 “Moving toward an AMT runtime is best achieved by conceptualizing
the application software as a set of tasks with well-defined
dependencies”

 Division of labor:

 “Application developers are responsible for the design and implementation
of compartmentalized tasks and data containers”

 “DARMA is responsible for the execution of tasks, parallelization, and many
aspects of code performance”

Quotes from application developer

Summary of quotes on productivity from our
application developers

 “DARMA provides an intuitive means to reason about your
problem in an AMT way.”

 “Deferred semantics is a significant help for those who are
used to imperative programming only.”

 “Moving toward an AMT runtime is best achieved by
conceptualizing the application software as a set of tasks with
well-defined dependencies”

 “Future work should include focus on documentation and
productivity tools (timers, performance profilers, debuggers)”

84

2D Jacobi Linear Solve Benchmark

85

• Solve Ax = b derived from basic 2D heat equation

• Nearest-neighbor communication of halo region on 2D grid
• 2D stencil computation within a patch

• Byte/flop ratio very high, only a few flops per grid point
• Only small halo region communicated
• Jacobi is memory-bound computation, with latency-bound communication

Haswell on Mutrino (64 nodes) shows good strong
scaling, relative overhead increases at scale

86

• Constant overhead (performance difference) relative to MPI
• Overhead percent increases at larger scales

5% difference

12% difference

Jacobi2D Haswell (up to 64 nodes) strong scaling trends
are consistent across problem sizes

87

• Percent difference decreases with larger
problem sizes (task sizes)

• Larger task sizes better amortize
scheduling overheads

6% difference

9% difference

2% difference

7% difference

Jacobi2D KNL (up to 64 Nodes/4K cores) shows super-
linear strong scaling for both MPI and DARMA

88

• Memory footprint decreases as problem size per node shrinks at
larger scales

• Super-linear effects likely related to better cache/MCDRAM usage

Jacobi2D KNL (up to 64 Nodes/4K cores) strong scaling
trends are consistent across problem sizes

89

• Superlinear discontinuity delayed at larger problem sizes
• Discontinuity corresponds exactly to 16GB threshold for

MCDRAM capacity

Jacobi2D KNL (up to 2048 nodes/131K cores) also has
super-linear strong scaling, relatively constant overhead

90

6% difference

13% difference

Jacobi2D KNL (up to 2048 nodes/131K cores) weak
scaling results consistent with MPI, but with outlier

91

Outliers need additional runs on
dedicated reservation

• Outliers were run on congested KNL session on Trinity
• DARMA performance stays relatively flat
• No superlinear benefit from MCDRAM as in strong scaling

All-reduce every iteration limits asynchronous execution,
blocks scheduling new computation/communication

92
Overdecomposition factor = 1

• Red is active computation,
white is idle time

• Execution shows intermittent
stalls between iterations

• Peaks show messages sent
in a time interval

• Communication becomes
bursty as messages wait for
convergence check

Overdecomposition improves bursty communication,
makes idle times worse performance

93
Overdecomposition factor = 4

• Red is active computation,
white is idle time

• Execution shows intermittent
stalls between iterations

• Overdecomposition makes
all-reduce more expensive,
increasing idle time

• Communication overlap with
overdecomposition makes
less bursty messages

• Cannot compensate
synchronization cost of all-
reduce

Simulate “speculative execution”, perform all-reduce
every N iterations. Idle time shrinks significantly.

94
Overdecomposition factor = 4

• Red is active computation,
white is idle time

• All-reduce only done every 10
iterations

• Stalls in execution is much
less pronounced

• Communication overlap best
when combining less frequent
all-reduces with
overdecomposition

Lessons learned on productivity for Jacobi benchmark

 Tunable granularity, overdecomposition, communication overlap occurs
naturally in DARMA with no additional work

 MPI without overdecomposition is not difficult to write, but lacks any
significant overlap of communication and computation

 MPI with overdecomposition is very difficult to write, requires error-prone or
inefficient use of MPI_Test or MPI_Waitany

 Jacobi memory-bound, needs tiling more than communication overlap

 Some tiling naturally occurs in DARMA with tunable granularity, but auto-
tuning tiling optimizations to Mutrino not performed

 Tiling to L1 cache size is fine-grained, difficult for DARMA to do but
theoretically possible without app changes given declarative model

 Non-optimized collectives combined with conditionals (while loop) limited
DARMA scheduler performance

 Forced DARMA code changes (check convergence every N iterations)

 Developers should not be refactoring to optimize code with conditionals

 Better collectives, speculative execution needed in runtime

95

Molecular Dynamics Benchmark Overview

 Stages:
 Exchange particles in neighboring cells (communication)

 Compute pairwise forces (Lennard-Jones potential) between all
neighboring particles

 Accelerate particles and update atom positions

 Migrate particles that move outside their original cell (communication)

 N particles per box: O(N) communication O(N^2) computation

 Benchmark goal: compute-bound with more bandwidth-
intensive communication to complement Jacobi2D

96

Haswell (up to 64 nodes/2K cores) shows strong scaling
with overheads dependent on work-grain size

97

10%

-25%

-15%

39%

• More patches with fewer particles
stresses communication system,
particularly for MPI

• MPI shows superlinear scaling with
fewer patches per core

• DARMA performs better with larger
patch sizes (more particles)

• MPI struggles with extra data
movement in larger patches

KNL (up to 64 nodes) shows similar trends with decent
strong scaling, overheads depend on work-grain size

98

-20%

22%10%

4%

• Superlinear scaling likely due to
lower memory footprint, MCDRAM

• MPI struggles with extra data
movement in larger patches

KNL (up to 2048 nodes/131K cores) highlights strong
scaling for DARMA-Charm++ backend

99

• Consistent with Mutrino KNL, MPI struggles with communication at larger
scales

• MPI implementation ̀ `best initial attempt’’ at overdecomposition in MPI
• Difficult to identify as DARMA performing well or MPI performing poorly

On KNL, DARMA consistently outperforms MPI

100

Note differences in
scales

Mutrino Trinity

120 patches/node and 1200 particles/patch

• MPI implementation ̀ `best initial attempt’’ at overdecomposition in MPI
• Difficult to identify as DARMA performing well or MPI performing poorly

Lessons learned on productivity for molecular dynamics

 Some MPI codes overdecompose (many boxes per rank), but
still aggregate all messages (box sends) to a given neighbor

 Message aggregation blocks computation until all particles
are sent

 Avoiding message aggregation in MPI and pipelining
communication was error prone, tedious tag matching of box
send with box receive of same size

 Overdecomposition natural in DARMA with focus on data
decomposition in application, runtime handles scheduling

 No need for message aggregation or tedious tag matching
schemes

101

Simulated Load Imbalance Benchmark Overview

 Generates adversarial imbalanced work distribution with
known optimal solution

 Benchmark can be run in three modes
 Perfectly balanced known optimal distribution (best case)

 Adversarial imbalance with no load balancing (worst case)

 Adversarial imbalance with load balancing enabled

 Benchmark goal: Assess interplay of load balancing overheads
and quality of load balancing

102

Tasks
Linear (Uniform)

Distribution of Sizes
Worker 0 Worker 1 Worker 0 Worker 1

Imbalanced Balanced

Different load balancers have cost, scaling, and
optimality tradeoffs

103

LB Type LB Name Description Benefits Drawbacks

Centralized GreedyLB
Heap-based,
considers all tasks
for redistribution

Provides high quality
distribution

Not scalable, expensive
in memory and space

Centralized RefineLB
Heap-based,
considers only tasks
above threshold

Fast for centralized
load balancer

Not scalable, quality
might be low

Distributed,
gossip-based

DistributedLB
Gossip-based,
probabilistic transfer

Extremely fast, fully
decentralized

Quality may be low

Distributed,
tree-based

HierarchicalLB
Tree-based,
hierarchical transfer

Fast, typically provides
high quality

Greedy algorithm may
not be aggressive

Distributed,
group-based

HybridLB
Creates subgroups
of processors and
applies centralized

Can reuse centralized
LB schemes

May be expensive and
slow with large groups

Synthetic imbalance on Haswell (up to 64 nodes/2K
cores) shows overheads, scalabilities of each balancer

104

• Only Greedy, Hybrid load balancers competitive with optimal balance baseline
• All load balancers relatively scalable up to 64 nodes, different quality solutions

though
• All load balancers better than worst-case baseline with no load balancing

105

• Only Greedy, Hybrid load balancers competitive with optimal balance baseline
• All load balancers relatively scalable up to 64 nodes, different quality solutions
• All load balancers better than worst-case baseline with no load balancing

Synthetic imbalance on KNL (up to 64 nodes/2K cores)
shows overheads, scalabilities of each balancer

Large runs on Trinity (up to 2K nodes) highlight
scalability differences between load balancers (KNL)

106

• Refine load balancers skipped, could not finish in 30 minute time cutoff
• All load balancers still relatively scalable, Hierarchical has best scalability but

worse quality of load balance
• Only hybrid load balancer gets near optimal balance with low load balance

overheads

Load balancers redistribute work, shrink idle time
between iterations

107

• Red is active computation,
white is idle time for each
thread

• Execution shows certain
threads idling while large
tasks finish

• First iteration imbalanced, but
idle time shrinks as load
balancer finds nearly optimal
solution on second iteration

No load balancing

Greedy load balancer

Some load balancers improve results, but solution is
not optimal

108

• Red is active computation,
white is idle time for each
thread

• Execution shows certain
threads idling while large
tasks finish

• First iteration imbalanced, but
idle time shrinks as load
balancer finds nearly optimal
solution on second iteration

Hierarchical load balancer

Hybrid load balancer

Lessons learned on productivity for
synthetic imbalance benchmark

 Even for very basic linear imbalance problem, there is no
direct mapping to a scalable MPI collective, routine to derive
optimal task distribution

 MPI_Gather-Sort-MPI_Scatter could be easily implemented
for balancing, but is not scalable

 Ad hoc implementation of app-specific load balancers would
be tedious and error-prone

 Load balancing handled transparently in DARMA-Charm++
application, although some tuning may be required to select
best load balancer for each application

 Hybrid balancer seems a good universal starting choice

109

Outline

 Motivation

 Milestone Overview

 AMT + DARMA Overview

 Milestone Results: Bottom Line Up front

 Deep Dive on Findings
 Generality of the Backend API

 Interoperability

 Performance and Productivity

 Conclusions

 Future Work

Conclusions

 Productivity:

 Easier to express communication overlap: no Isend/wait pairs, communication progress not
explicit in application code

 Easier to express tunable granularity: data decomposition can mismatch execution resources
(overdecomposition) without changing application code

 Easier to enable load balancing: migratable data and work chunks can be transparently
rebalanced without explicit bookkeeping and rebalancing in application code

 Performance:

 DARMA is scalable (weak and strong) up to 2K nodes

 Load balancing shows major performance gains with minimal effort from app developer

 Deferred execution and sequential task model have overheads (~10% over MPI)

 Expect DARMA performance to improve as we tune the implementation

 Interoperability: It’s complicated, but the initial results are promising; major focus in
Q1 FY18

 Generality: declarative backend specification facilitates mapping to different
technologies, development of “common components” across backend
implementations

111

Outline

 Motivation

 Milestone Overview

 AMT + DARMA Overview

 Milestone Results: Bottom Line Up front

 Deep Dive on Findings
 Generality of the Backend API

 Interoperability

 Performance and Productivity

 Conclusions

 Future Work

Future Work

 Focus of DARMA team next year
 Interoperability

 Hardening/Tuning

 Productivity tools (timers, performance profilers, debugging aides)

 Devops, documentation, and testing

 Focus on Empire and SPARC requirements

 Continued engagement with UQ, Multiscale teams

 Bigger picture/longer term efforts
 ATS-2

 Best practices and standards-based runtime solutions

113

