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ABSTRACT
We present the current status of our work towards a scalable, asyn-
chronous many-task, in situ statistical analysis engine using the
Legion runtime system, expanding upon earlier work, that was lim-
ited to a prototype implementation with a proxy mini-application
as a surrogate for a full-scale scientific simulation code. In contrast,
we have more recently integrated our in situ analysis engines with
S3D, a full-size scientific application, and conducted numerical tests
therewith on the largest computational platform currently avail-
able for DOE science applications. The goal of this article is thus to
describe the SPMD-Legion methodology we devised in this context,
and compare the data aggregation technique deployed herein to the
approach taken within our previous work.
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1 INTRODUCTION
1.1 Background
Placement and movement of data are becoming the key-limiting fac-
tors of both performance and energy efficiency for next generation
high performance computing platforms. Furthermore, the increased
quantities of data that the systems are capable of generating, in
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conjunction with insufficient improvements in the supporting in-
put/output (I/O) infrastructure, are forcing applications away from
the off-line post-processing of data towards techniques based on in
situ analysis and visualization. These challenges are shaping how
next-generation, effective, performant, and energy-efficient soft-
ware will be designed and developed. In particular, these highlight
the need for data-centric operations to be fundamental in the rea-
soning about scientific workflows on extreme-scale architectures.

In our first attempt at tackling this issue, with the stated goal of
avoiding the bottlenecks of bulk-synchronous parallel communi-
cation, we devised and described in [8]an asynchronous many-task
(AMT) model, based on a novel concept of aggregation regions as
surrogates for parallel collective operations, implemented using the
Legion system [2]. This preliminary work established that it was
straightforward to port our existing MPI, Single-Program, Multiple-
Data (SMPD) statistical analysis tool set to this new model, thanks
in part to their original design pattern that separated computation
from communication [12]. Furthermore, this approach exhibited
optimal on-node parallel scaling, thereby taking advantage of the
multiplicity of cores on each node. In subsequent work [10], we
demonstrated that the additional overhead from the inclusion of
the statistics computations in situ would not become a bottleneck.
Furthermore, one of the noted benefits of the approach presented
was that only a small set of well contained code was required to con-
nect the analysis to the main simulation application, in this case the
MiniAero computational fluid dynamics (CFD) mini-application [5].

However, given that the findings in these earlier results did not
stem from a full-scale scientific code, it remained to be proven
whether the nice portability features of our approach would ex-
tend to such a complex setting. The current article thus vastly
extends our previous work, where the overall performance of the
in situ system was only evaluated on with mini-applications ran on
modestly-sized test platforms. Namely, we use S3D [7], a massively
parallel DNS solver developed at Sandia National Laboratories, for
which a Legion implementation already exists and is routinely run
on the largest production platforms available at DOE.

1.2 Data-centric AMT Approach with Legion
In a typical in situ framework, simulation and analysis codes must
be explicitly connected, requiring manual data management and
communication. Subsequent changes in how analysis is done thus
requires rewriting parts of the simulation, and vice-versa. One of
the key advantages of a data-centric AMT model is that it natu-
rally supports composability of simulation and analysis code bases,
thereby reducing the entanglement of the application and analysis
codes to simply what data is being shared, and not when, where,
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or how this sharing is to occur. Analysis tasks should therefore be
much easier to incorporate into simulation code, and re-usability
by other codes should also be vastly improved. In addition, this
approach provides performance portability in the face of increasing
I/O cost and variability. Different pieces of code will likely have
different spatio-temporal characteristics in terms of compute in-
tensity, degree of parallelism, data access patterns, and task and
data inter-dependencies. The decoupling of the functional code
from computation and data placement allows an analysis code to
easily be tuned for different machines or to be easily implemented
within either in situ or in transit frameworks. This approach also
provides an opportunity for the run-time to efficiently co-schedule
simulation and analysis tasks, allowing for the incorporation of the
analysis workload into available gaps in the execution of the sim-
ulation, whereas this scheduling requires significant programmer
effort in theMPI+Xmodels [6]. Dynamic load balancing provided by
AMT models has the potential to allow for more graceful handling
of dynamic variability in analysis tasks and simulation.

1.3 The Legion Programming System and
Run-Time

Legion is an AMT model making data and data-centric operations
first-class programming constructs. A Legion application is orga-
nized as a hierarchy of tasks that declare which parts of the appli-
cation data they will access or update. This model separates the
functional description of the code (i.e., tasks and the data upon
which they operate) from the way it is mapped to a given machine
(i.e., tasks and data placement). Application data is contained in
logical regions, which have neither an implied location within the
memory hierarchy of the machine nor a fixed physical layout.

The Legion run-time leverages these data properties to issue
data movement operations as needed, removing this burden from
the developer. This run-time system detects pairs of tasks that have
a data dependence (i.e., they may access the same data and at least
one is making non-commutative modifications to it) and guarantees
that the second task in the pair does not execute until it is safe to
do so. This technique extracts (dynamic) task parallelism from the
application, while preserving programmer-friendly “apparently-
sequential” execution semantics. Legion run-time calls are thus
deferred as needed, allowing the application code to issue tasks
with dependencies immediately. This approach also allows for the
dynamic execution of performance-related transformations (e.g.,
the replication of read-only data to increase parallelism), perhaps
differently on different machines, without modifying the “machine-
agnostic” functional description. Such run-time transformations
also have the potential to alleviate the risks of early optimization as
well as the many burdens of late-stage performance analysis that
are commonplace in the bulk-synchronous SMPD context. Legion
is therefore designed for two classes of users: advanced application
developers and domain-specific library authors.

1.4 SPMD Parallel Statistics Engines
Between 2008 and 2013, some of the authors of this report have
developed at Sandia National Laboratories a scalable parallel sta-
tistical analysis library [12]. These parallel statistics engines are
a set of C++ classes based on SPMD data parallelism using MPI,

which were designed with the dual intent of mimicking the pre-
dominant types of data analysis work flows, so that a data analyst
using our framework would find it natural and intuitive to use,
while being conducive to embarrassingly parallel implementations
whenever possible. In order to meet these two overlapping but not
exactly congruent design requirements, we isolated those parts of
the analysis which by construction are not embarrassingly parallel
(due to the mathematics of the statistical analysis itself, not due
to our design) so that parallel design trade-offs be limited to those
components where embarrassingly parallel implementations are
not viable. Specifically, the statistical analysis work flow is split
into 3 disjoint operations:

• Learn a model from observations,
• Derive statistics from a model, and
• Assess observations with a model.

Figure 1: A simplified example illustrating the operations of
the parallel order statistics; dashed red arrows indicate inter-
process communication. In terms of themap-reduce pattern,
keys are the raw observations (represented by letters a, b, c,
d, e) and values are the number of observations.

These operations, which need not all be executed, occur in order
as illustrated in Figure 1, for a univariate analysis where the Learn
operation builds a global histogram, along with derived statistics
such as empirical PDF and quantiles. From the parallelism stand-
point, this subdivision of the work flow reduces the Learn operation
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to a special case of the map-reduce pattern [4], while the remaining
two are embarrassingly parallel. Specifically, the Learn operation
belongs to the map-reduce pattern in that the parallel algorithm
computes a set of distributed (key,value) pairs. All local values asso-
ciated with the same key are then merged by the reduce function to
compute the global primary model. In some of our statistical algo-
rithms, namely moment-based, it is not necessary to communicate
the keys, as there is a fixed number of these. In addition, the number
of such keys is typically very small, which allowed us to implement
the reduce function as an AllGather MPI collective; all subsequent
operations are performed locally without further communication.
In contrast, for quanta-based algorithms, an arbitrary number of
key-value pairs must be communicated and different keys may be
present on each process. For these cases, the reduce operation uses
two steps (Gather, Broadcast) involving only a small number of
reduction nodes. Numerous systematic, multiple-parameter scala-
bility studies our SPMD/MPI implementation with up to 105 cores
have demonstrated that this design allows for optimal scalability of
all moment-based engines when data is evenly distributed. We also
established that for quanta-based statistics, our design trade-offs
allowed for optimal strong and weak scaling when the input data
is adequatly quantized. Furthermore, those parallel engines have
been successfully applied to the analysis of large-scale turbulent,
reacting flow simulation data [3].

2 PARALLEL STATISTICS IN LEGION
After this stamement of the problem, we now present the two main
approaches that we have explored to address it.

2.1 The Aggregation Regions Approach
As described in §1.4, our SPMD models can take two different
incarnations depending on the considered type of statistics to be
computed, with either an AllGather MPI collective to reduce the
distributed local models into the global primary model, or a Gather-
Broadcast two-step process, for the sake of reducing inter-process
communication as the size of local models is not guaranteed to be
negligible. In the AMT model however, it is no longer necessary to
express data movement explicitly as is done in the SPMD model,
for instance with the dashed red arrow in Figure 1. Instead, task
parallelism can readily replace the jobs performed by the distributed
processes. Instead of specifying movement of data from processes
to a number of reduction nodes, it is instead sufficient to define
a logical region of data where the equivalent of MPI collectives
will be performed. The separation of the logical from the physical
representation of data inherent to Legion makes it especially apt
at supporting this purely data-driven scheme, which should work,
albeit maybe not efficiently, with any generic mapper.

Our proposed approach thus replaces communication with a log-
ical region that contains all model information, both primary and
derived, which we call the aggregation region. Sub-tasks launched
by a top-level task pick up work on those data segments to which
they are assigned, in a similar manner to what is done by parallel
processes in the SPMD context, at least for the Learn and Assess
phases. However, a first noticeable difference is that no commu-
nication of data is expressed (even though it will occur under the

Figure 2: A simplified example illustrating the operations
of the task-based order statistics; solid blue arrows indicate
task launches, dashed red rectangles represent the logical
aggregation region. Sub-tasks of the top-level task are not
obligated to complete in this order, as both union and addi-
tion operators are commutative.

hood; how this happens is entirely the responsibility of the run-
time system). Instead, each tasks aggregates the primary statistics
it has computed over its data segment, with those already stored
in the aggregation region, changing them in-place. As a result, no
broadcast of the global primary model is necessary, for all tasks
using it (for instance, a new set of Assess sub-tasks) will directly
access the aggregation region to retrieve the values of the statistic.
Moreover, the Derive operation is now performed by the top-level
task, for its results, also stored in the aggregation region, will be
also logically available to any Assess tasks launched from the top
level. This asynchronous many-task Learn/Derive/Assess scheme
is represented in Figure 2, again for the case of order statistics.

Note that another benefit of this AMT model is that it allows us
to unify the two SPMD implementations (AllGather and Gather-
Broadcast) into a single paradigm, valid for both quanta-based and
moment-based statistics. Also, because all aggregation operations
(set unions, number additions andmultiplications) are commutative,
the learned primary model is guaranteed to be independent of the
order in which tasks report their results. However strict locks must
be enforced to prevent incomplete model updates: once a task ti
has read the values in the aggregation region, no other task can
access this region before ti has written its own results there.

For example, in the case of in situ descriptive statistics, sub-
tasks numbered 1, 2, and 3 in Figure 2 are implemented as a method
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templated on the type of the Legion accessor used by the run-time to
access data within a physical region. Legion pointers do not directly
reference data, but instead name an entry in an index space, and are
used when accessing data within accessors for logical regions. The
accessor is therefore associated with the field being accessed and
the pointer names the row entry. In this way Legion pointers are
not tied to memory address spaces or physical instances, but instead
can be used to access data for any physical instance of a logical
region created with an index space to which the pointer belongs.
The computation of the process-local model is done using the online
versions of the respective update formulas for the quantities above,
whereas the aggregation with the global model is computed by
means of the pairwise versions, cf. [11] for details.

The in situ statistics class provides an implementation of the
Derive operation, to be called only by the top-level task, for it needs
only a single pass over the small set of primary statistics in order
to compute the derived statistics, as illustrated in Figure 2. Namely,
for descriptive statistics, these are the variance, standard deviation,
skewness and kurtosis estimators. This operation typically has neg-
ligible cost and is purely task-local. Note that in this case the Legion
region requirements are a read-only access to the first field of the
logical region used to store the statistical model, and write permis-
sion for the second field of the same region. sThe Assess operation
also needs only be launched in as many sub-tasks as necessary. In
the context of this study whose goal was to assess the validity of
our proposed AMT design, there was therefore no point in testing it
in addition to the Learn and Derive operations. Scaling results with
the MiniAero/Legion implementation are presented and discussed
in detail in [9, 10]. These demonstrate optimal on-node scaling, both
weak and strong, except when nodes are fully subscribed. However,
we observed wide wall clock variations between different runs of
the same case, a finding which we could not be easily attributed to a
single cause, although several were suggested. Further studies were
thus warranted in order to definitely conclude in this regard, hereby
confirming the need to explore other programming paradigms.

2.2 The Legion-SPMD Approach
The aggregation region approach provides an elegant solution that
abides by a SPMD implementation while still benefiting from any
asynchronous execution. However there are a few drawbacks to this
approach that could potentially be improved upon: it represents an
all-to-onemodel of collectives where all contributions to a collective
are funneled to one-point (the aggregation region), and the result is
not immediately available in the tasks contributing to the collectives
but rather to the parent task.

For instance, in Figure 2 the sub-tasks 1, 2, 3 launched during
the Learn phase contribute to the global model, but will not have
access to it during their respective lifetimes. The global model is
logically available only in the top-level task at the end of the Learn
phase. Moreover, any Assess phase tasks that use this global model
will require a fresh SPMD launch. This fork-join model may be seen
as a “pinching” of the SPMD approach preventing the creation of
sub-tasks with perfect SPMD form, that can run through the entire
lifetime of the application. Nearly all in situ analyses require some
form of global communication and most applications themselves

might require frequent collectives, which can make the aggregation
region approach incur noticeable overhead.

Legion and similar systems provide a sequential abstraction. A
program consists of a sequence of tasks, and the system is responsi-
ble for finding parallelism that respects the original program order.
Because tasks obey a sequential ordering, they need to be analyzed
in order. In Legion, this currently happens on a single node, leading
to a performance bottleneck. In general, if it is intended to launch N
tasks where N is a function of the number of nodes in the machine,
the overhead of the run-time system will be O(N ). This bound is
inherent given the chosen abstractions and even a distributed anal-
ysis of tasks suffers from this problem. For example, StarPU [1]
follows an approach where each node independently filters the set
of tasks to just those to be executed by that node. But because every
node must still consider all tasks, the overall cost of this approach
is O(N ) as in Legion.

A proper solution, achieving O(1) analysis cost per node, requires
abstractions that are independent of machine size. Legion already
provides this via index launches, which describe a set of tasks to be
executed in parallel, although the current run-time implementation
does not fully take advantage of this. Regent, a compiler for the Le-
gion programming model, can automatically control replicate these
index launches to produce long-running tasks called shards that
amortize the cost of this analysis. Critically, the compiler can de-
termine from the sequence of index launches the required patterns
of communication for the application on a distributed-memory
machine, and can automatically generate the appropriate code for
that communication with no additional user input. Regent control
replication has been demonstrated to achieve good scalability to
1024 nodes for a variety of structured and unstructured applica-
tions. An implementation for the Legion run-time itself is also in
progress [13]. The Legion implementation of S3D relies on the
“SPMD style” of Legion, which is currently seen as a practical way
to achieve scalability, in particular for applications based on main
tasks that exist throughout all or most of the run. This style is based
on dynamic collectives, i.e., non-blocking barriers advanced on a
specified number of arrivals. Those allow the developer to define
reduction objects implemented as fold method of a dynamic collec-
tive, when programming in the SMPD style of Legion, provided the
desired reduction operations be associative and commutative.

The configuration investigated consisted of a temporally evolv-
ing jet between n-dodecane and diluted air, including 35 chemical
species. Input values were chosen to be higher than those usually
observed in practical diesel sprays downstream of the evaporation
region in order to guarantee the existence of flow regions contain-
ing the most reactive composition at the time of ignition. The full
simulation was conducted on a computational grid initially with
1200 × 1500 × 1000 points in the transverse, stream-wise, and span-
wise directions respectively. The grid spacing was uniform in the
latter two directions, whereas in order to reduce the total grid count,
a discretization with a uniform central region and stretched edges
was used in the transverse direction. This region was periodically
enlarged as the jet expanded along the in-homogeneous direction
during its temporal evolution: at the end of the simulation, the
number of grid nodes in the transverse direction was 2400.
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2.3 Results
We evaluated our approach with Titan, the premier DOE compu-
tational cluster at the time of writing, with demonstrated peak
performance above 10PFLOPS, at 17.59PFLOPS [14]. Because of the
hybrid CPU/GPU architecture of Titan, existing science applica-
tions that had been historically developed in a CPU-only context
had to undergo substantial changes. The version of S3D that ported
to Titan thus has greater performance than the CPU-only version.
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Figure 3: Weak scaling of descriptive Learn tasks on Titan,
averaged over an ensemble of 20 runswith a 323 grid per task,
and a single task per node.
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Figure 4: Strong scaling of descriptive Learn tasks on Titan,
averaged over an ensemble of 20 runs, with a 64 × 128 × 64
(left) and 256 × 128 × 128 (right) grid and a single task per
node.

Figure 3 shows results of a weak scalability experiment for the
descriptive Learn task, scaling up to 128 tasks on as many distinct
compute nodes of Titan, with a constant load per task, and Figure 4
the results of strong scalability experiments, with two different
meshes of constant global size, and a single task per node. These
reveal optimal scaling, both weak and strong, across the considered
example space. We acknowledge however that we could not ap-
proach the Amdahl limit for strong scaling, as it turned out that a
problem size allowing to approach it for descriptive statistics Learn
tasks would be too large for the main processing computation. In
other words, this finding demonstrates that our in situ implemen-
tation is more scalable than the overall application and therefore
does not impact its scalability.

3 CONCLUSION
The results presented herein are promising, and the statistics pack-
age is planned for deployment at-scale in upcoming S3D science
runs. Planned future work includes integrating the in situ kernels

developed into a more comprehensive and complex workflow. In
particular, we are currently working on integrating order statis-
tics as another analysis engine for S3D-Legion, in order to provide
scientists with the ability to derive empirical probability density
functions, and evince outlying features that deviate from models
computed by the already integrated descriptive statistics engine.
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