SAND2017-9781C

Exploring DARMA Abstraction
Layer for PIC and DSMC Kernels
on Next Generation Platforms

Aram H. Markosyan, Matthew Bettencourt,
Janine C. Bennett, Jonathan Lifflander,
David S. Hollman, Jeremiah Wilke, Hemanth
Kolla, Chris Moore, Robert L. Clay (PM)

DSMC 2017, Santa Fe
August 30, 2017
EMEDRAY M1V
ENERGY #VA
Nattonal Nuciear Securily Administration
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
i tional Nuclear i ini i

urity ministration unaer con
SAND Number: SAND2017-9086 C

Sandia
Outline Pl et

AMT + DARMA Overview
" |ntroduction to SimplePIC

= Performance Results

= Conclusions and Future Work

Extreme-scale HPC system architectures introduce a) e,
number of complexities

(Low Capacity, High Bandwidth)

= Performance Heterogeneity

Accelerators 3D Stacked (High Capacit,

Low Bandwidth)

Thermal throttling

Thin Cores / Accelerators

General system noise
= Responses to transient failures

= Energy Constraints

= Decreased system reliability

Integrated NIC
for Off-Chip
Communication

= Deep memory hierarchies

COMPUTER

ARCHITECTURE

LABORATORY
DESIGN SPACE EXPLORATION

Image courtesy of www.cal-design.org o

Current imperative programming models and runtime systems
require mitigation of challenges largely at application-
developer level

AMT research is focused on mitigating system) e,
complexities at the runtime system-level

= Abstractions provide a '
separation of concerns or—

(High Capacity,
Memory I Low Bandwidth)

(Low Capacity, High Bandwidth)

= Removal of system-level specifics
from application code

= Task parallelism

Integrated NIC

= Asynchrony, overlap of
communication and computation comni

COMPUTER
Image courtesy of www.cal-design.org O S E

Core Coherence Domain

= Load balancing

AMT models are a shift from an imperative to declarative
programming paradigm

4

Imperative vs declarative programming: a simple) i,
example

Imperative Declarative

Get a piece of bread Make me a sandwich
If likes mustard
Add mustard
If not vegetarian
Add meat
Add cheese
Add veggies
Put more bread on top
Cut in half

Programmer uses explicit
statements to control program Programmer expresses logic
state and prescribe order of without prescribing control-flow
operations

5
-

Asynchronous many task (AMT) models and runtime)
systems provide a declarative programming approach

= Directed acyclic graph (DAG) encodes data-task dependencies

= Enables coarse-grained, distributed memory
analog of instruction-level parallelism

= Data prefetching data-task graph

= Qut-of-order task execution
based on runtime dependency analysis ¢ \lsubset

= DAG can be annotated to capture \
= Tasks’ read/write usage of data J \)/
= Task needs a subset of data v

= Additional information enables runtime reads& A AN
to reason more completely about

N

= When and where to execute a task
= Whether to load balance

= Existing runtimes leverage DAGs with varying degrees of annotation
6

& What is DARMA? i) e _

DARMA is a C++ abstraction layer for asynchronous many-task
(AMT) runtimes.

It provides a set of abstractions to facilitate the expression of
tasking that map to a variety of underlying AMT runtime system
technologies.

How does DARMA simplify the shift from imperative to @m
declarative programming? e

The application “produces’ work.
Annotated imperative code is
processed by DARMA, which builds

the DAG incrementally at run-time.

) [v \, The DAG is generalization of a
(*'.~ producer-consumer work queue

The runtime system is in charge of
control-flow and the order in which
it “consumes’ tasks off of the DAG.

8

Sandia

What is DARMA? Laborors

Common API Front End API
across runtimes (Application User)

Translation Layer

Common API Back End API

(Specification for Runtime)

across runtimes

Runtime calls into DARMA to extract
data-task dependencies

T~ |

Runtime controls construction

and execution of the DAG

EMPIRE: ElectroMagnetic Plasma In Radiation) i,
Environments

= SNL is developing a new code base for plasma simulations

= Component based approach using the Trilinos framework

= The PIC component of Empire is the basis for our proxy app work
= Two sets on unknowns, mesh data and particles

= Domain decomposition on the fields and the particles can be out of
balance, (e.g. particle collision work is out of balance)

= Calculations are localized so colocation is important
= Work can be created in one location and migrate to a different location

= Potential solution — over decomposition
= Qver decomposition breaks the problem up into more units than you have
computational cores
= Load balance at a middle level of work

= Qverlap computation and communication

10
-

From MiniPIC and SimplePIC to EMPIRE) e

MiniPIC is an electrostatic PIC miniapp build on MPIl+Kokkos.
= A proxy app SimplePIC was developed

= Particle move kernel from MiniPIC on a structured mesh built on DARMA.
= 3D with various boundary conditions
= MPI based version of SimplePIC was developed for benchmark purposes.

= The current code design flow is: SimplePIC - MiniPIC - EMPIRE.

SimplePIC and the DARMA backend were built up together

= Every single new and experimental feature of DARMA was first tested on
the SimplePIC (performance/productivity feedback)

= Made DARMA a more performant, productive, feature rich and robust
programming model

11

SimplePIC Proxy Overview i)

= SimplePIC includes only particle move kernel

= Push particles in constant applied field

= Does not solve Poisson eqgn. — this is integrated into MiniPIC
= Domain Decomposition: 2-level 3D structured grid

= PP, P,grid of boxes (patches), n,.n n, grid within each box
= Computational costs:

" O(N,article) cOMputation (memory bound), O(N
communication,

<patch, ¢/ patch

particle vol)

= Proxy goal: serve as test ground for PIC algorithm design and
development on DARMA

SimplePIC Proxy Algorithm

 Decompose problem into patches and assign them to processing units
* For every patch initialize the swarm (particles on that patch)

* For each time step do (iteration)

* For each particle in the swarm do
* Advance particle until it reaches the patch interface or time expires

 If time is not expired do Z

* Put particle in the migrants (a buffer, corresponding to that patch interface) g

* Remove particle from swarm @ 2

// AN -

* Compute the total number of migrants in the entire domain BN Z
\ -

. . . . o ‘ : =

* While total number of migrants > 0 do (micro-iterations) f Z
. . R) %

* For every patch interface exchange the migrants Z

-

* For each interface do ~

* For each particle in migrants do 7
* Advance particle until it reaches the patch interface or time expires
* |f time expired add particle to swarm, otherwise put in migrants

* Compute the total number of migrants

13

Balanced and Unbalanced SimplePIC Studies) faor

= Balanced use case assesses overheads with respect to MPI-only
implementation
= Every computational cell has N randomly placed particles (5 - 30), with
random velocities (|v| = const).
= |mbalanced use case assesses benefits of overdecomposition
and load balancing in DARMA

= |nitially place 80% of particles into the 20% of the domain creating load
imbalance in the system.

= The computational experiment was designed such that the system will
reach to a fully balanced state in 500 iterations and come to the initial
state in 1000 iterations.

= |n all studies we kept CFL number to a value of 0.96, which
translates into at most 3 micro-iterations per time step.

14
-

Strong scaling of balanced SimplePIC

Sandia
National
up to 131K cores/2K nodes (KNL) .
Mutrino (KNL, 4K cores) Trinity (KNL, 131K cores)
. 1.4B particles 138B particles
143M cells %0 4.6B cells
— _. 60
2 20 o
& 10 - £ T
o == DARMA TGO N,
VP T TN N,
o .
5I12 10I24 20I48 - 4(;'96 32I768 65;336 131I072
of Cores # of Cores

= DARMA overhead with respect to MPI is -5-24%. = DARMA scales super-linearly up to 131K

= On 4K cores, grain size is too small and, hence, cores.
degraded scaling.

= MPI scaling degradation is likely due to MPI only
launch on KNL.

15
-

Strong scaling of balanced SimplePIC s

National
up to 32K cores/2K nodes (Haswell) L
Mutrino (Haswell, 2K cores) Trinity (Haswell, 32K cores)
100 A
%0 4.2B particles 136B particles
60 141M cells % 4.5B cells
B 40 @ 60
S 20 g 40
10 A
25;6 5i2 10I24 20I48 81I92 16::384 32I768
of Cores # of Cores
= DARMA overhead with respect to MPI is 12- = DARMA scales consistently good on up to
19%. 32K cores.
= On 2K cores, grain size is too small and, = Slight overheads can be explained by the
hence, DARMA does not have perfect linear small problem size on higher core counts.

scaling.
= MPI scales ideally on up to 2K.

16
-

Strong scaling of imbalanced SimplePIC

Sandia
National
up to 131K cores/2K nodes (KNL) L}
Mutrino (KNL, 4K cores) Trinity (KNL, 131K cores)
1.8B particles 40B particles
55M cells 3.4B cells
ODF =8 ODF =4
——&— HierarchicallLB 1007 ‘i
91 % HybriaLs i :szoil(_jBBalancer
o0 —&— No Load Balancer 80 . Ideal
1024 2048 4096 32768 65536 13;;)72
of Cores # of Cores
= For lower core counts, load balancing = Similar trends are present on Trinity at
provides around 50% speedup. these higher scales.

= For higher core counts, at least at this
overdecomposition level, speed up due to a
load balancer is 20%.

= These trends are similar for Haswell.

17
-

Time Profile Graph of Balanced SimplePIC for DARMA on () in%,

2k Cores/64 nodes (Haswell) for 3 Iterations

|

N
e |
|

Processors

s
" - =
=3 =i

O
=
S
)
77

0.274s 0.548s 0.822s 1.096s 1.369s 1.643s 1.917s 2.191s

Processors

0.000s 0.277s 0.554s 0.832s 1.109s 1.386s 1.664s 1.941s 2.218s

. Application Data transfer
work (tasks) (send/recv)

X-axis is time and
y-axis are
different cores

Most of the time
is spent executing
application tasks

There is a small
amount of idle

time (white) at

the end of each
iteration

18

DARMA on 2k Cores/64 nodes (Haswell) for 3 Iterations

Percentage Utilization

Percentage Utilization

Percentage Utilization Graph of Balanced SimplePIC for () fa,

100
90
80
70
60
50
40
30
20
10

0

0.000s 0.274s 0.548s 0.822s 1.096s

1w
90
80
70
60
50
40
30
20
10
0

0.000s 0.277s 0.554s 0.832s

Application
work (tasks)

1.109s 1.386s

1.369s 1.643s 1.917s 2.191s

1.664s 1.941s 2.218s

Data transfer
(send/recv)

X-axis is time and y-axis is the
proportional aggregate of work
type spent across the worker
cores

With an overdecomposition
factor of 8 (ODF=8) the data
transfer time is slightly increased

The idle time at the end of the
iteration is slightly reduced with
ODF=8 because the system is
able to overlap communication
with computation

19

Time Profile Graph of Balanced SimplePIC for DARMA on () s,

1(%k Cores/64 nodes (Haswell) for last 2 micro iterations

90
80
70
60
50
40
30
20
10

0

2.159s 2.162s 2.165s 2.168s 2.171s 2.174s 2.178s 2.181s 2.184s
100 =

90
80 —
70
60 —
3 =
40
30 —

}

= Processor utilization for 2 micro
iterations

= Note the scale: this is 25
milliseconds

Percentage Utilization

= QOverdecomposition increases
the execution time because data
transfer is increased (note the
increase in green and blue area)

= More particles must cross the
boundaries with smaller boxes

= Qverall processor utilization is
increased because there is more
overlap with communication

Percentage Utilization

2.161s 2.168s 2.175s 2.182s 2.190s 2.197s 2.204s 2.211s 2.218s

. Application . Data transfer
work (tasks) (send/recv) 20

Load Balancing Frequency of SimplePIC for DARMA on) i,

2k Cores/64 nodes (Haswell)

Imbalanced PIC: Load Balancer Intervals on Haswell

Total Runtime, in Core-Hours

N <
m O

Number of Nodes

No Load Balancer
LB Interval = 50
LB Interval = 20
LB Interval = 10

Calling load balancing only once
improves the performance
almost 2x.

The optimal load balancing
frequency for this particular
case is 2 times.

In general, optimal frequency
depends on factors like the cost
of load balancer, the grain size,
overdecomposition factor.

21

100
20
80
70
60
50
40
30
20

Percentage Utilization

10
0
0.000s

100 =

90 —
80 —
70 —
60 =

Percentage Utilization

0.000s

Projection views of imbalanced SimplePIC
for DARMA on 2K cores (Haswell)

th

100 iters

38.950s

*f—¢I—\

47.406s

= Significant improvement
in load imbalance with
more frequent calls to
load balancer.

= The overhead (cost) of
load balancer is
essentially constant.

= Qver 2x CPU utilization
increase after the first
load balancer call (in both
cases).

77900s 116.850s 155.800s 194.750s 233.700s 272.650s 311.600s

* 100 iters
Wl

{ ‘I‘:i" i
j | R

200 iters 200 iters

i

94.813s 142.219s 189.625s 237.031s 284.438s 331.844s 379.250s

22

Conclusions on SimplePIC Performance Study) e

= Balanced SimplePIC study stressed DARMA overheads with
respect to MPI. In the worst cases we are off by 25%.

= Balanced SimplePIC also showed an excellent scalability on
131K cores.

= |mbalanced SimplePIC demonstrated the benefits of
overdecomposition and load balancing on 131k cores, while
maintaining strong scalability.

= Addition of DSMC kernel will help increasing the grain size
and do more computation and communication overlap.

23

Lessons learned on productivity for SimplePIC proxy) e

= Manual (dynamic) overdecompositon and load balancing in
MPI can be very tedious and error prone task even for
structured PIC. For unstructured case, the situation is very
complex.

= Data decomposition in DARMA provides intuitive mechanisms
for work load balancing, while runtime handles scheduling.

= DARMA abstractions are fairly intuitive and provide a
productive environment for code design and development.

From SimplePIC to MiniPIC (and to EMPIRE))

= As designed, SimplePIC served as a test ground for a algorithmic
exploration for MiniPIC (EMPIRE).

= MiniPIC was further simplified (Kokkos and MPI dependences
were removed) and move kernel was DARMA-tized.

= DARMA-tization of the DSMC kernel is in progress.

= The prerequisites for DARMA to move forward (towards EMPIRE
code base) are: Kokkos and MPI interoperability

Future Work th ?:;.?';m

" Focus on DARMA

= |nteroperability

= Hardening/Tuning

= Productivity tools (timers, performance profilers, debugging aides)
= Devops, documentation, and testing

= Focus on SimplePIC and MiniPIC

= |ncorporate a collide kernel in SimplePIC
= DARMALtize MiniPIC completely

