
LA-UR-18-28727
Approved for public release; distribution is unlimited.

Title: GPU ACCELERATION OF VOLUME FRACTION AND CENTROID COMPUTATION FROM
GENERAL SHAPES ON UNSTRUCTURED MESH

Author(s): Ha, Quang-Thinh

Intended for: Report

Issued: 2018-09-13

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

GPU ACCELERATION OF VOLUME FRACTION AND CENTROID COMPUTATION
FROM GENERAL SHAPES ON UNSTRUCTURED MESH

Quang-Thinh Ha
Mentor: Rao Garimella

Los Alamos National Laboratory
Summer 2018

Abstract

One important requirement for coupling multi-physics models is a means to remap fields between meshes in an accurate and
conservative manner. Since the remapping algorithm is embarrassingly parallel, this motivates the use of Graphical Processing
Units (GPU) for such routine. However, since our remapping code, portage, is fairly complex, we explore the use of GPUs
through a simpler problem of generating material’s volume fraction and centroid inside each cell of the mesh. We use the same
programming structure that is used in portage, namely, on-node parallelism via NVIDIA’s thrust library. Using a similar
programming structure enables us to draw lessons from this study that can be applied to the more complex problem. We have found
that while the speed-up is pronounced (10-100 times), significant effort is required to re-factor the code so that thrust can be used
with a CUDA backend. Moreover, thrust takes away the fine grain control that vanilla CUDA programming gives us.

1. Introduction

The portage library provides a framework for remapping
of field data between meshes, between particles, and between
meshes and particles [1]. The remapping algorithm within
portage is divided into three phases, which are qualitatively
labelled as:

• Search - find candidate cells/particles that will contribute
to remap of a given target cell/particle.

• Intersect - Calculate the weight of each candidate’s con-
tribution to the remap of a given target cell/particle. This
may include higher moments if requested.

• Interpolate - Using the weights and moments, along with
appropriate limiters, reconstruct the field data for a given
target cell/particle.

Intersection of unstructured meshes (particularly in 3D) is
very expensive - accounts for 80% or more of total run time.
Naturally, an attempt to speed up the routine via parallel pro-
gramming was attempted. The first motivation comes from the
fact that the algorithm is embarrassingly parallel, which is per-
fectly suited for thread parallelism. In order to ensure porta-
bility and flexibility within the library, NVIDIA’s thrust was
used as the back-end parallel driver [2].

Through thrust, different choices of back-end can be
utilised. The current portage has reported good scaling us-
ing MPI and OpenMP [CITATION NEEDED]. To fully exploit the
embarrassingly parallel’s nature of the library, the next logical
step would be utilising Graphical Processing Units (GPU). At
the time of writing this report, the latest GPU - Volta V100
- contains 5120 cores [3], which is roughly more than 70

Figure 1: Generating volume fraction and centroid on a square mesh.

times the available number of cores on the top-of-the-line Cen-
tral Processing Units (CPU) - Intel Xeon Phi Knights Landing
7290 [4]. Hence, it makes sense to spend efforts on extending
portage to include GPU computing capability. The reduction
in run-time could potentially be tremendous.

In order to fully understand the benefits and limitations of
GPU acceleration through thrust, we start off using a sim-
pler code base - namely tangram - which shares substantial
similarities with portage. In this report, we focus on using
tangram to calculate the volume fraction and centroid. To re-
duce the complexity even further, sampling strategy was used
instead of intersection-based method. As expected, the speed-
up achieved with GPU computation is really pronounced, and
using the generated data, interfaces can be computed with the
Moment-Of-Fluid’s algorithm accurately [5].

2. Problem Definition

The problem is presented qualitatively in Figure 1. Given the
configuration of a material, one would like to obtain the volume

fraction of that material and where the centroid is. For this case,
there are two materials: material 1, red circle, lying on top of
material 2, white background. Inside the regular 3-by-3 square
mesh, we would like to compute the volume fraction and the
centroid of each material. Such information is neccessary for
interfacial reconstruction technique including Volume-Of-Fluid
and Moment-Of-Fluid (see [6] and [5]).

3. Sampling Points Algorithm

For rectangular meshes, points are generated from the joint
uniform distributions which are scaled to each side of the cell,
Figure 2. Each point will be labeled according to the material
which they fall into. Once the labeling is done, the volume
fraction of each material is approximated by the proportion of
points which are labeled with that material. The centroid is cal-
culated by averaging all of the labeled points’ coordinates. With
a large-enough number of points, this approximation should be
close to actual values.

Figure 2: Overview of sampling point algorithm.

In case of non-rectangular cells, points are still generated us-
ing joint scaled uniform distributions, but those that are outside
the cell are discarded in volume fraction and centroid calcula-
tion. As one would expect, the algorithm for checking whether
a point is inside a polygon can get complicated, and this report
is not meant to address such issue.

Figure 3: Discard points outside of non-rectangular cells.

The pseudocode for the sampling algorithm is as followed:

Algorithm 1 Pseudocode for sampling point algorithm.
1: for cellID = 0 to num cells do
2: for pointID = 1 to NPOINTS do
3: point ← generate random Point()
4: if point in cell(cellID, point) then
5: matID← getmatID(point)
6: volume f raction[matID]← volume f raction[matID] + 1
7: centroid[matID]← centroid[matID] + point
8: end if
9: end for

10: volume f raction[matID]← volume f raction[matID]/NPOINTS
11: centroid[matID]← centroid[matID]/NPOINTS
12: end for

in which each cell includes the following struct:

#define MAXMATS 50
struct vfcen_t {

int nmats = 0;
int matids[MAXMATS] = {};
double vf[MAXMATS] = {};
Tangram ::Point <dim > cen[MAXMATS];

};

which captures (1) how many materials are inside each cell
nmats; (2) the list of all materials IDs inside each cell matids;
(3) the volume fractions for the respective materials vf and (4)
their centroids cen.

4. Using thrust with OpenMP and CUDA

4.1. Using OpenMP back-end

Both tangram and portage use thrust for thread paral-
lelism, which offers high-level parallel analog of the C++ Stan-
dard Template Library STL. One selling point of using thrust

is its ability to switch between back-ends - OMP, CUDA or TBB -
upon configuring with cmake. With OMP back-end, Algorithm
1 can be written using functors:

// Calling evaluator over cells
int main() {
[...]
Tangram ::vector <int > cellID(NCELLS);
// Fill cellID and transform
Tangram :: transform(cellID.begin(), cellID.end(),

vfcen.begin(),
vf_evaluator);

}
// Then inside vf_evaluator
struct vf_evaluator {

operator ()(int cellID) {
Tangram ::vector <Tangram ::Point <dim >> ptID(NPOINTS);
Tangram :: transform(ptID.begin(), ptID.end(),

matID.begin(),
feature_evaluator);

[...]
return vfcen;
}

}
// Then inside feature_evaluator
struct feature_evaluator {

operator ()(Tangram ::Point <dim >) {
[..]
// Check with material ID it is
return matID;

}
}

where dim is the dimension of the problems, 2D or 3D;
Tangram::vector is thrust::device vector when
compiled with thrust but is std::vector otherwise;
Tangram::transform is thrust::transform with thrust

but is std::transform otherwise; vf evaluator takes a
cellID as input and returns vfcen t calculated for each cell;
and feature evaluator takes each point’s coordinates as the
input and compute its corresponding material matID in return.

Unfortunately, the above code cannot be used as-is for CUDA,
one of the main reason being illegal memory access between
CPU and GPU. Further details on this matter shall be discussed
later in this report.

4.2. Using CUDA back-end

Logistically, there are a number of rules that need to be fol-
lowed in order to allow compilation of thrust with cuda.
First, the code needs to have *.cu extension, as needed by

2

NVIDIA’s compiler nvcc. Since nvcc can be fored to treat
*.cc or *.cpp files as CUDA files, cmake can achieve similar
behaviour by setting the LANGUAGE property of the executable
target. This also means that CUDA has to be added as a lan-
guage (besides CXX) within the cmake project. Then, nvcc will
need to compile CUDA codes into object files, and host compil-
ers (icc, mpicc etc.) will link the object files together to form
the final executable file.

The principle of using CUDA as thrust’s back-end is similar
to how one would launch a CUDA kernel, except thrust auto-
matically handles everything for the users. To be more specific,
thrust will allocate and deallocate GPU (device) memory un-
der the hood - without users explicitly calling cudaMemAlloc

and cudaFree. Similarly, GPU’s kernel size is determined in-
side thrust’s routine.

One of the key principle to keep in mind, when using thrust
with CUDA, is the distinctive location of the memory. Functions
and variables defined on CPU or host can’t be called for execu-
tion on GPU or device. Also, any input or output routines (i.e.
std::cout etc) is not allowed to be called inside device code -
it has to be executed on host. For functions executing on the de-
vice, decorators of either device or host device

need to be added. The former defines a device’s function de-
fined on device’s memory and can only be called by other de-
vice’s function. The latter one allows such device’s function to
be called from the host’s side.

In terms of pointers and references, cross-memory access be-
tween host and device is forbidden when using thrust - CUDA
itself has unified memory which allows for host memory to be
accessed from the device in a seamless fashion. In short, de-
vice’s pointers or references of host’s memories will generate
segmentation fault at run time, albeit error-free during compila-
tion. To further illustrate these points, the following codes are
provided. For thrust/OMP:

struct OMP_Functor {
// Can pass and store vector
std::vector <FEATURE > f_;
int nf_;
// Constructor doesn ’t need to be decorated
OMP_Functor(std::vector <FEATURE > const& f_) :

f_(f), nf_(f.size ()) {}

// Operator doesn ’t need to be decorated
vfcen_t operator ()(int cellID) {

// Can declare Tangram :: vector
Tangram ::vector <Point > points(NPOINTS);
[...]

}
}
int main(void) {
[...]
Tangram ::vector <int > cellID(numCells);
Tangram ::vector <vfcen_t > vfcen(numCell);
thrust :: transform(cellID.begin(),

cellID.end(),
vfcen.begin(),
OMP_Functor);

[...]
}

while for thrust/CUDA, certain modification is required.
Besides decorators, memories and pointers require careful prac-
tice to avoid segmentation fault error:

struct CUDA_Functor {
// Can NOT pass vector - use device pointer
Tangram ::pointer <FEATURE > f_ptr_;
int nf_;
// Constructor has to be decorated
__host__ __device__
CUDA_Functor(Tangram ::pointer <FEATURE > f_ptr ,

int nf) :
f_ptr_(f_ptr), nf_(nf) {}

// Operator has to be decorated
__host__ __device__
vfcen_t operator ()(int cellID) {

// Have to use thrust :: malloc with pointer
thrust ::pointer <Point ,

thrust :: device_system_tag > pts_ptr_;
pts_ptr_ = thrust ::malloc <Point >(thrust ::device ,

NPOINTS);
[...]

}
}
int main(void) {
[...]
Tangram ::vector <int > cellID(numCells);
Tangram ::vector <vfcen_t > vfcen(numCell);
Tangram :: transform(cellID.begin(),

cellID.end(),
vfcen.begin(),
CUDA_Functor);

[...]
}

In summary, the viable solution is to minimise the cross-
memory access between host and device. For our problem, we
can simply (1) copy the entire mesh from host to device, then
(2) perform calculation on the device to obtain volume fraction
and centroid, and finally (3) copy the results back to the host,
Figure 4.

Figure 4: Working scheme for data transfer between CPU and GPU.

Additionally, the data residing on device should be con-
tiguous arrays and should not exploit C++ Standard Tem-
plate Library (STL) classes. Hence, traditional mesh wrap-
pers provided in tangram and portage cannot be used since
they utilise std::vector data structure from C++. To tackle
this problem, we have implemented a new mesh wrapper,
cuda mesh wrapper, which explicitly copies all the mesh’s in-
formation upon initialisation:

3

public:
// Copy mesh to GPU
__host__
void initialize(Mesh_Wrapper& input) {

nodeCoords_ =
thrust :: device_malloc <Tangram ::Point <D>>(numNodes);

cellNodeCounts_ =
thrust :: device_malloc <int >(numCells);

cellNodeOffsets_ =
thrust :: device_malloc <int >(numCells);

cellToNodeList_ =
thrust :: device_malloc <int >(totCellNodes);

faceNodeCounts_ =
thrust :: device_malloc <int >(numFaces);

faceNodeOffsets_ =
thrust :: device_malloc <int >(numFaces);

cellFaceCounts_ =
thrust :: device_malloc <int >(numCells);

cellFaceOffsets_ =
thrust :: device_malloc <int >(numCells);

}
// Functions to use as other mesh wrappers
__host__ __device__
void cell_get_coordinates(int const cellid ,
thrust ::pointer <Tangram ::Point <D>,

thrust :: device_system_tag > *cnode_ptr ,
int& ncnode) const {[...]}

__host__ __device__
void cell_get_facetization(int const cellid ,
thrust ::pointer <int ,

thrust :: device_system_tag > *facetpoints ,
int &nfacets ,
thrust ::pointer <Tangram ::Point <3>,

thrust :: device_system_tag > *points ,
int &npoints) const {[...]}

The key point behind cuda mesh wrapper is mainly strid-
ing 2D arrays containing rows of varying sizes into two 1D ar-
rays: one containing the ‘flatten’ version of the 2D arrays (by
concatenating a row to the end of the previous one), the other
one collects the ‘offset’, which is the length of each row in
the original 2D array. Two functions cell get coordinates

and cell get facetization helps with readability within
the code base. Each of them will return the corresponding cell’s
coordinates or facets given the cell’s ID cellID.

4.3. Underlying difficulties with thrust/CUDA

Data race condition is one of the main concern in CUDA pro-
gramming. The situation can be illustrated via the following
snippet:

__global__ void collect(int *vfcen.matids) {
// Generate point and get point ’s material ID
Point p;
int pid = getMatID(p);
// Check if matID is already collected
if (pid not in vfcen.matids[nmats]) {

nmats ++;
vfcen.matids ->pop(pid);

}
}

The obtained array of matids for the list of materials inside
the specific cell will be incorrect. This problem is commonly
referred as stream compaction: some, but not all, threads will
create a new value which needs to be stored in an array without
gaps. One solution would be using stream compaction algo-
rithm available in thrust, but this will require two passes of
transform. The solution implemented inside this report is sim-
ply bucketing:

__global__ void collect(int *vfcen.matids) {
// Generate point and get point ’s ID
Point p;
int pid = getMatID(p);
// Collect all the points
vfcen.matids[pid]++;
// Then perform a count at the end

}

All the values of pid is assumed to fall within the size of
vfcen.matids, each occurence of pid triggers an increment
of vfcen.matids[pid]. A final count and evaluation is re-
quired as a post-processing step.

Additionally, thrust hides explicit access to different types
of memory and provides no mechanism for allocating kernel’s
size. Specifically, if one needs to parallel process more ele-
ments than the number of available CUDA cores, thrust does
not provide a convenient way to schedule them. Instead, we
process the work in groups of N elements at a time, where N
is the number of available cores on the GPU architecture (N
= 5120 for Volta P100). This way, we can ‘force’ thrust to
launch a kernel where each thread is executed on a single CUDA
core.

5. Performance benchmark

The code is implemented as part of tangram’s application.
A simple square (2D) or cube (3D) mesh is implemented inside
app/simple-vfgen-cuda, while app/vfgen-cuda can take
Exodus [7] meshes as input.

5.1. Timing on normal GPU

The performance using thrust with CUDA is compared
against the original version using thrust with 32-thread OMP.
Both of these run cases, CUDA and 32-thread OMP generates
50,000 particles per cell, and each test is performed five times
to capture the averages and the error bands. Initially, the result
was collected on non-Votla GPUs.

Figure 5: Timing comparison between OMP and CUDA - 2D cases.

4

Figure 6: Timing comparison between OMP and CUDA - 3D cases.

It is obvious from Figure 5 and 6 that CUDA performs signifi-
cantly better than OMP. Using thrust with CUDA offers between
10 to 100 times of faster run-time. This can be due to both the
fact that GPU has more threads than CPU and the problem is
strongly embarrassingly parallel.

5.2. Timing on Volta V100

To achieve better understanding on specific timing of individ-
ual tasks, the algorithm implemented with thrust/CUDA was
executed on Volta V100. From both Figure 7 and 8, the time
taken to copy the mesh from CPU to GPU takes roughly one-
fourth of the overall run time. At small problem size (2D mesh
with dimension 4-by-4), the global run-time is dominated by
the CPU-to-GPU transfer time. As previously stated, the entire
mesh needs to be copied over to GPU to avoid run-time error.
The larger the mesh size, the more data is required to transfer.
Data transfer between host and device still contributes signif-
icantly to the global run-time of GPU programs[8]. Figure 7
and Figure 8 both show that roughly one-fourth of the overall
routine is consumed by data movement alone.

On the other hand, the major task remains calculating the vol-
ume fraction and centroid of the materials. For large problem
size, it takes between 65% to 75% of total run-time.

6. Test result with interface reconstruction

The sampling algorithm was tested by using the results to re-
construct material interfaces using algorithms in tangram. In
Figure 9, from left to right the number of cells increases from 3-
by-3 to 50-by-50 to 1000-by-1000. The last image on the right
show the result obtained from using the test case bailey128.

In 3D, Figure 10, the reconstructed interface using moment-
of-fluid shows reasonable agreement with the reference. Both
co-centric spheres in the middle is captured and reconstructed
nicely. This is also similar for the inclined half-space plane
between materials.

Figure 7: Timing breakdown for 2D cases on Volta V100.

Figure 8: Timing breakdown for 3D cases on Volta V100.

7. Summary and Further Work

In this project, we have demonstrated the advantages of port-
ing the volume fraction and centroid generation routine onto
GPU. With the multi-core nature of GPU hardware in combi-
nation with the embarrassingly parallel nature of the algorithm,
the overall run-time benefits tremendously.

An important point that is worth nothing is that thrust al-
lows CUDA and OMP to be mixed within a code. A quick trial
of using OMP for the first transform (inside main) while using
CUDA for the second transform (inside vf evaluator) does not
yield favorable results. Further investigation exposes that each
OMP thread will sequentially launch its own GPU kernel, which
ends up creating a severe bottleneck.

There are certain drawbacks which make spending more ef-
fort on using thrust with CUDA remaining questionable. First,
the number of lines that are specific to thrust/CUDA is notice-
able. To the point that it poses a question whether the project
could benefit better from using CUDA specific code instead (i.e.
without relying on STL benefits of thrust). The counter ar-
gument for such case is, of course, being unable to switch to
OMP when necessary. On the other hand, committing fully to

5

Figure 9: 2D interface reconstruction using moment-of-fluid.

Figure 10: 3D interface reconstruction using moment-of-fluid.

CUDA code should allow more explicit controls on the GPU (i.e.
launching kernel size, multiple level of memory access etc.). If
the main motivation for the project remains reaching exa-scale,
it is inevitable that a compromise solution that optimise both
CPU and GPU usage is necessary.

Reference

[1] “Welcome to portage!.” https://laristra.github.io/portage/

index.html. Accessed: 14-08-2018.
[2] “What is thrust?.” https://thrust.github.io/. Accessed: 14-08-

2018.
[3] “List of NVIDIA Graphics Processing Units.” https://en.wikipedia.

org/wiki/List_of_Nvidia_graphics_processing_units#

Volta_series. Accessed: 14-08-2018.
[4] “Xeon Phi.” https://en.wikipedia.org/wiki/Xeon_Phi. Accessed:

14-08-2018.
[5] H. T. Ahn and M. Shashkov, “Adaptive moment-of-fluid method,” J. Com-

put. Phys., vol. 228, pp. 2792–2821, May 2009.
[6] C. Hirt and B. Nichols, “Volume of fluid (vof) method for the dynamics of

free boundaries,” Journal of Computational Physics, vol. 39, no. 1, pp. 201
– 225, 1981.

[7] “Sandia Engineering Analysis Code Access System - SEACAS.” https:

//github.com/gsjaardema/seacas. Accessed: 24-08-2018.
[8] “CUDA Toolkit - Best Practices Guide.” https://docs.nvidia.com/

cuda/cuda-c-best-practices-guide/index.html. Accessed: 14-
08-2018.

6

