Sandia
National
Laboratories

Exceptional

service
in the
national

interest

SAND2017-9701C

Fast Linear Algebra-Based Triangle
Counting with KokkosKernels

Michael Wolf, Mehmet Deveci, Jon Berry,
Si Hammond, Siva Rajamanickam

Center for Computing Research

IEEE HPEC/DARPA/Amazon Graph Challenge
September 13, 2017

7%, U.S. DEPARTMENT OF V/ VU A «v%
ENERGY %l\ll;h:l#*
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell In t national, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Overview of Approach) .

-
Linear Algebra Based
Triangle Counting

Graph BLAS

° * * |k * |k *
L4 * X |k * .
e oo * = * *
° °
<:> ° ° * * * * *
e o
d C A B

KokkosKernels

KKMEM: Highly Optimized

Matrix-Matrix Multiply

*

*
*
*

*

miniTri ATDM/ECP/ASC Applications
3 [Trilnos
[Kokkos____]
4 ! 7 7 v
5 1 Performance ﬁ. @
> Portability o — |
Multi-Core Many-Core APU CPU +GPU

Challenge: Make linear algebra-based triangle counting competitive |2

National

Linear Algebra-Based Triangle Counting @&.

nnz((L*H)==2) sum((L*U).*L)/2

= Azad, Bulug, Gilbert. 2015 /IPDPSW GABB

miniTri, Challenge references

Wolf, Berry, Stark: 2015 IEEE HPEC. = Linear algebra version of MinBucket
(Cohen), Challenge reference (Julia)

= Pro: Low operation count (2x MinBucket)

Pro: Good parallel scalability

Con: high operation count = Con: Poor parallel scalability (1D)

sum((L*L).*L)

= Extension of (LU).*L method = Pro: Good parallel scalability

= “Visits” each triangle/wedge once = Pro/Con: reasonable operation count
(extra constraint placed on vertex (better than LH, slightly worse than LU)

order for wedges visited)
= Method chosen for challenge

LL method gives good balance of low operation count
and good parallel scalability ;

KKMEM: KokkosKernels-Based SpGEMM (.

thread-1 A

thread-2

team-1

team-2

team-3

B C

team-4

team-5

= KKMEM*

= Parallel version of Gustavson algorithm: C(i,*) = A(i,*) x B
= Portable Sp GEMM method that runs on CPUs, Xeon Phis, GPUs
= 2-phases: symbolic and numeric (triangle counting only needs symbolic)

= Hierarchical thread parallelism/data structures

= Maps hierarchical algorithmic parallelism |
to SPMD/SIMD computational units % |

= Tens/hundreds/thousands of threads

Multi-Core Many-Core ‘ APU / ‘ CPU + GPU /

Vertex Ordering and Triangle Counting [®&z.

Vertex Ordering Matters LxL Method Ordering Challenging
G Heuristic
Decreasing Good
G G degree load-balance
wedge _
Increasing
Q degree
Wedges with d(i) < d(j) > d(k) : 56
Wedges with d(i) > d(j) <d(k) : O
“Interleaved” Best operation

Count (of 3)

Ordering Impacts # operations
(# wedges visited)

[Densest row
] 2nd Densest row
[[] Sparsest row

Avoiding computation matters for triangle counting! |

Matrix Compression) .

Column Indices o [10| Column set indices

row | 2 | 3 | 6 | 8 |321|322|323 325|327 ComEI’eSS
332 | 174

Local column ids

= Compression used on right hand side matrix
= Encodes columns using fewer integers
= Reduces number of operations and memory required in symbolic phase
= Allows ”vectorized” bitwise union/intersection of different rows

= Effectiveness of compression varies greatly with data

= Large random graphs compress poorly (R-Mat <1% compression storage)

= However, still helpful for many random graphs (e.g. power-law) —
effective for dense rows (improves load balance, operation count) 6

Fused Masking)

= Computing SpGEMM operation of (Lx L).*L or (Lx U).*Lis
inefficient

= Requires creation of all wedges in graph (large memory requirement
since many more wedges than triangles)

= Azad, et al. (2015) showed element-wise multiplication can be
combined with Sp GEMM into 1 function MaskedSpGEMM(L,L,L)

= Third argument (L) is output mask
= GraphBLAS C language API supports masks

= Reduces memory (not storing all wedges)

= Can reduce operation counts (masking unnecessary operations)
= We chose not to do this)

Masked SpGEMM to avoid storing all wedges |

7

Visitor Pattern) e

= KKMEM based triangle counting supports visitor pattern
= Concept fundamental to BGL and MTGL

= Functor passed to triangle identification function, which
allows method to be run once triangle is found
= For triangle counting: triangleCount++;
= Flexibility allows for more complex analysis of triangles, miniTri

Visitor pattern support provides additional flexibility to analysts | .

Results: Speedup Relative to TCM** .

Comparison with Ligra’s merge based method with Cilk++ (TCM™**)

4.50
” ”
4.00 Real” graphs
Geomean: 1.9x
3.50
3.00 Svnthet h Intel Haswell
s nthetiC grapns
2 . Gy 91 g 32 cores
Q ~ eomean. 1.£X
o
g 64 threads
2.00
- I I I I
0.50
2L I8 QIQ EIT 2 E£E 0998 8983 8125 h Lty L
TS S S ST e S £ S X @ YoM ma 5 B3 S 3 g
©O © © © © © © o S 9 e o 22 &8 £ 0Q S o X
A @2 2 @ @ @& i i’ T =E£EXT 88 85§68 8&3 g F 2
2 © 9 += T T =< T8 = =X =2 o
::::::::::::: S o .2
S & & & & & o o S g w O & £ = 0o @ ©F O g <
S g g 8 g g @ @ 9 © © - E E E = E
6 6 66 6 6 66 2 ® w < < < 3 2
Q [*] (=]
g 8 @

Linear algebra-based triangle counting competitive
with (arguably better than) state-of-the-art method

Future Work)

= Better vertex ordering for LL method
= Faster parallel implementation (TCM significantly)
= More optimal orderings
= Better heuristic for LL method (parallelism, # operations)
= Nonzero pattern based orderings
= |mproved Kokkos scalability
= TCM'’s Cilk++ nested parallelism outperformed Kokkos (threads>cores)

= GPU results

= Excellent KKMEM performance on CS&E applications

= Minor changes needed for KKMEM-based triangle counting
= miniTri

= KokkosKernels-based miniTri data analytics miniapp

= Expect 3-5 order improvement over original miniTri
10

Additional Information) i,

= KKMEM based triangle counting found in KokkosKernels
= https://github.com/kokkos/kokkos-kernels

= Qur triangle counting driver and reference implementations
distributed with miniTri data analytics miniapp
= https://github.com/Mantevo/miniTri (triangleCounting subdir)

= Additional related publications

= Deveci, Trott, Rajamanickam: “Performance-Portable Sparse Matrix-Matrix
Multiplication for Many-Core Architectures”, ASHES Workshop, IPDPSW’ 17.

= Azad, Bulug, Gilbert. “Parallel triangle counting and enumeration using matrix algebra”,
Proc. of the IPDPSW, GABB Workshop, 2015. (LU method)

= Wolf, Berry, Stark: “A Task-Based Linear Algebra Building Blocks Approach for Scalable
Graph Analytics,” 2015 IEEE HPEC. (LH method)

= Cohen, Jonathan. "Graph twiddling in a mapreduce world." Computing in Science &
Engineering 11.4 (2009): 29-41. (MinBucket algorithm)

= Shun, Julian, and Kanat Tangwongsan. "Multicore triangle computations without
tuning." Data Eng. (ICDE), 2015 IEEE 31st Intern. Conf. on. IEEE, 2015. (TCM method) 11
I —————

Extra rh) o

Performance Portability) 2.

= Kokkos: | | _y }
= Layered collection of template C++ (K
libraries [y
= Manages data access patterns b
= Execution spaces, Memory spaces % mm.
= Kokkos provides tools for Muticore ManyCore APU CPUSGPU
portability KokkosKernels:

= Performance portability does not

— Layer of performance-
come for free.

portable kernels

« We study design decisions
for achieving portability for
sparse matrix algorithms

— In this work our application
problem: SPGEMM

= Not trivial for sparse matrix and
graph algorithms

Vertex Ordering and Triangle Counting H=z.

® Vertex Ordering Matters

N L

Wedges with d(j) > d(i), d(j) > d(k): 56
Wedges with d(j) > d(i), d(j) > d(k) : O

@

= Vertex ordering impacts # of operations (# wedges visited)

= Linear algebra: impacts # of in Sp GEMM, nnz in resulting matrix

= LL method ordering challenging
= Avoiding dense rows in L -> dense columns in L
= Reasonable heuristics: decreasing/increasing degree, “interleaved”

Avoiding computation matters for triangle counting! |

14

