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Challenge: Make linear algebra-based triangle counting competitive |2




National

Linear Algebra-Based Triangle Counting @&.

nnz((L*H)==2) sum((L*U).*L)/2

= Azad, Bulug, Gilbert. 2015 /IPDPSW GABB

miniTri, Challenge references

Wolf, Berry, Stark: 2015 IEEE HPEC. = Linear algebra version of MinBucket
(Cohen), Challenge reference (Julia)

= Pro: Low operation count (2x MinBucket)

Pro: Good parallel scalability

Con: high operation count = Con: Poor parallel scalability (1D)

sum((L*L).*L)

= Extension of (LU).*L method = Pro: Good parallel scalability

= “Visits” each triangle/wedge once = Pro/Con: reasonable operation count
(extra constraint placed on vertex (better than LH, slightly worse than LU)

order for wedges visited)
= Method chosen for challenge

LL method gives good balance of low operation count
and good parallel scalability ;




KKMEM: KokkosKernels-Based SpGEMM (.
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= KKMEM*

= Parallel version of Gustavson algorithm: C(i,*) = A(i,*) x B
= Portable Sp GEMM method that runs on CPUs, Xeon Phis, GPUs
= 2-phases: symbolic and numeric (triangle counting only needs symbolic)

= Hierarchical thread parallelism/data structures

= Maps hierarchical algorithmic parallelism |
to SPMD/SIMD computational units % |

= Tens/hundreds/thousands of threads

Multi-Core Many-Core ‘ APU / ‘ CPU + GPU /




Vertex Ordering and Triangle Counting [®&z.

Vertex Ordering Matters LxL Method Ordering Challenging
G Heuristic
Decreasing Good
G G degree load-balance
wedge _
Increasing
Q degree
# Wedges with d(i) < d(j) > d(k) : 56
# Wedges with d(i) > d(j) <d(k) : O
“Interleaved” Best operation

Count (of 3)

Ordering Impacts # operations
(# wedges visited)

[ Densest row
] 2nd Densest row
[[] Sparsest row

Avoiding computation matters for triangle counting! |




Matrix Compression ) .

Column Indices o [ 10| Column set indices

row | 2 | 3 | 6 | 8 |321|322|323 325|327 ComEI’eSS
332 | 174

Local column ids

= Compression used on right hand side matrix
= Encodes columns using fewer integers
= Reduces number of operations and memory required in symbolic phase
= Allows ”vectorized” bitwise union/intersection of different rows

= Effectiveness of compression varies greatly with data

= Large random graphs compress poorly (R-Mat <1% compression storage)

= However, still helpful for many random graphs (e.g. power-law) —
effective for dense rows (improves load balance, operation count) 6




Fused Masking )

= Computing SpGEMM operation of (Lx L).*L or (Lx U).*Lis
inefficient

= Requires creation of all wedges in graph (large memory requirement
since many more wedges than triangles)

= Azad, et al. (2015) showed element-wise multiplication can be
combined with Sp GEMM into 1 function MaskedSpGEMM(L,L,L)

= Third argument (L) is output mask
= GraphBLAS C language API supports masks

= Reduces memory (not storing all wedges)

= Can reduce operation counts (masking unnecessary operations)
= We chose not to do this)

Masked SpGEMM to avoid storing all wedges |
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Visitor Pattern ) e

= KKMEM based triangle counting supports visitor pattern
= Concept fundamental to BGL and MTGL

= Functor passed to triangle identification function, which
allows method to be run once triangle is found
= For triangle counting: triangleCount++;
= Flexibility allows for more complex analysis of triangles, miniTri

Visitor pattern support provides additional flexibility to analysts | .




Results: Speedup Relative to TCM** .

Comparison with Ligra’s merge based method with Cilk++ (TCM™**)
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Linear algebra-based triangle counting competitive
with (arguably better than) state-of-the-art method




Future Work )

= Better vertex ordering for LL method
= Faster parallel implementation (TCM significantly)
= More optimal orderings
= Better heuristic for LL method (parallelism, # operations)
= Nonzero pattern based orderings
= |mproved Kokkos scalability
= TCM'’s Cilk++ nested parallelism outperformed Kokkos (threads>cores)

= GPU results

= Excellent KKMEM performance on CS&E applications

= Minor changes needed for KKMEM-based triangle counting
= miniTri

= KokkosKernels-based miniTri data analytics miniapp

= Expect 3-5 order improvement over original miniTri
10




Additional Information ) i,

= KKMEM based triangle counting found in KokkosKernels
= https://github.com/kokkos/kokkos-kernels

= Qur triangle counting driver and reference implementations
distributed with miniTri data analytics miniapp
= https://github.com/Mantevo/miniTri (triangleCounting subdir)

= Additional related publications

= Deveci, Trott, Rajamanickam: “Performance-Portable Sparse Matrix-Matrix
Multiplication for Many-Core Architectures”, ASHES Workshop, IPDPSW’ 17.

= Azad, Bulug, Gilbert. “Parallel triangle counting and enumeration using matrix algebra”,
Proc. of the IPDPSW, GABB Workshop, 2015. (LU method)

=  Wolf, Berry, Stark: “A Task-Based Linear Algebra Building Blocks Approach for Scalable
Graph Analytics,” 2015 IEEE HPEC. (LH method)

= Cohen, Jonathan. "Graph twiddling in a mapreduce world." Computing in Science &
Engineering 11.4 (2009): 29-41. (MinBucket algorithm)

= Shun, Julian, and Kanat Tangwongsan. "Multicore triangle computations without
tuning." Data Eng. (ICDE), 2015 IEEE 31st Intern. Conf. on. IEEE, 2015. (TCM method) 11
I —————



Extra rh) o




Performance Portability ) 2.

= Kokkos: | | _y }
= Layered collection of template C++ ( K
libraries [ y
= Manages data access patterns b
= Execution spaces, Memory spaces % mm.
= Kokkos provides tools for Muticore  ManyCore  APU  CPUSGPU
portability  KokkosKernels:

= Performance portability does not

— Layer of performance-
come for free.

portable kernels

« We study design decisions
for achieving portability for
sparse matrix algorithms

— In this work our application
problem: SPGEMM

= Not trivial for sparse matrix and
graph algorithms




Vertex Ordering and Triangle Counting H=z.

® Vertex Ordering Matters

N L

# Wedges with d(j) > d(i), d(j) > d(k): 56
# Wedges with d(j) > d(i), d(j) > d(k) : O

@

= Vertex ordering impacts # of operations (# wedges visited)

= Linear algebra: impacts # of in Sp GEMM, nnz in resulting matrix

= LL method ordering challenging
= Avoiding dense rows in L -> dense columns in L
= Reasonable heuristics: decreasing/increasing degree, “interleaved”

Avoiding computation matters for triangle counting! |
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