

Fast Linear Algebra-Based Triangle Counting with KokkosKernels

*Michael Wolf, Mehmet Deveci, Jon Berry,
Si Hammond, Siva Rajamanickam*

IEEE HPEC/DARPA/Amazon Graph Challenge
September 13, 2017

Sandia
National
Laboratories

*Exceptional
service
in the
national
interest*

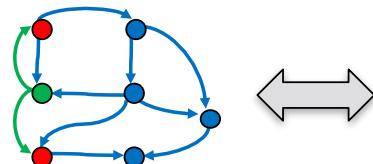
U.S. DEPARTMENT OF
ENERGY

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

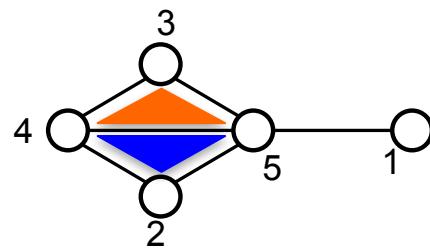
Overview of Approach

Linear Algebra Based Triangle Counting

Graph BLAS



miniTri



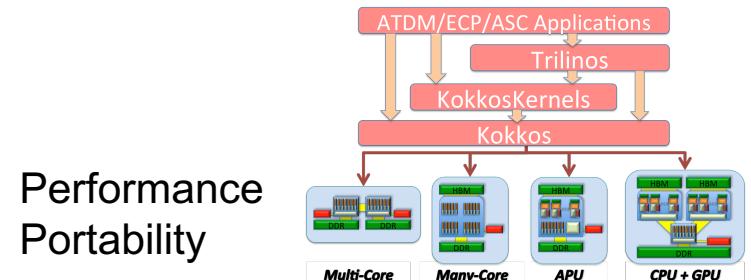
KKMEM: Highly Optimized Matrix-Matrix Multiply

SpGEMM

$$\begin{matrix} * & * & * \\ * & * & * \\ * & & * \\ * & * & * \end{matrix} = \begin{matrix} * & * & * \\ & * & * \\ & & * \\ * & & * \end{matrix} \cdot \begin{matrix} * & & & \\ * & * & * & \\ * & & * & * \\ * & & * & * \end{matrix}$$

C A B

KokkosKernels



δ

Challenge: Make linear algebra-based triangle counting competitive

Linear Algebra-Based Triangle Counting

$\text{nnz}((L^*H) == 2)$

- miniTri, Challenge references
- Wolf, Berry, Stark: 2015 *IEEE HPEC*.
- Pro: Good parallel scalability
- Con: high operation count

$\text{sum}((L^*U).*L)/2$

- Azad, Buluç, Gilbert. 2015 *IPDPSW GABB*
- Linear algebra version of MinBucket (Cohen), Challenge reference (Julia)
- Pro: Low operation count (2x MinBucket)
- Con: Poor parallel scalability (1D)

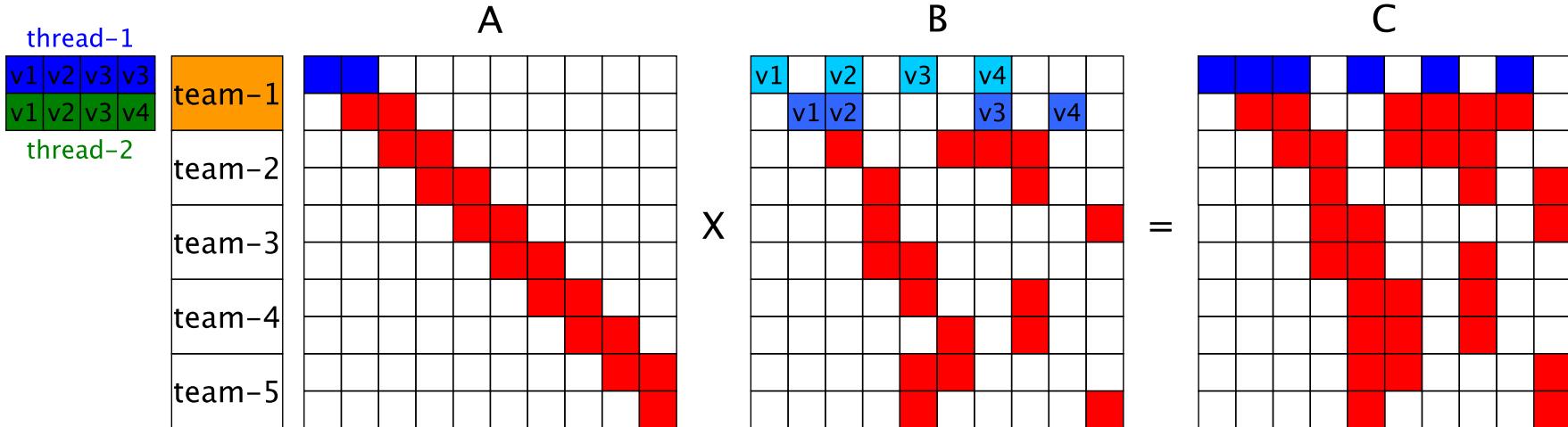
$\text{sum}((L^*L).*L)$

- Extension of $(LU).*L$ method
- “Visits” each triangle/wedge once (extra constraint placed on vertex order for wedges visited)
- Method chosen for challenge

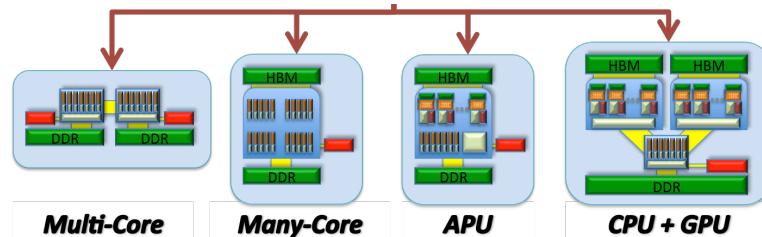
- Pro: Good parallel scalability
- Pro/Con: reasonable operation count (better than LH, slightly worse than LU)

LL method gives good balance of low operation count and good parallel scalability

KKMEM: KokkosKernels-Based SpGEMM

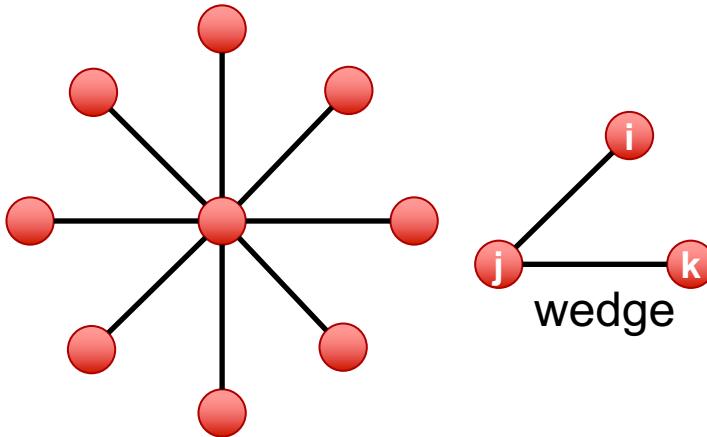


- KKMEM*
 - Parallel version of Gustavson algorithm: $C(i,*) = A(i,*) \times B$
 - Portable SpGEMM method that runs on CPUs, Xeon Phis, GPUs
 - 2-phases: symbolic and numeric (triangle counting only needs symbolic)
- Hierarchical thread parallelism/data structures
 - Maps hierarchical algorithmic parallelism to SPMD/SIMD computational units
 - Tens/hundreds/thousands of threads



Vertex Ordering and Triangle Counting

Vertex Ordering Matters



Wedges with $d(i) < d(j) > d(k)$: 56

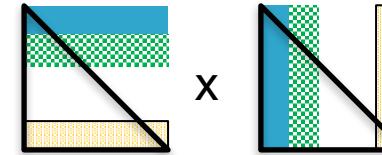
Wedges with $d(i) > d(j) < d(k)$: 0

**Ordering Impacts # operations
(# wedges visited)**

LxL Method Ordering Challenging

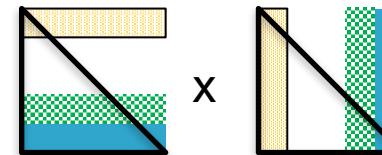
Heuristic

Decreasing
degree

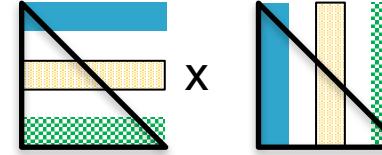


Good
load-balance

Increasing
degree



“Interleaved”



Best operation
Count (of 3)

- Densest row
- 2nd Densest row
- Sparsest row

Avoiding computation matters for triangle counting!

Matrix Compression

- Compression used on right hand side matrix
 - Encodes columns using fewer integers
 - Reduces number of operations and memory required in symbolic phase
 - Allows “vectorized” bitwise union/intersection of different rows
- Effectiveness of compression varies greatly with data
 - Large random graphs compress poorly (R-Mat <1% compression storage)
 - However, still helpful for many random graphs (e.g. power-law) – effective for dense rows (improves load balance, operation count)

Fused Masking

- Computing SpGEMM operation of $(L \times L) \cdot *L$ or $(L \times U) \cdot *L$ is inefficient
 - Requires creation of all wedges in graph (large memory requirement since many more wedges than triangles)
- Azad, et al. (2015) showed element-wise multiplication can be combined with SpGEMM into 1 function $\text{MaskedSpGEMM}(L, L, L)$
 - Third argument (L) is output mask
 - GraphBLAS C language API supports masks
- Reduces memory (not storing all wedges)
- Can reduce operation counts (masking unnecessary operations)
 - We chose not to do this

Masked SpGEMM to avoid storing all wedges

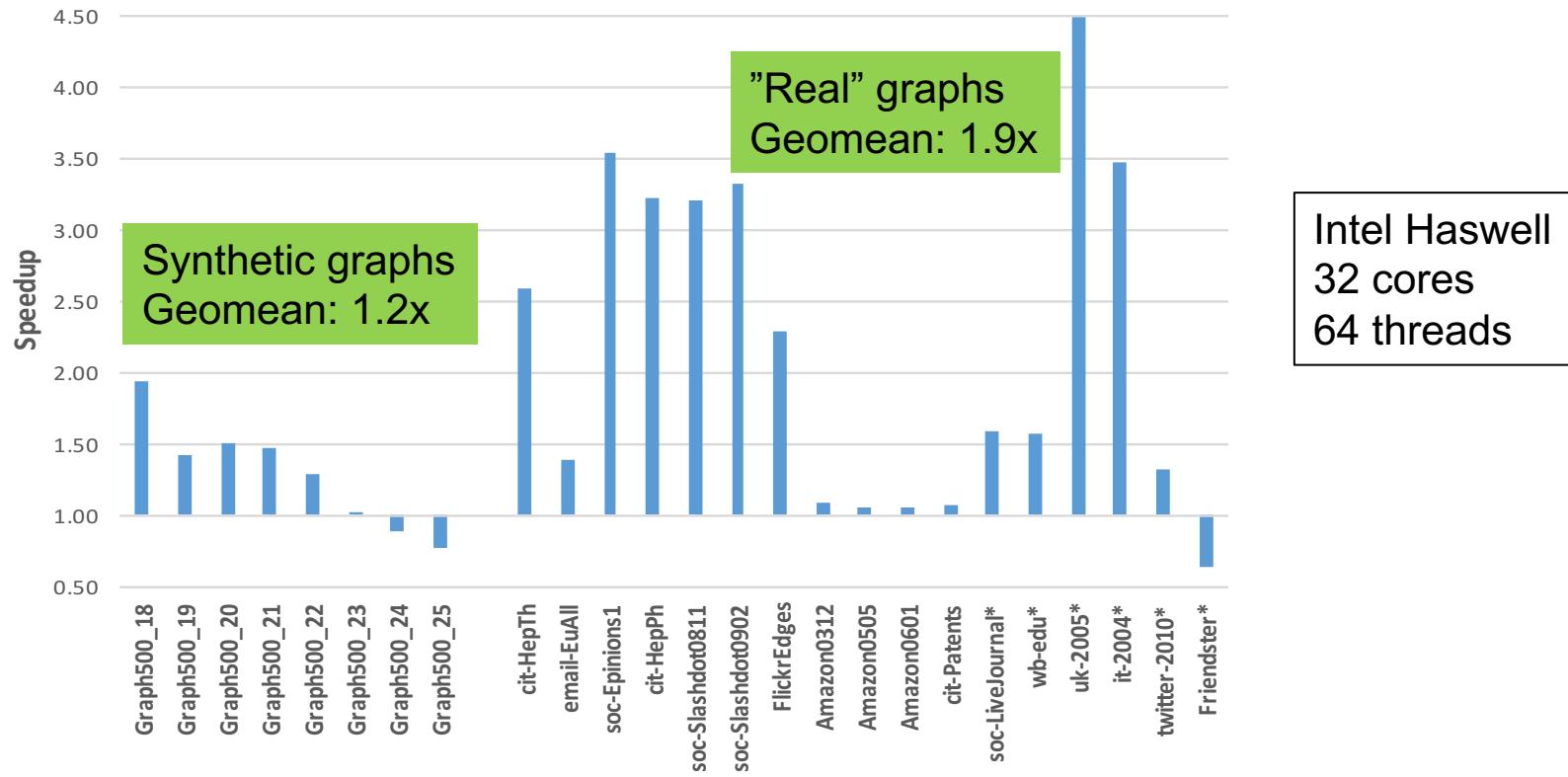
Visitor Pattern

- KKMEM based triangle counting supports visitor pattern
 - Concept fundamental to BGL and MTGL
- Functor passed to triangle identification function, which allows method to be run once triangle is found
 - For triangle counting: triangleCount++;
 - Flexibility allows for more complex analysis of triangles, miniTri

Visitor pattern support provides additional flexibility to analysts

Results: Speedup Relative to TCM**

Comparison with Ligra's merge based method with Cilk++ (TCM**)



Linear algebra-based triangle counting competitive
with (arguably better than) state-of-the-art method

Future Work

- Better vertex ordering for LL method
 - Faster parallel implementation (TCM significantly)
 - More optimal orderings
 - Better heuristic for LL method (parallelism, # operations)
 - Nonzero pattern based orderings
- Improved Kokkos scalability
 - TCM's Cilk++ nested parallelism outperformed Kokkos (threads>cores)
- GPU results
 - Excellent KKMEM performance on CS&E applications
 - Minor changes needed for KKMEM-based triangle counting
- miniTri
 - KokkosKernels-based miniTri data analytics miniapp
 - Expect 3-5 order improvement over original miniTri

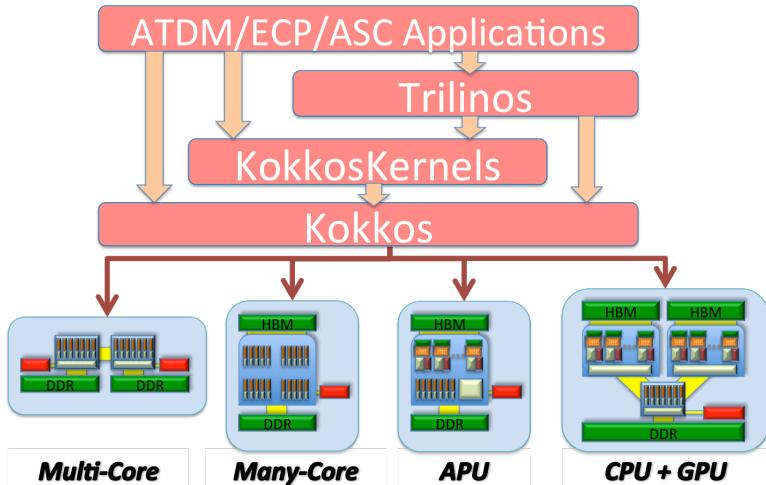
Additional Information

- KKMEM based triangle counting found in KokkosKernels
 - <https://github.com/kokkos/kokkos-kernels>
- Our triangle counting driver and reference implementations distributed with miniTri data analytics miniapp
 - <https://github.com/Mantevo/miniTri> (triangleCounting subdir)
- Additional related publications
 - Deveci, Trott, Rajamanickam: "Performance-Portable Sparse Matrix-Matrix Multiplication for Many-Core Architectures", ASHES Workshop, IPDPSW' 17.
 - Azad, Buluç, Gilbert. "Parallel triangle counting and enumeration using matrix algebra", *Proc. of the IPDPSW, GABB Workshop*, 2015. (LU method)
 - Wolf, Berry, Stark: "A Task-Based Linear Algebra Building Blocks Approach for Scalable Graph Analytics," *2015 IEEE HPEC*. (LH method)
 - Cohen, Jonathan. "Graph twiddling in a mapreduce world." *Computing in Science & Engineering* 11.4 (2009): 29-41. (MinBucket algorithm)
 - Shun, Julian, and Kanat Tangwongsan. "Multicore triangle computations without tuning." *Data Eng. (ICDE), 2015 IEEE 31st Intern. Conf. on*. IEEE, 2015. (TCM method)

Extra

Performance Portability

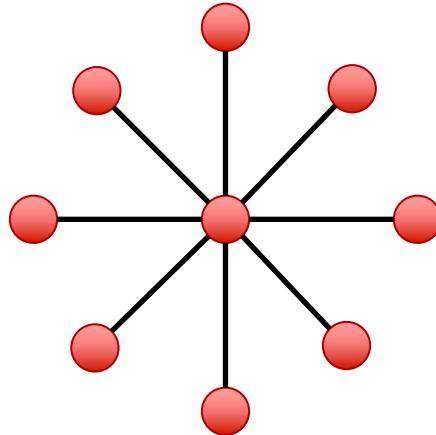
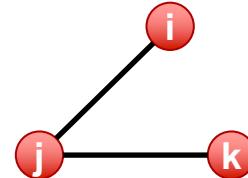
- Kokkos:
 - Layered collection of template C++ libraries
 - Manages data access patterns
 - Execution spaces, Memory spaces
- Kokkos provides tools for portability
 - Performance portability does not come for free.
 - Not trivial for sparse matrix and graph algorithms



- KokkosKernels:
 - Layer of performance-portable kernels
- We study design decisions for achieving portability for sparse matrix algorithms
 - In this work our application problem: SPGEMM

Vertex Ordering and Triangle Counting

Vertex Ordering Matters



Wedges with $d(j) > d(i)$, $d(j) > d(k)$: 56
Wedges with $d(j) > d(i)$, $d(j) > d(k)$: 0

- Vertex ordering impacts # of operations (# wedges visited)
 - Linear algebra: impacts # of in SpGEMM, nnz in resulting matrix
- LL method ordering challenging
 - Avoiding dense rows in $L \rightarrow$ dense columns in L
 - Reasonable heuristics: **decreasing/increasing degree**, “interleaved”

Avoiding computation matters for triangle counting!