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Overview	
  of	
  Approach

2
Challenge:  Make  linear  algebra-­based  triangle  counting  competitive

Linear  Algebra  Based  
Triangle  Counting
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Linear	
  Algebra-­‐Based	
  Triangle	
  Counting
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LL  method  gives  good  balance  of  low  operation  count  
and  good  parallel  scalability

nnz((L*H)==2) sum((L*U).*L)/2

sum((L*L).*L)

L,  U  – lower,  upper  triangular  part  of  adjacency  matrix H– incidence  matrix

§ miniTri,	
  Challenge	
  references	
  
§ Wolf,	
  Berry,	
  Stark:	
  2015	
  IEEE	
  HPEC.

§ Pro:	
  Good	
  parallel	
  scalability
§ Con:	
  high	
  operation	
  count

§ Azad,	
  Buluç,	
  Gilbert.	
  2015	
  IPDPSW	
  GABB
§ Linear	
  algebra	
  version	
  of	
  MinBucket

(Cohen),	
  Challenge	
  reference	
  (Julia)	
  
§ Pro:	
  Low	
  operation	
  count	
  (2x	
  MinBucket)
§ Con:	
  Poor	
  parallel	
  scalability	
  (1D)

§ Extension	
  of	
  (LU).*L	
  method
§ “Visits”	
  each	
  triangle/wedge	
  once	
  

(extra	
  constraint	
  placed	
  on	
  vertex	
  
order	
  for	
  wedges	
  visited)

§ Method	
  chosen	
  for	
  challenge

§ Pro:	
  Good	
  parallel	
  scalability
§ Pro/Con:	
  reasonable	
  operation	
  count	
  

(better	
  than	
  LH,	
  slightly	
  worse	
  than	
  LU)



KKMEM:	
  KokkosKernels-­‐Based	
  SpGEMM

§ KKMEM*	
  
§ Parallel	
  version	
  of	
  Gustavson algorithm:	
  	
  C(i,*)	
  =	
  A(i,*)	
  x	
  B
§ Portable	
  SpGEMMmethod	
  that	
  runs	
  on	
  CPUs,	
  Xeon	
  Phis,	
  GPUs
§ 2-­‐phases:	
  symbolic	
  and	
  numeric	
  (triangle	
  counting	
  only	
  needs	
  symbolic)

§ Hierarchical	
  thread	
  parallelism/data	
  structures
§ Maps	
  hierarchical	
  algorithmic	
  parallelism	
  

to	
  SPMD/SIMD	
  computational	
  units
§ Tens/hundreds/thousands	
  of	
  threads

4*Deveci,  Trott,  Rajamanickam:  “Performance-­Portable  Sparse  Matrix-­Matrix  Multiplication  for  Many-­Core  Architectures”,  ASHES  
Workshop,  IPDPSW’  17.



Vertex	
  Ordering	
  and	
  Triangle	
  Counting

5
Avoiding  computation  matters  for  triangle  counting!

#  Wedges  with  d(i)  <  d(j)  >  d(k)  :  56
#  Wedges  with  d(i)  >  d(j)  <  d(k)  :  0

j

i

k

Vertex  Ordering  Matters

Wedges  =  paths  of  length  2

LxL Method  Ordering  Challenging

wedge

Ordering  Impacts  #  operations
(#  wedges  visited)  

“Interleaved”

Decreasing  
degree x

x

Increasing  
degree x

Heuristic

Densest  row
2nd Densest  row
Sparsest  row

Good  
load-­balance

Best    operation  
Count  (of  3)



Matrix	
  Compression

§ Compression	
  used	
  on	
  right	
  hand	
  side	
  matrix
§ Encodes	
  columns	
  using	
  fewer	
  integers
§ Reduces	
  number	
  of	
  operations	
  and	
  memory	
  required	
  in	
  symbolic	
  phase
§ Allows	
  ”vectorized”	
  bitwise	
  union/intersection	
  of	
  different	
  rows

§ Effectiveness	
  of	
  compression	
  varies	
  greatly	
  with	
  data
§ Large	
  random	
  graphs	
  compress	
  poorly	
  (R-­‐Mat	
  <1%	
  compression	
  storage)
§ However,	
  still	
  helpful	
  for	
  many	
  random	
  graphs	
  (e.g.	
  power-­‐law)	
  –

effective	
  for	
  dense	
  rows	
  (improves	
  load	
  balance,	
  operation	
  count) 6

Column  Indices
2 3 6 8 321 322 323 325 327

0 10

332 174

Column  set  indices

Local  column  ids
row Compress



Fused	
  Masking

§ Computing	
  SpGEMM operation	
  of	
  (L	
  x	
  L).*L	
  or	
  (L	
  x	
  U).*L is	
  
inefficient
§ Requires	
  creation	
  of	
  all	
  wedges	
  in	
  graph	
  (large	
  memory	
  requirement	
  

since	
  many	
  more	
  wedges	
  than	
  triangles)

§ Azad,	
  et	
  al.	
  (2015)	
  showed	
  element-­‐wise	
  multiplication	
  can	
  be	
  
combined	
  with	
  SpGEMM into	
  1	
  function	
  MaskedSpGEMM(L,L,L)
§ Third	
  argument	
  (L)	
  is	
  output	
  mask
§ GraphBLAS C	
  language	
  API	
  supports	
  masks	
  

§ Reduces	
  memory	
  (not	
  storing	
  all	
  wedges)
§ Can	
  reduce	
  operation	
  counts	
  (masking	
  unnecessary	
  operations)

§ We	
  chose	
  not	
  to	
  do	
  this)

7
Masked  SpGEMM to  avoid  storing  all  wedges



Visitor	
  Pattern

§ KKMEM	
  based	
  triangle	
  counting	
  supports	
  visitor	
  pattern
§ Concept	
  fundamental	
  to	
  BGL	
  and	
  MTGL

§ Functor passed	
  to	
  triangle	
  identification	
  function,	
  which	
  
allows	
  method	
  to	
  be	
  run	
  once	
  triangle	
  is	
  found
§ For	
  triangle	
  counting:	
  	
  triangleCount++;
§ Flexibility	
  allows	
  for	
  more	
  complex	
  analysis	
  of	
  triangles,	
  miniTri

8

BGL  =  Boost  Graph  Library,  MTGL  =  MultiThreaded Graph  Library

Visitor  pattern  support  provides  additional  flexibility  to  analysts



Results:	
  Speedup	
  Relative	
  to	
  TCM**
Comparison	
  with	
  Ligra’s merge	
  based	
  method	
  with	
  Cilk++	
  (TCM**)
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*Additional  large  graphs  from  SuiteSparse Matrix  Collection

Synthetic  graphs
Geomean:  1.2x

”Real”  graphs
Geomean:  1.9x

Linear  algebra-­based  triangle  counting  competitive  
with  (arguably  better  than)  state-­of-­the-­art  method

** Shun,  Tangwongsan,  2015

Intel  Haswell
32  cores
64  threads



Future	
  Work
§ Better	
  vertex	
  ordering	
  for	
  LL	
  method

§ Faster	
  parallel	
  implementation	
  (TCM	
  significantly)
§ More	
  optimal	
  orderings

§ Better	
  heuristic	
  for	
  LL	
  method	
  (parallelism,	
  #	
  operations)
§ Nonzero	
  pattern	
  based	
  orderings

§ Improved	
  Kokkos scalability
§ TCM’s	
  Cilk++	
  nested	
  parallelism	
  outperformed	
  Kokkos (threads>cores)

§ GPU	
  results
§ Excellent	
  KKMEM	
  performance	
  on	
  CS&E	
  applications
§ Minor	
  changes	
  needed	
  for	
  KKMEM-­‐based	
  triangle	
  counting

§ miniTri
§ KokkosKernels-­‐based	
  miniTri data	
  analytics	
  miniapp
§ Expect	
  3-­‐5	
  order	
  improvement	
  over	
  original	
  miniTri

10



Additional	
  Information

§ KKMEM	
  based	
  triangle	
  counting	
  found	
  in	
  KokkosKernels
§ https://github.com/kokkos/kokkos-­‐kernels

§ Our	
  triangle	
  counting	
  driver	
  and	
  reference	
  implementations	
  
distributed	
  with	
  miniTri data	
  analytics	
  miniapp
§ https://github.com/Mantevo/miniTri	
  	
  (triangleCounting subdir)

§ Additional	
  related	
  publications
§ Deveci,	
  Trott,	
  Rajamanickam:	
  “Performance-­‐Portable	
  Sparse	
  Matrix-­‐Matrix	
  

Multiplication	
  for	
  Many-­‐Core	
  Architectures”,	
  ASHES	
  Workshop,	
  IPDPSW’	
  17.
§ Azad,	
  Buluç,	
  Gilbert.	
  “Parallel	
  triangle	
  counting	
  and	
  enumeration	
  using	
  matrix	
  algebra”,	
  	
  

Proc.	
  of	
  the	
  IPDPSW,	
  GABB	
  Workshop,	
  2015.	
  (LU	
  method)
§ Wolf,	
  Berry,	
  Stark:	
  “A	
  Task-­‐Based	
  Linear	
  Algebra	
  Building	
  Blocks	
  Approach	
  for	
  Scalable	
  

Graph	
  Analytics,”	
  2015	
  IEEE	
  HPEC.	
  (LH	
  method)
§ Cohen,	
  Jonathan.	
  "Graph	
  twiddling	
  in	
  a	
  mapreduce world." Computing	
  in	
  Science	
  &	
  

Engineering 11.4	
  (2009):	
  29-­‐41.	
  (MinBucket algorithm)
§ Shun,	
  Julian,	
  and	
  Kanat Tangwongsan.	
  "Multicore	
  triangle	
  computations	
  without	
  

tuning." Data	
  Eng.	
  (ICDE),	
  2015	
  IEEE	
  31st	
  Intern.	
  Conf.	
  on.	
  IEEE,	
  2015.	
  (TCM	
  method) 11



Extra

12



Performance	
  Portability
§ Kokkos:	
  

§ Layered	
  collection	
  of	
  template	
  C++	
  
libraries

§ Manages	
  data	
  access	
  patterns	
  
§ Execution	
  spaces,	
  Memory	
  spaces

§ Kokkos provides	
  tools	
  for	
  
portability
§ Performance	
  portability	
  does	
  not	
  

come	
  for	
  free.
§ Not	
  trivial	
  for	
  sparse	
  matrix and	
  

graph	
  algorithms

• KokkosKernels:
– Layer  of  performance-­
portable  kernels

• We  study  design  decisions  
for  achieving  portability  for  
sparse  matrix  algorithms
– In  this  work  our  application  
problem:  SPGEMM

13



Vertex	
  Ordering	
  and	
  Triangle	
  Counting

§ Vertex	
  ordering	
  impacts	
  #	
  of	
  operations	
  (#	
  wedges	
  visited)
§ Linear	
  algebra:	
  impacts	
  #	
  of	
  in	
  SpGEMM,	
  nnz in	
  resulting	
  matrix

§ LL	
  method	
  ordering	
  challenging
§ Avoiding	
  dense	
  rows	
  in	
  L	
  -­‐>	
  dense	
  columns	
  in	
  L
§ Reasonable	
  heuristics:	
  decreasing/increasing	
  degree,	
  “interleaved”

14
Avoiding  computation  matters  for  triangle  counting!

#  Wedges  with  d(j)  >  d(i),  d(j)  >  d(k):  56
#  Wedges  with  d(j)  >  d(i),  d(j)  >  d(k)  :  0

j

i

k

Vertex  Ordering  Matters

Wedges  =  paths  of  length  2


