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Magnetized Liner Inertial Fusion (MagLIF) uses a pulsed-power driven low-Z liner
to compress a pre-magnetized, preheated fuel to reach fusion-relevant conditions
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MagLIF experiments have demonstrated thermonuclear fusion in a
magnetized target
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In experiments, typical MagLIF liners demonstrate shot-to-shot

variability in stagnation structures and yield
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= Stagnations structures vary between experiments
= Helices, bright spots
= Yield has variability of about an order of magnitude

= Assumed to be combination of structured implosion
and high convergence
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Data indicates a trend in wavelength and amplitude with aspect ratio/liner

thickness; consistent with feedthrough 3.0
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= Consistent with feedthrough of instabilities from outer liner surface
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We believe that stagnation structures are the result of electro-
thermal instability structures seeded on the outside of the liner

Simulations and experiments show a change in stability Change in stagnation structures is consistent with
when a dielectric coating used to inhibit ETI growth instabilities initiated on outer surface of the liner
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Previous experiments have demonstrated the ability to mitigate electro-thermal
instability seed with thin dielectric coatings; here apply to high aspect ratio liner

Epon coating

ETI mitigation
(imploding liner)
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T.J. we et al.

Liner Outer Epon Complete
Thickness | Diameter coatlng mass
290 um 5.23 mm 8.3 mg
242 um 5.13 mm 75 um 8.3 mg




Applying a thin dielectric coating to the outside of high aspect ratio (thin) liners
can enhance implosion stability, can impact inflight mass distribution
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= More uniform implosion front on coated
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= Stability difference is consistent with AR 6 studies (Awe et al.)
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= Difference in mass distribution with coatings
= Inflight aspect ratio




Applying a thin dielectric coating to the outside of high aspect ratio (thin) liners
can enhance implosion stability, can impact inflight mass distribution
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Data from stagnation experiments on Z demonstrates a stabilized
stagnation column using these dielectric coatings

AR9 z3018 CoatAR9 z3019 CoatAR9 z3075 CoatAR9 z3135

= Three experiments with
dielectric coating show
more stable stagnation
column than
= Uncoated AR 6
= Uncoated AR 9




Data from stagnation experiments on Z demonstrates a stabilized

stagnation column using these dielectric coatings
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In these coated liner experiments we find good reproducibility in the axial
structure
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For thin liners, change in stability is not accompanied by major change in
conditions, yield
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We have evidence of good magnetization in these coated liners, a key

component of magnetized liner inertial fusion 400
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Based on Knapp et al., Phys Rev Lett, Schmit et al., Phys Plasmas




DT spectra are consistent with ~0.40 MG.cm magnetic field radius product,

close to field ultimately needed for self heating

= DT spectral shape provides us with another
indicator of magnetization

= Data is consistent with 0.4 MG.cm, whch is
comparable to the best uncoated MagLIF shots
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Overall, reproducibility of coated high aspect liners looks very promising,
providing a potential path to further improvements in MagLIF
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3.0e12 2.6e12  3.1e12 2.9e12 9%

DT 48e10 4.1e10  5.5e10 4.8e10 15%
DD/DT 62.5 63.4 56.4 60.8 6%
Tion (NTOF) 25keV 22keV 22keV  2.3keV 8%
T, (continuum) 3.0keV 3.3keV Nodata 3.15 7%

= Reproducibility of this coated high aspect ratio MagLIF configuration appears very
promising
= This will allow us to diagnose subtle changes in plasma conditions and yields as we
vary
= Preheat
= Magnetic fields
= Current delivery
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With coated, high aspect ratio liners we have demonstrated a MagLIF platform with minimal
helical structure and axial variability that reproducibly creates ~3e12 yields
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