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Motivation ) e

subsurface imaging and predictive modeling for realistic, complex geology —
conditions motivate the resolution of fine features

Cu-ring experiment: 12 gauge, 15 cm diameter
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Motivation: Putting it all together at the macroscopic level Laboratories

Pulse propagation 2.0

Fractional Differintegration

Classical Gaussian anomalous” fractional of the Unit Function, f=1 /7 /-
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Figure 1. (a) Propagation of a Gaussian pulse G(x,f) undergoing classical diffusion. (b) Propagation of a -0.5

CTRW pulse A(x,f) undergoing anomalous diffusion (after the work of Scher and Montroll [1975]).

Fractional diffusion equation Riemann-Louiville convolution
8 1— 82 1— ]. 8 /t A(:C, t,) /
— = o — D, 7 %A(x,t) = —— — dt

atA(xa t) ODt Vo 8332 A(ma t) 0-~¢ (x’ ) I‘(a) at 0 (t _ tl)l—a
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« Maxwell’'s

* Fractional Laplacian and time
operator

 Target optimization problem
» Solution strategy
* Implementation

* Summary




Maxwell’s to Fractional Helmholtz h

B rvxE=o Y x B = iwpofl
%—?—Vxﬁ:—j, V x H = —iweon?(Z)E
V-D =p,
V-B=0,

—

V XV X FE=1iwuyV X H = wz,uoeonQE

(V2 4+ k?n?)E = —V[E - VInn?(?)]

—PAu(z) —wulz) = f, €0

u(lz) = 1, €Iy
: 0
—iwu(x) + ¢ ggf) =0 €Ty

First order Maxwell’s

Curl Curl system

Helmholtz

Fractional Helmholtz
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Fractional Laplacian ) S

Definition 1: (integral) Let u € C3°(€2) and extend it by zero outside of (2.
Then

(—Ar0)’u(x) = C'n,sp.v./]R u(z) — u(z) dz

n X — 2| t2s

where C, s is a constant and p.v. is the Cauchy principal value.

Definition 2: (regional) Let uw € C§°(2). Then

u() —u(z)

o |r—z|nt2e

(—Aq.0)’u(x) = Cyp sp.v.

Definition 3: (Spectral) Let ¢, amd Ax solve
—AD.oPr = APk, vrloa =0,
and let u € C5°(€2). Then

U = Zukcpk — (—=Ap)°u = Zuk)\igok.




Implementation Strategies 1) .

» Integral and regional Laplacians require sophisticated quadrature

to approximate the singular integrals. This is especially challenging
in more than 1D. See Acosta et al '16 and Ainsworth et al '17.

» Spectral Laplacian can be realized using:
» FFT in rectangular domains, see Antil et al '17.

» In general domains, there are three approaches:

» Compute the eigenvalues (Mg ) and eigenvectors (g ): — can be
challenging, see Karniadakis et al "17.

» Dunford-Taylor approach, see Bonito et al '15: — Requires several
solves of standard diffusion equation.

» Extension approach, see Caffarelli et al '07, Stinga et al "10,
Nochetto et al 16': — local problem but one extra dimension with

degenerate/singular coefficients.




Laplacian with different exponents L




Fractional time operator ) .

F (5ef) = G F

Implementation Issues:

« Straight forward except.....

* Need real and imaginary part

« Boundary condition requires fractional exponent

« Complex value exponent needs to calculated a priori

« Optimization requires multiple frequencies to recover fractional
Brownian motion




Target Optimization Problem 1.

min j:E/(u—u*)%(az—m*)d:p—l—g/ o’dx
Q

G 2 o
where u solves: — c?Au + (iw)** = f €Q

ou(x)

— (iw)%u + ¢ =0 onT

on
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Solution Convergence for p =1

v —e—Re(u) . ) . . 9 N2 9
—o—Im(v) u* = (1 +1i)(sin(27x)sin(27y)), ¢ = (r+1i)°, w” =1,

1072
?10_3 i | f = ((2 = 22)(27 cos(2mx) sin(27y)) + (872(x? — 2z — 1) — 1)(sin(27z) sin(27y)))
=l +i((—=2 — 22)(27 cos(27mx) sin(27wy)) + (872 (2% + 22 — 1) — 1)(sin(2mz) sin(27y))).
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Fractional Inversion Results

Sandia
m National

Laboratories

Alpha true Alpha
Inverted
1.0 1.0 0.0

0.5 0.49 0.01

Note:

« Synthetic sensors
* Add noise

* Invert for exponent




Multi scale/physics Interface for Large scale Optimization (rh) i
(MILO)

strong form:

or or f
main ot odx
weak form:
/ oT oT Ov
—v+D—— —f-vd2=0
/Qpcpatv+ Ox Ox Joo
/ INTERFACES
y code:
@ @ Ehiyshcs Analysis Res=rho(k)*cp(k)*udot*v+diff(k)*dTdx*dvdx —f*v
/ Degree of Automates:
:;:e:‘g’:‘ « 3D Parallel
nager ..
« Adjoints
) v v v * Opt under uncertainty
Command Panzer stk Porous | | Convection Intrepid Forward | | Adjoint ) Unst_ructured
line interface media diffusion solver solver ° MU|tISCa|e
keyword (2D, 3D) «  Multiphysics
input file Thermal Navier Optimization | | UQ
v Stokes -
B |é|lnea-r. Inversion
analysis asticity
class




Novel Development of Multiscale )
Capability using Mortar Methods
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= |mplemented fractional Helmholtz with adjoint and gradients
= Demonstrated simple inversion capability

=  Software infrastructure enables automatic interface to optimization

Future work :

 Implement multiple frequency inversion
* Implement solution to space-time cylinder problem
e Extend to Maxwell’s
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Thank youl!




