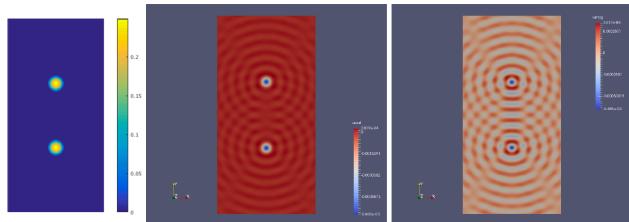
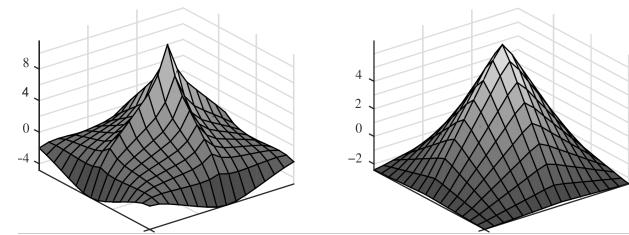


Exceptional service in the national interest

Sandia
National
Laboratories



Fractional Differential Operators to Detect Multiscale Geophysical Features

Bart van Bloemen Waanders and Chet Weiss (Sandia National Laboratories)

Harbir Antil (George Mason University)

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525 SAND2017-XXXXC

Motivation

subsurface imaging and predictive modeling for realistic, complex geology – conditions motivate the resolution of fine features



Motivation: Putting it all together at the macroscopic level

Pulse propagation

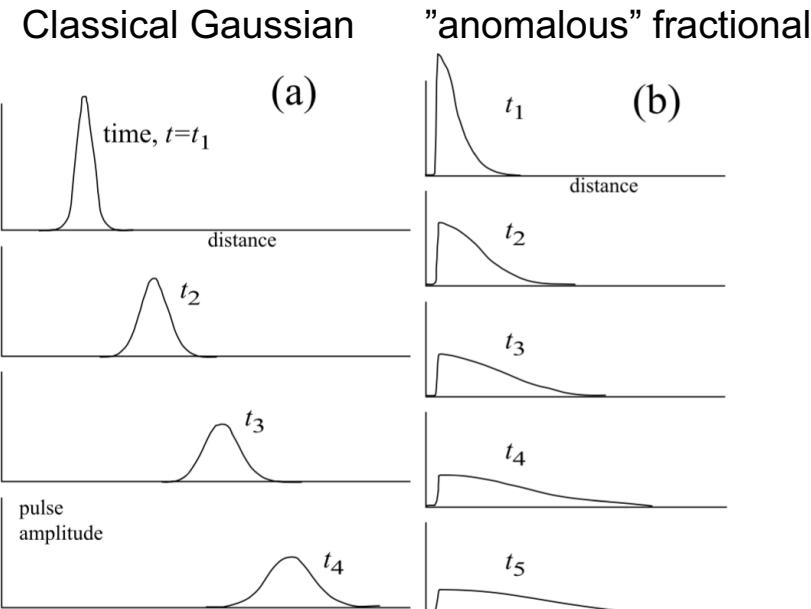
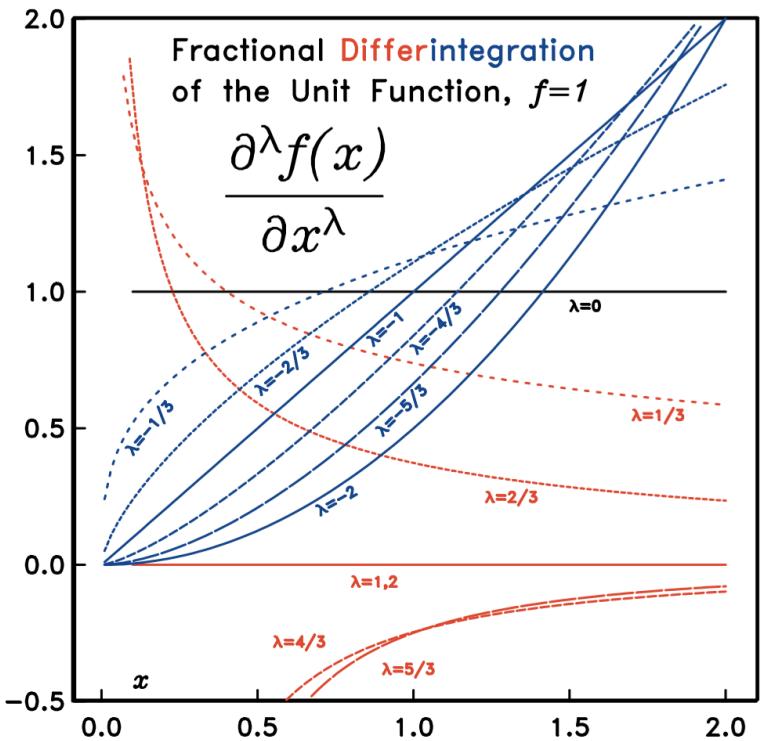


Figure 1. (a) Propagation of a Gaussian pulse $G(x,t)$ undergoing classical diffusion. (b) Propagation of a CTRW pulse $A(x,t)$ undergoing anomalous diffusion (after the work of Scher and Montroll [1975]).



Fractional diffusion equation

$$\frac{\partial}{\partial t} A(x,t) = {}_0D_t^{1-\alpha} \left[v_\alpha \frac{\partial^2}{\partial x^2} A(x,t) \right]$$

$${}_0D_t^{1-\alpha} A(x,t) = \frac{1}{\Gamma(\alpha)} \frac{\partial}{\partial t} \left[\int_0^t \frac{A(x,t')}{(t-t')^{1-\alpha}} dt' \right]$$

Riemann-Liouville convolution

Outline

- Maxwell's
- Fractional Laplacian and time operator
- Target optimization problem
- Solution strategy
- Implementation
- Summary

Maxwell's to Fractional Helmholtz

$$\begin{aligned}\frac{\partial \vec{\mathcal{B}}}{\partial t} + \nabla \times \vec{\mathcal{E}} &= 0, & \nabla \times \vec{E} &= i\omega\mu_0 \vec{H} \\ \frac{\partial \vec{\mathcal{D}}}{\partial t} - \nabla \times \vec{\mathcal{H}} &= -\vec{\mathcal{J}}, & \nabla \times \vec{H} &= -i\omega\epsilon_0 n^2(\vec{x}) \vec{E} \\ \nabla \cdot \vec{\mathcal{D}} &= \rho, \\ \nabla \cdot \vec{\mathcal{B}} &= 0,\end{aligned}$$

First order Maxwell's

$$\nabla \times \nabla \times E = i\omega\mu_0 \nabla \times \vec{H} = \omega^2 \mu_0 \epsilon_0 n^2 \vec{E}$$

Curl Curl system

$$(\nabla^2 + k^2 n^2) \vec{E} = -\nabla [\vec{E} \cdot \nabla \ln n^2(\vec{x})]$$

$$\begin{aligned}-c^2 \Delta u(x) - \omega^2 u(x) &= f, \quad \in \Omega \\ u(x) &= 1, \quad \in \Gamma_1\end{aligned}$$

Helmholtz

$$-i\omega u(x) + c \frac{\partial u(x)}{\partial n} = 0 \quad \in \Gamma_2$$

$$\begin{aligned}-c^2 \Delta u + (i\omega)^{2\alpha} u &= f \quad \in \Omega \\ -(i\omega)^\alpha u + c \frac{\partial u(x)}{\partial n} &= 0 \quad \text{on } \Gamma\end{aligned}$$

Fractional Helmholtz

Fractional Laplacian

Definition 1: (integral) Let $u \in C_0^\infty(\Omega)$ and extend it by zero outside of Ω . Then

$$(-\Delta_{I,0})^s u(x) = C_{n,s} \text{p.v.} \int_{\mathbb{R}^n} \frac{u(x) - u(z)}{|x - z|^{n+2s}} dz$$

where $C_{n,s}$ is a constant and p.v. is the Cauchy principal value.

Definition 2: (regional) Let $u \in C_0^\infty(\Omega)$. Then

$$(-\Delta_{\Omega,0})^s u(x) = C_{n,s} \text{p.v.} \int_{\Omega} \frac{u(x) - u(z)}{|x - z|^{n+2s}} dz$$

Definition 3: (Spectral) Let φ_k and λ_k solve

$$-\Delta_{D,0} \varphi_k = \lambda_k \varphi_k, \quad \varphi_k|_{\partial\Omega} = 0,$$

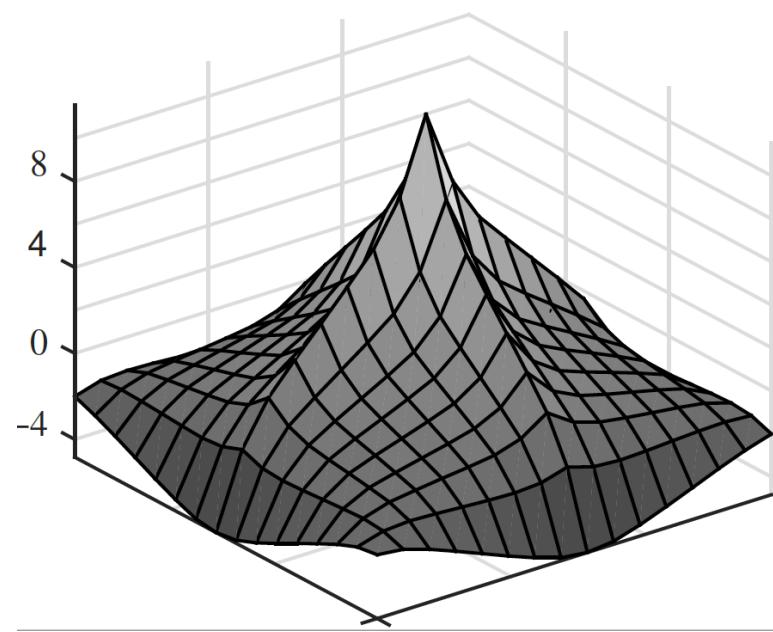
and let $u \in C_0^\infty(\Omega)$. Then

$$u = \sum_{k=1}^{\infty} u_k \varphi_k \longmapsto (-\Delta_D)^s u := \sum_{k=1}^{\infty} u_k \lambda_k^{\frac{s}{2}} \varphi_k.$$

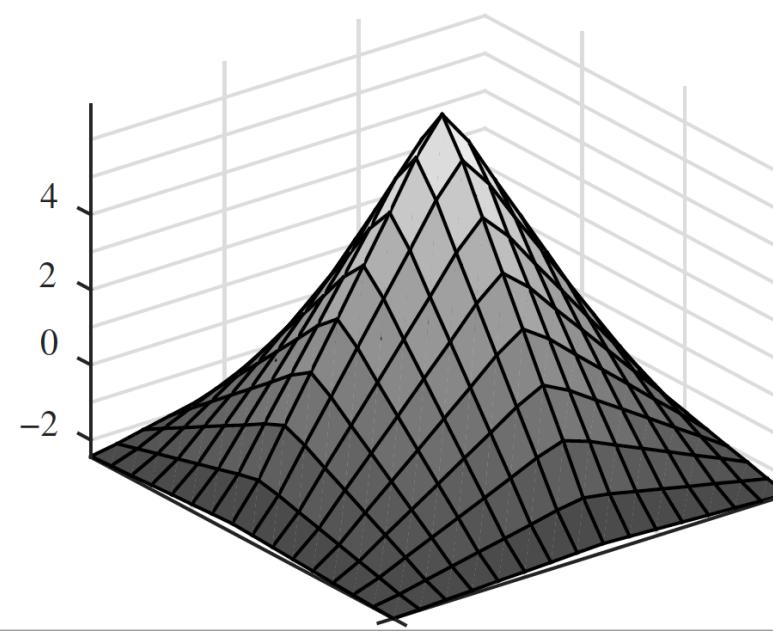
Implementation Strategies

- ▶ **Integral and regional** Laplacians require sophisticated quadrature to approximate the singular integrals. This is especially challenging in more than 1D. See Acosta et al '16 and Ainsworth et al '17.
- ▶ **Spectral** Laplacian can be realized using:
 - ▶ FFT in rectangular domains, see Antil et al '17.
 - ▶ In general domains, there are three approaches:
 - ▶ Compute the eigenvalues (λ_k) and eigenvectors (φ_k): → can be challenging, see Karniadakis et al '17.
 - ▶ Dunford-Taylor approach, see Bonito et al '15: → Requires several solves of standard diffusion equation.
 - ▶ Extension approach, see Caffarelli et al '07, Stinga et al '10, Nocchetto et al 16': → local problem but one extra dimension with degenerate/singular coefficients.

Laplacian with different exponents



$$\alpha = 0.5$$



$$\alpha = 1.0$$

Fractional time operator

$$\mathcal{F} \left(\frac{d^n}{dt^n} f \right) = (i\omega)^n \mathcal{F}(f)$$

Implementation Issues:

- Straight forward except.....
- Need real and imaginary part
- Boundary condition requires fractional exponent
- Complex value exponent needs to calculated a priori
- Optimization requires multiple frequencies to recover fractional Brownian motion

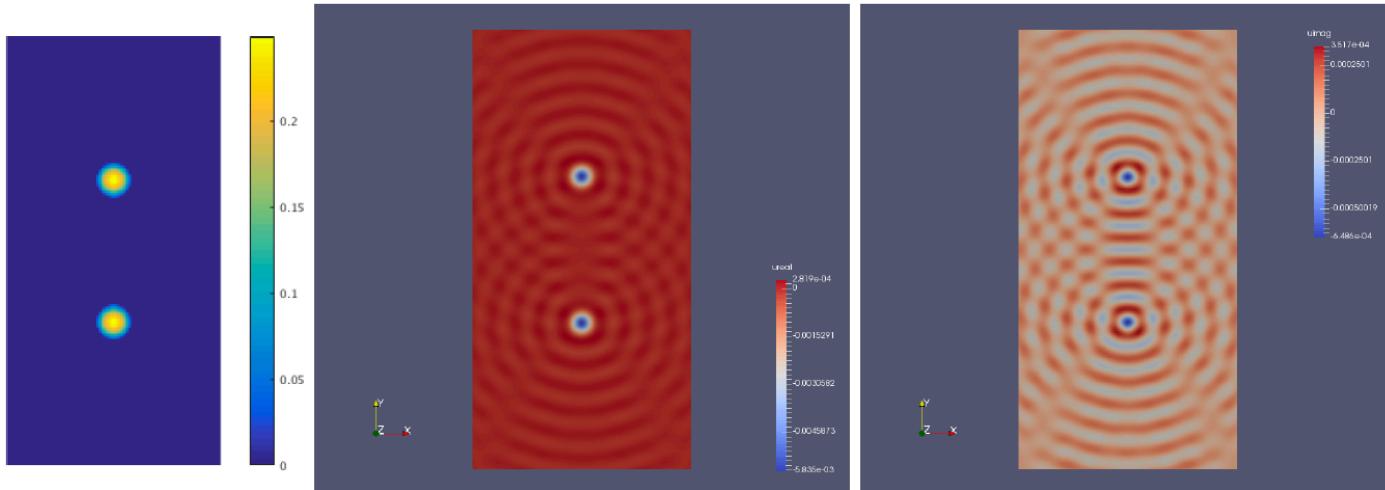
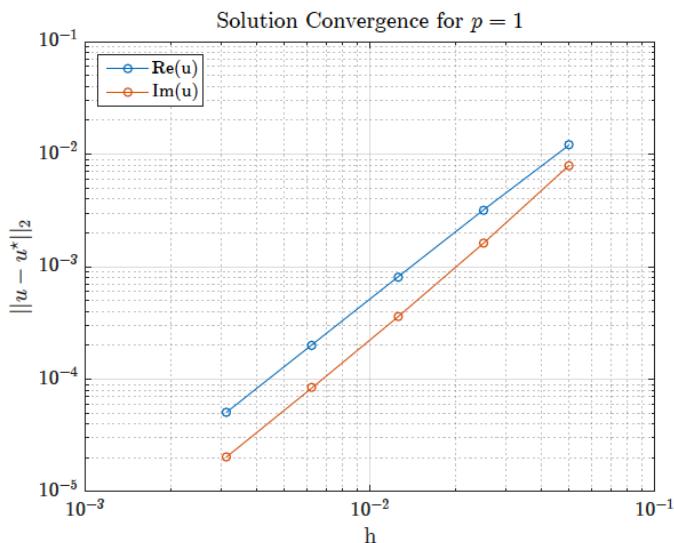
Target Optimization Problem

$$\min_{\alpha} \quad \mathcal{J} = \frac{1}{2} \int_{\Omega} (u - u^*)^2 \delta(x - x^*) dx + \frac{\beta}{2} \int_{\Omega} \alpha^2 dx$$

where u solves:
$$\begin{aligned} -c^2 \Delta u + (i\omega)^{2\alpha} u &= f & \in \Omega \\ -(i\omega)^\alpha u + c \frac{\partial u(x)}{\partial n} &= 0 & \text{on } \Gamma \end{aligned}$$

MMS verification

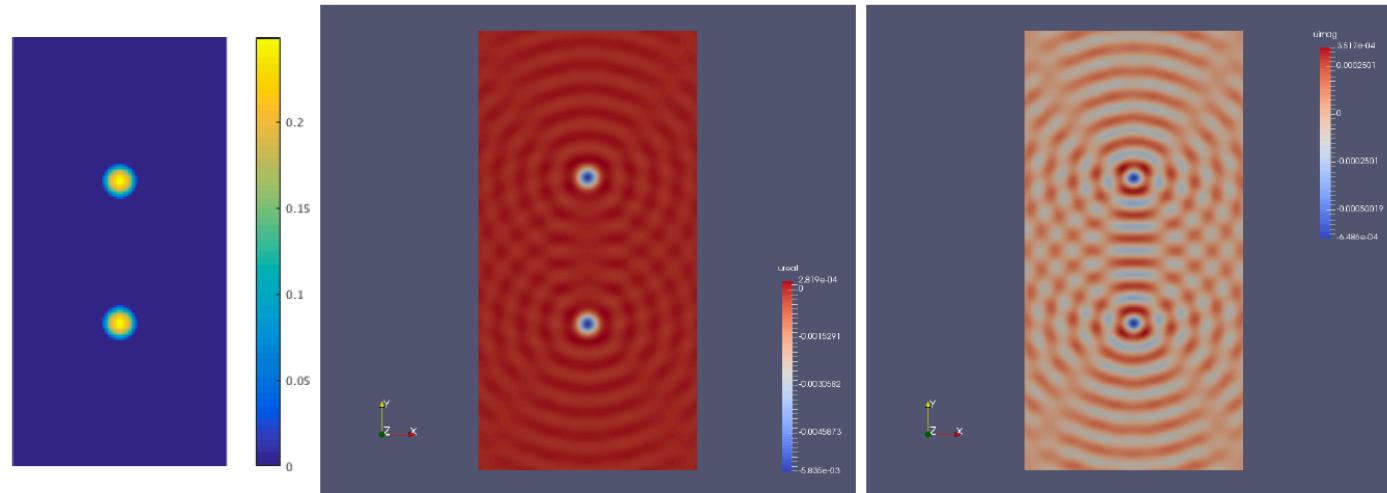
$$\alpha = 1.0$$



$$u^* = (1 + i)(\sin(2\pi x) \sin(2\pi y)), \quad c^2 = (x + i)^2, \quad \omega^2 = 1,$$

$$f = ((2 - 2x)(2\pi \cos(2\pi x) \sin(2\pi y)) + (8\pi^2(x^2 - 2x - 1) - 1)(\sin(2\pi x) \sin(2\pi y))) \\ + i((-2 - 2x)(2\pi \cos(2\pi x) \sin(2\pi y)) + (8\pi^2(x^2 + 2x - 1) - 1)(\sin(2\pi x) \sin(2\pi y))).$$

Fractional Inversion Results

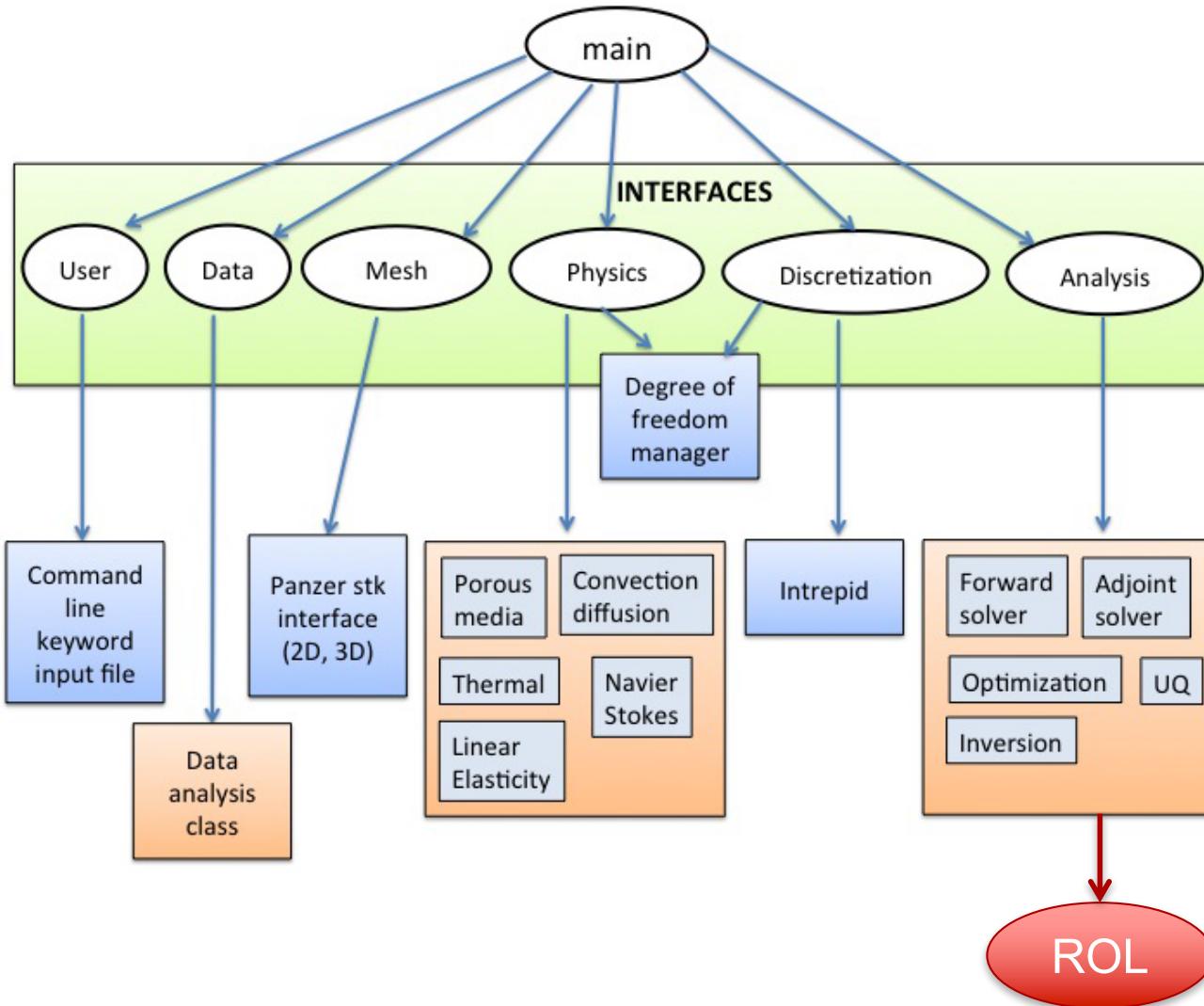


Alpha true	Alpha Inverted	Error
1.0	1.0	0.0
0.5	0.49	0.01

Note:

- Synthetic sensors
- Add noise
- Invert for exponent

Multi scale/physics Interface for Large scale Optimization (MILO)



strong form:

$$\frac{\partial T}{\partial t} - D \frac{\partial T}{\partial x} = f$$

weak form:

$$\int_{\Omega} \rho c_p \frac{\partial T}{\partial t} v + D \frac{\partial T}{\partial x} \frac{\partial v}{\partial x} - f \cdot v d\Omega = 0$$

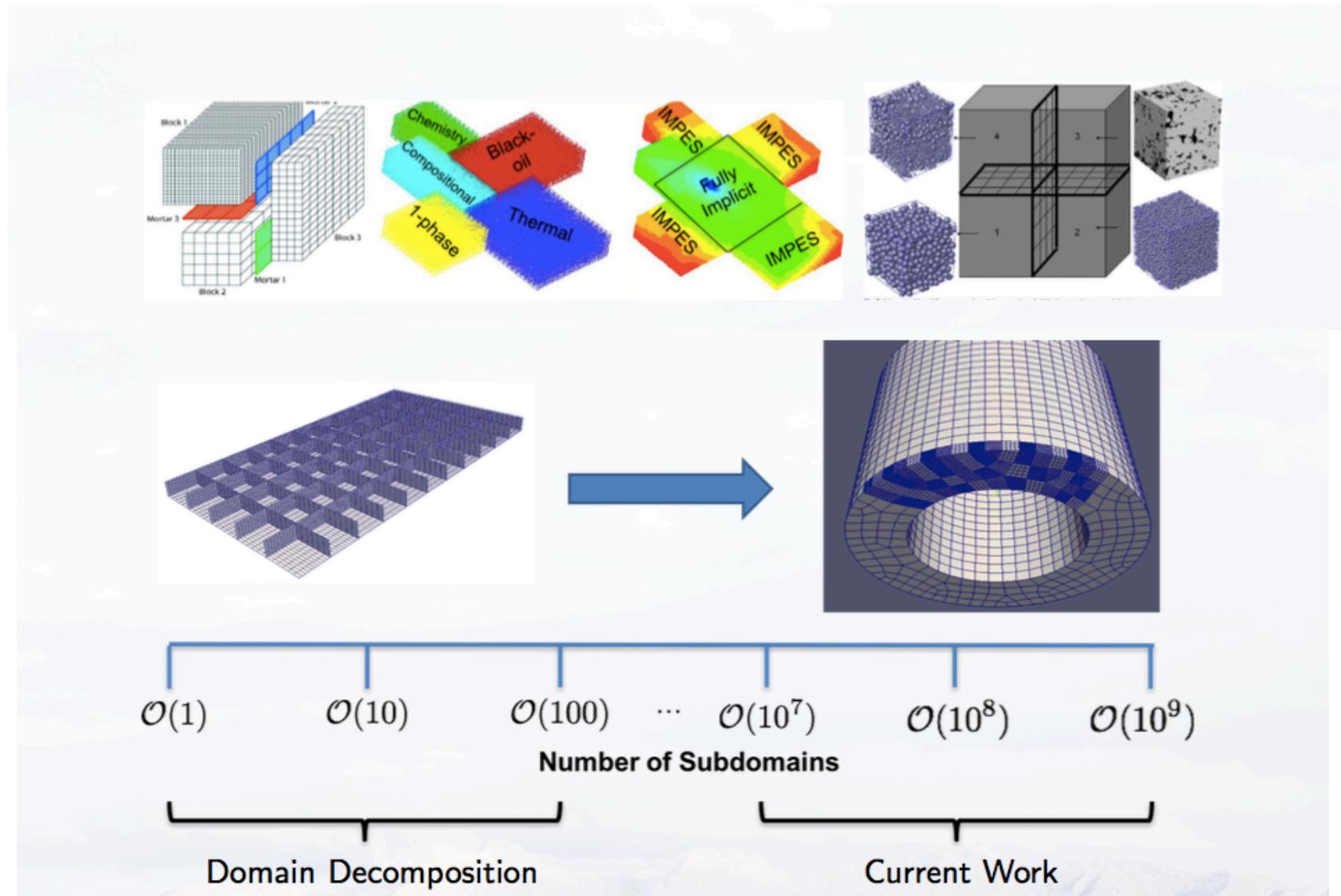
code:

```
Res=rho(k)*cp(k)*udot*v+diff(k)*dTdx*dvdx -f*v
```

Automates:

- 3D Parallel
- Adjoint
- Opt under uncertainty
- Unstructured
- Multiscale
- Multiphysics

Novel Development of Multiscale Capability using Mortar Methods



Summary

- Implemented fractional Helmholtz with adjoint and gradients
- Demonstrated simple inversion capability
- Software infrastructure enables automatic interface to optimization

Future work :

- *Implement multiple frequency inversion*
- *Implement solution to space-time cylinder problem*
- *Extend to Maxwell's*

Thank you!