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Abstract— Resistive memory (ReRAM) shows promise for use
as an analog synapse element in energy-efficient neural network
algorithm accelerators. A particularly important application is
the training of neural networks, as this is the most
computationally-intensive procedure in using a neural algorithm.
However, training a network with analog ReRAM synapses can
significantly reduce the accuracy at the algorithm level. In order
to assess this degradation, analog properties of ReRAM devices
were measured and hand-written digit recognition accuracy was
modeled for the training using backpropagation. Bipolar
filamentary devices utilizing three material systems were
measured and compared: one oxygen vacancy system, Ta-TaQy,
and two conducting metallization systems, Cu-SiO;, and
Ag/chalcogenide. Analog properties and conductance ranges of
the devices are optimized by measuring the response to varying
voltage pulse characteristics. Key analog device properties which
degrade the accuracy are update linearity and write noise. Write
noise may improve as a function of device manufacturing
maturity, but write nonlinearity appears relatively consistent
among the different device material systems and is found to be
the most significant factor affecting accuracy. This suggests that
new materials and/or fundamentally different resistive switching
mechanisms may be required to improve device linearity and
achieve higher algorithm training accuracy.

Keywords—RRAM, ReRAM, Neuromorphic, Analog,
Nanosecond, Radio Frequency, Tantalum Oxide, Chalcogenide,
Silicon Dioxide, Copper, Filamentary, Bipolar, MNIST, CrossSim

I. INTRODUCTION

A special purpose neural algorithm accelerator based on
resistive memory weights shows the potential to achieve orders
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of magnitude gain in energy efficiency over advanced CMOS-
ASIC accelerators and traditional CPU and GPU hardware [1-
3]. Several large scale neuromorphic hardware accelerators
have been implemented recently, including TrueNorth [4],
SpiNNaker [5], Caviar [6], and FACETs [7]. Efforts to
capitalize on the energy advantages of incorporating resistive
or phase change memory into a fully parallel synaptic array or
dot product engine are ongoing [8-10]. The energy scaling
advantages of a fully parallel synaptic array would be achieved
not only by storing data in resistive memory, but also from
performing computation in resistive memory, rather than
transferring between a cache and execution unit. For instance, a
vector matrix multiply (VMM), one of the most
computationally intensive operations in neuromorphic
algorithms, can be electronically calculated on a crossbar in a
single operation as shown in Figure 1.
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Through Kirchkoff’s laws, the applied voltages, are

multiplied by the  conductances Gi':}' to  give

j— L
currents [J' - Eﬂ' Gfs}'. Computation on a crossbar array
allows the entire vector matrix multiply to be completed in
parallel, as compared to the many serial operations necessary
that would be needed to access a standard SRAM cache array.
In addition to a parallel read, the crossbar can be updated in
parallel by the outer product of two vectors by simultaneously
applying pulses to the rows and columns, accelerating all the
key matrix operations required for a neural network
algorithm[11].
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Figure 1: an electronic vector matrix multiply may be implemented on a
crossbar given resistors with programmable weights. By applying bias to
the left side of the crossbar, Kirkoff’s laws give the sum of the weights in
the column of the crossbar multiplied by the applied voltage amplitude.

The resistive memory device requirements for
implementing an electronic vector matrix multiply on a
crossbar depend on attributes including conductance range,
write variability, write linearity, and read noise [12]. It is
possible to linearize a device with a nonlinear response and
reduce or eliminate write variability by applying pulses of
varying amplitudes/pulse widths depending on the present
device resistance [13-16]. This strategy necessitates addressing
individual resistive memory elements, reading their
conductance, and applying an update based on that resistance.
Unfortunately, this eliminates the parallelism benefits of
analog computation [11, 10] as each device is serially written.
Consequently, we need devices with multiple resistance states
accessible via symmetric voltage pulses of constant magnitude
(blind updates). The programming schemes implemented in
this work have been limited to approaches that are energy/time
efficient on a very large scale neuromorphic architecture with
crossbar arrays as large as 1000 x 1000 nodes[12].

Many different material systems and device architectures
have been previously studied for resistive memory-based
neuromorphic computing and binary memory applications [17-
23]. Oxygen vacancy transport-based and metal conductive

bridge-based devices have shown promise, andhere a particular
device in each category is examined for their respective neural
network synapse performance. In particular, we will examine a
CMOS-compatible TaOx-Ta device which operates under a
vacancy modulated conductive oxygen filament mechanism
[24], a Cu-SiO; heterostructure device where Cu filamentary
diffusion into the SiO; layer modulates the conductivity of the
device [25], and a commercially available chalcogenide device
[26]. However, the different architectures, electrode designs,
and device geometries limit the comparison to a discussion of
the performance of a fully fabricated device, rather than
material system. The neural network synapse performance of
these devices is compared using our neural network algorithm
simulator called CrossSim (http://cross-sim.sandia.gov).

II. EXPERIMENTAL DETAILS

TaOx based devices were fabricated in Sandia’s CMOS
production MESAFab. The TiN-TaOx-Ta-TiN switching stack
is deposited using reactive sputtering, using a feedback
technique described in [27] . These devices consist of a TiN-
TaOx-Ta-TiN stack in a radio frequency ground signal ground
electrode and standard crossbar configurations. The reduced
TaOx layer was 10 nm thick and the Ta layer was 50 nm thick,
and the active region had 1.0 pm X 1.0 pm lateral dimensions.

All measurements were made on a Cascade Microtech
manual probe station with an Agilent BIS00A Semiconductor
Parameter Analyzer mainframe equipped with a BI1530
Waveform Generator Fast Measurement Unit. GGB Industries
Picoprobe model 40A-GS-250 were employed for ground
signal probe configurations. Pulse waveforms were captured on
an Agilent CX3300 Device Current Waveform Analyzer.

Analog operation of ReRAM requires precise control of
voltage pulse timing. Hence, we used short voltage pulses to
characterize analog behavior. It should be noted that standard
static current-voltage (I-V) sweeps on a Semiconductor
Parameter Analyzer (SPA) are not controlled in time. The SPA
spends an arbitrary amount of time sampling at each voltage
level while attempting to reduce the noise of the current
measurement. This measurement is designed to extract the DC
parameters of a MOSFET, and is not sufficient to fully
characterize the dynamic analog properties of ReRAM.

In order to conduct high speed pulsed operations which are
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Figure 2: Standard I/V characterizations of TaO /Ta devices. (a) shows the pre-forming I/V characteristics of the TiN/TaO /Ta/TiN stack,

which is nonohmic and asymmetric owing to the nonequal Shottkey barriers at the Ta and TiN interfaces. (b) shows the soft breakdown process
known as electroforming when a bias of up to 4 volts is applied to the top electrode of the device. (c¢) The device can be RESET to a high
resistance state after electroforming using negative bias, or SET to a low resistance state by applying positive bias.



equivalent to what will be implemented on a digital controller
designed for a neural network algorithm accelerator, a probe
station test setup was developed which can achieve 10 ns rise
times during read and write. To achieve high frequency pulsed
operation on a probe station, RF waveguide electrodes, and
ground-signal type probes were employed to maintain pulse
fidelity at the device. To measure the analog response of a
resistive memory device, the following programming scheme
was used. A short write pulse with nominal 10 ns rise/fall times
and 10 ns pulse width, with an amplitude of +1 V (partial SET
operation) or -1 V (partial RESET operation) is applied.
Following each write pulse is a read pulse of 1 ms rise/fall
times, 1 ms pulse width, and +100 mV amplitude. Current is
read during the middle of this pulse and conductivity is
extracted using Ohm’s law. The total cycle time is therefore
longer than 3 ms, ensuring that there is more than adequate
time for thermal effects to dissipate between write pulses. The
dissipation of heat from this system may be on the order of
nanoseconds, however, so this extended cycle time could be
significantly reduced if required.

III. CHARACTERIZATION OF ANALOG DEVICE PROPERTIES

The schematic of the TaOx-Ta device used in this study is
shown in the inset of Figure 2(a). A low voltage I-V sweep of
the device indicates nonohmic electrical contacts due to the
uneven Schottky barriers on the TiN and Ta sides of the TaOy
layer as shown in Figure 2(a). The conventional method for
switching a bipolar resistive memory device starts with
applying a positive bias sweep to the side of the device with
the tantalum active electrode. This bias attracts negatively
charged oxygen vacancies towards the Ta metal. At sufficiently
high bias, the TaOy layer goes through a soft breakdown
process[28] known as forming, in which the resistance of the
layer is reduced by many orders of magnitude as is shown in
Figure 2(b) where the device was swept from 0-4 V with a 50
pA compliance. Following the forming step, a negative bias
applied to the top electrode may raise the resistance of the
TaOx layer in a process known as RESET and a positive bias
decreases the resistance of the layer in a process known as
SET. The classic memristor pinched hysteresis loop is evident
in the SET and RESET processes shown in Figure 2(c).
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Figure 3: Fast pulsing setup and SET-RESET results. (a) The fast pulsing setup uses an Keysight BI530A module with Resistance Source Units (RSU)s to
apply fast pulses and perform pulsed current voltage measurements. Using a ground signal configuration it is possible to achieve write pulses with pulse
widths on the order of 10 ns. (b) shows the applied SET pulses, which are nominally 1 V amplitude, 10 ns pulse width and 10 nanosecond edge time. (c)
shows the applied RESET pulses, which are nominally -1 V amplitude, 10 ns pulse width and 10 nanosecond edge time. (d) shows the analog device
operation scheme, where a short, +1 V amplitude write pulse is followed by a long + 100 mV read pulse. Current is measured during the read pulse, to
observe the change in conductance caused by the write pulse. (e) Application of 1,000 positive SET pulses results in a gradual increase in device
conductance. (f) Application of 1,000 negative RESET pulses results in a gradual increase in device conductance.
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An analog programming scheme using nanosecond pulses
on the TaO-Ta devices is shown in Figure 3(d). A +1 V write
pulse with pulsewidth in the nanosecond time scale is applied
followed by a 100 mV read pulse. This cycle is repeated 1000
times for a full SET or RESET operation. The change in
conductance on repeated pulsing is shown in Figure 3(e) and
3(f) for 10 ns pulses, indicating a gradual change of device
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conductance under repetition of SET and RESET write pulses,
indicating many analog resistance states may be achieved in
these devices. However, the response of the devices to repeated
pulsing is nonlinear and asymmetric, a characteristic that will
negatively impact neural algorithm performance accuracy. 3(b)
and 3(c) show the measured write pulses, indicating a 140 mV
overshoot for SET pulses and a -180 mV overshoot for RESET
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Figure 5: (a) Ultrafast pulses (10 ns or 100 ns) prevent TaO,/Ta device temperature from fully reaching the steady state temperature. The lower temperature
results in a smaller diameter filament, with less permanent vacancies. (b) Longer voltage pulses allow for the thermal buildup to reach a steady state, the
higher temperature results in greater ion mobility allowing the filament radius to increase and more permanent vacancies to form, explaining the observed

increase in conductivity in both the LRS and HRS state with longer pulses.



pulses, the measured rise times/fall times and amplitude are

Jeong et al. found the time to reach steady state temperature
was ~500 ns for a similar device [30]. Since the pulse timings
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Figure 6: Effect of pulse width and edge time on analog TaO,/Ta device performance. (a) SET-RESET analog operation of device using pulses with 10 ns,
100 ns and 1 us pulse widths and edge times. The conductance range is shown to increase with pulse width and edge time. (b) The conductance change in
percent on the vertical axis of this graph is taken by diving the conductance values in the first plot by the minimum conductance value. The conductance
change increases for shorter pulse widths and edge times. (c) Normalized conductance change in percentage showing an insignificant difference in linearity

with changing pulse width and edge time.

also shown.

Repeated cycling under varying pulse widths is shown in
Figure 4. For the first 100 cycles (pulses 1-20,000) a 10 ns
write pulse width was used, for the second 100 cycles (pulses
20,001-40,000) a write pulse width of 100 ns was used, and for
the third 100 cycles (pulses 40,001-60,000) a 1 us write pulse
width was used. Low cycling is variability is observed,
especially for 10 ns pulse widths, but some conductance drift is
observed for 100 ns and 1 ps pulse widths. A large jump in
conductance range is observed with increasing pulse widths.

This conductance range shift is attributed to a widening of
the cylindrical filament, or change in the filament conductivity
due to greater depletion of oxygen and the formation of
permanent vacancy locations as shown in Figure 5[24, 29].
Interestingly, this increase in conductivity occurs during longer
pulses, but not during a pulse train with an interval between
each pulse with the same total energy as the longer pulse.
Therefore, the conductivity change effect observed here cannot
be a function of total electrical energy through the device. This
effect can be a result of the device temperature not reaching a
steady state during ultra-fast (10 ns or 100 ns) pulsing, and the
duty cycle is sufficiently low as allow for thermal relaxation.

used in Figure 4 are below the thermal time constant, and the
duty cycle is longer than the thermal time constant, the
conductance effect may be ascribed to the effect shown in
Figure 5.

To further examine the effects of changing pulse width,
individual cycles were examined as shown in Figure 6. Figure
6(a) shows that the conductivity range increases with
increasing pulse width. Lowering the conductance is important
for reducing the required programming energy and enabling
the parallel programming of large device arrays. Figure 6(b)
shows that shorter pulses have a larger Gon/Gosr ratio. To
examine linearity as a function of pulse width, the conductance
data from Figure 6(c) was normalized to have the same Gmax
and Gmin values. This shows that the 10 and 100 ns pulses have
nearly identical nonlinearities. The 1 ps pulses have a more
linear reset write nonlinearity where the conductance drop is
not as abrupt. This could be due to a change in the switching
mechanism at high conductance from changing the length of a
filament to changing the thickness or number of filaments [32].

IV. MODELING BASELINE TANTULUM OXIDE RERAM CELLS IN
AN ANALOG NEURAL TRAINING ACCELERATOR
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In this architecture, the ReRAM devices perform key
kernels of common algorithms in parallel on an analog
crossbar, as described above (Figure 1) [9]. While significant
latency and energy efficiency gains are possible with the
ReRAM accelerator, the analog operation has a lower accuracy
than when executed with a standard double-precision floating
point computing system. To quantify this accuracy trade-off,
we have developed a CrossSim code suite simulate
(http://cross-sim.sandia.gov) executing a neural training
algorithm with imperfect devices [12, 33]. Specifically, an
MNIST dataset was trained on a network with one hidden
layer, of dimensions (784x300x10) [34]. This training set is
composed of 60,000 28x28 pixel images of the handwritten
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Figure 7: Cumulative distribution function (CDF) with repeated cycling on TaO,/Ta device. Data from repeated cycling is collected in a cumulative
distribution function lookup table for input into CrossSim. Color maps of CDF indicate given a current conductance state, the probability that the next update
will increase conductance by a given value.
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single digit numbers “0” through “9”. When using a standard
double-precision CPU or GPU to train, accuracy of 98% is
possible. In order to simulate the response of a device in a
neuromorphic algorithm, we create of a lookup table which
contains probabilistic change in conductance at a given

conductance (ﬁGrf G) was extracted from the cycling data for
a given pulse width. This data is illustrated graphically in the
cumulative distribution function (CDF) graphs in Figure 7.
These plots are used to predict how a device will respond to an
applied pulse as described in the supplementary information of
Ref [35].
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Figure 8: CrossSim Training results on the MNIST data set for the TaO,/Ta device. The CDF lookup table are in input into a simulation of learning hardware
training on the MNIST data set. The example network used has a single hidden layer and training as based on backpropagation of error algorithm. Training
accuracies in the 70-80 % range were observed with 10 ns and 100 ns preforming slightly better than training using 1 ps pulses.
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Figure 9. 100 ns PW cycling data for SiO -Cu conductive bridge devices, TaO filamentary devices, and bipolar chalcogenide devices. Gray regions indicate
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area trimmed out (cycles 1 to 66) to create a reduced dataset for CrossSim, full cycling is extracted from all 100 cycles. The graphs on the right are an

expanded view of a few cycles.

The color indicates the probability that AG is less than or equal
to the value on the y-axis for a given conductance on the x-
axis. Figure 8 illustrates the results of training using the device
data in CrossSim on the MNIST, UCI Small images, and File
Types dataset. Results are given in Figure 8. Training
accuracies in Figure 8 are taken from the highest accuracy
during 40 training epochs where each epoch is one forward
pass and one backward pass of all training examples.

V. COMPARISON BETWEEN MULTIPLE DEVICES

An overarching goal of this work is to determine the
optimal ReRAM cells to use in a neural network algorithm
accelerator. Hence, we have assessed both our baseline TaOx-
Ta ReRAM devices against both SiO,-Cu conducting bridge
and chalcogenide resistive switching devices. Before
discussing the difference between devices, it should be noted
that the baseline TaOx-Ta devices are fabricated in Sandia’s
production fabrication facility, whereas the SiO,-Cu and
chalcogenide devices were fabricated in an academic research
environment. Therefore, the differences we observe may
attributed to manufacturing process optimization in addition to
fundamental materials differences.

In Figure 9, the TaO«-Ta cycling data is compared against
bipolar chalcogenide devices and SiO,-Cu conductive bridge
devices. Each device material and structure tested was unique,
and could not support 10 ns pulse widths. Hence, the amplitude
of the 100 ns seconds pulses was selected to be the minimum
for which a consistent conductance change in the correct
conductance change direction was observed for SET and
RESET. The minimum pulse amplitude was selected as higher
amplitudes were found to negatively impact endurance, and the
device must survive a minimum of 20,000 pulses to complete
this test. For the chalcogenide device SET was +0.8 V and -
0.8V for RESET. For the SiO,-Cu device the SET voltage was

+1.4 V and RESET was -1.6 V. For the TaOx-Ta device the
dataset was the same as used in the remainder of this work:
SET voltage was +1 V and RESET was -1 V.

The Ag/chalcogenide and SiO,-Cu CBRAM devices
showed significant cycle-to-cycle variation in conductance
ranges (Figure 9) which affected the accuracy considerably as
illustrated in Figure 10. The device electrodes geometries are
significantly different: the TaO,-Ta devices have RF ground
signal electrodes, the SiO,-Cu devices are in a crossbar, and the
Ag/chalcogenide devices are individually packaged devices.
These electrode configurations can significantly change the
shape and peak amplitude of the voltage pulse that each device
receives, having a large effect on image recognition accuracy
after training.

As shown in Figure 10(a) the TaOx-Ta devices trained to
the highest accuracy while the chalcogenide device obtained
the lowest accuracy. In order to investigate the cause of this,
we show the accuracy that results from using data from only
the last 34 cycles in Figure 10(b). Using fewer cycles reduces
the noise as the data is more uniform in a smaller range.
Interestingly, this actually made the SiO,-Cu and chalcogenide
devices perform worse. This can be attributed to the average
write nonlinearity being worse in the smaller cycle range.

Additional insight into the impact of write noise vs. write
nonlinearity is gained by separately studying these effects. The
CrossSim system allows us to deactivate each model
individually. The effects on accuracy due to the individual
elements for each device type are plotted in Figure 11. The
“linearized” curves assume that updates are performed serially
and are calibrated based on the starting conductance. In this
case, change in conductance is constant with starting
conductance. This ensures the average update is correct and
only write noise is present. The “no noise” curves assume that



the updates are nonlinear but have no write noise added in the
model.
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Figure 10: Comparison of recognition accuracy for SiO -Cu conductive
2
bridge devices, TaO filamentary devices, and bipolar chalcogenide

devices compared with ideal numeric accuracy. Devices trained and tested
on the MNIST large images data set with 100 ns pulses. (a) Training
accuracy for all three devices when the full cycling data is considered. (b)

In Figure 11, we see that for all the devices, eliminating the

eliminating the write noise has a smaller impact. In the case of
the chalcogenide device, the write noise is great enough that
eliminating it has an impact significantly improves the
accuracy. However, the TaO-Ta devices have sufficiently low
write noise that that nonlinearity dominates. As mentioned
previously, the TaOx-Ta devices have the most mature
manufacturing processes. Hence, if each device has a very
mature manufacturing process, it is reasonable to include that
nonlinearity would still limit each of these to accuracy levels
similar to the maximum possible for the Ta-TaOx baseline
devices. This is consistent with the findings of Burr et al for
Phase Change RAM (PCRAM) devices that were fabricated
commercially[9]. Hence, we are exploring devices which
operate by other physical mechanisms (nonfilamentary
switching) such as the lithium ion synaptic transistor for analog
computation (LISTA) device[36].

VI. CONCLUSION

We have presented a method of measuring and modeling
the accuracy for a network using analog ReRAM conductance
as synaptic weight elements. Analog behavior of bipolar
filamentary resistive switching devices based on three material
systems was measured, and accuracy was modeled using
CrossSim. The TaOx-Ta ReRAM devices demonstrate the best
algorithm accuracy after training compared to the Cu-SiO2 and
Ag/chalcogenide and CBRAM. Further examination of the
source of error shows that the accuracy degradation in the
CBRAM devices is due to write noise. The TaOx ReRAM cell
has the lowest write stochasticity, which is likely due to the
more mature manufacturing process. All three devices show
significant write nonlinearity, which is inherent in a thermal-
feedback based switching mechanism of ReRAM and
CBRAM. This suggests that resistive switches based on a
thermal feedback mechanism may have a fundamental
accuracy limitation due to the highly nonlinear dependence of
state change on current state. In the particular case of training
the MNIST dataset with the backpropagation algorithm, the
limit is consistently in the mid-eightieth percentile. This is
consistent with the findings of Burr et al for phase change
memory [9]. Hence, physical resistance change mechanisms
not based on thermal-feedback (inherent in filamentary
systems) may be required in order to achieve high training
accuracies.

write nonlinearity greatly improves the accuracy, while ACKNOWLEDGMENT
Chalcogenide TaO,-Ta Si0,-Cu
100 100 X 100 2
i m ol
80 N P WU,
_ - S e I
g s 70 o
> > 60 I
g 3 12 ool
b 12 O 12 9 :
30¥ —— Numeric . 30F —— Numeric - 30} —— Numeric -
2] — Linearized h 2g | — Linearized ] og | — Linearized h
10 No Noise 10 No Noise 10 No Noise h
0 — No Manipulation ] 0 " i—— No Manipulation ’ o L —— No Manipulation ‘

10 15 20 25 30 35 40 0 5
Training Epoch (#)

g 5

10 15 20 25 30 35 40 5
Training Epoch ()

0 15 20 25 306 35 40
Training Epoch (#)

Figure 11: Examination of the effect of device linearity and noise on training accuracy for the three devices in this study. Data extracted from the reduced
dataset (cycles 67 to 100) of the 100 ns dataset for each device. Training without data manipulation is shown in red. Training with a dataset where the effect
of noise is removed is shown in green, and training with a dataset without the effect of write nonlinearity is shown in blue, the ideal numeric training
accuracy is shown in black.



The authors gratefully acknowledge financial support from
Sandia National Laboratories’ Laboratory Directed Research
and Development Program, and specifically the Hardware
Acceleration of Adaptive Neural Algorithms (HAANA) Grand
Challenge Project. Sandia National Laboratories is a
multimission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC., a
wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

REFERENCES

[1] Hasan R, Taha T M, Yakopcic C and Mountain D J
2016 High throughput neural network based
embedded streaming multicore processors 2016 [EEE
International Conference on Rebooting Computing
(ICRC) 1-8

[2] Kadetotad D, Xu Z, Mohanty A, Chen P-Y, Lin B,
YeJ, Vrudhula S, Yu S, Cao Y and Seo J-s 2015
Parallel Architecture with resistive crosspoint array
for dictionary learning acceleration /EEE Journal on
Emerging and Selected Topics in Circuits and
Systems 5 194-204

[3] Chi P, Li S, Xu C, Zhang T, Zhao J, Liu Y, Wang Y
and Xie Y 2016 PRIME: a novel processing-in-
memory architecture for neural network computation
in ReRAM-based main memory SIGARCH Comput.
Archit. News 44 27-39

[4] Merolla P A, Arthur J V, Alvarez-Icaza R, Cassidy A
S, Sawada J, Akopyan F, Jackson B L, Imam N, Guo
C and Nakamura Y 2014 A million spiking-neuron
integrated circuit with a scalable communication
network and interface Science 345 668-73

[5] Khan M M, Lester D R, Plana L A, Rast A, Jin X,
Painkras E and Furber S B 2008 SpiNNaker:
mapping neural networks onto a massively-parallel
chip multiprocessor 2008 IEEE International Joint
Conference on Neural Networks 2849-56

[6] Serrano-Gotarredona R, Oster M, Lichtsteiner P,
Linares-Barranco A, Paz-Vicente R, Gomez-
Rodriguez F, Camufas-Mesa L, Berner R, Rivas-
Pérez M and Delbruck T 2009 CAVIAR: A 45k
neuron, SM synapse, 12G connects/s AER hardware
sensory—processing—learning—actuating system for
high-speed visual object recognition and tracking
IEEE Transactions on Neural Networks 20 1417-38

[7] Schemmel J, Briiderle D, Griibl A, Hock M, Meier K
and Millner S 2010 A wafer-scale neuromorphic
hardware system for large-scale neural modeling
Proceedings of 2010 IEEE International Symposium
on Circuits and Systems 1947-50

[8] Hu M, Strachan J P, Li Z, Grafals E M, Davila N,
Graves C, Lam S, Ge N, Williams R S and Yang J
2016 Dot-product engine for neuromorphic
computing: programming 1T1M crossbar to

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

accelerate matrix-vector multiplication Proceedings
of DAC 53

Burr G W, Shelby R M, Sidler S, Di Nolfo C, Jang J,
Boybat I, Shenoy R S, Narayanan P, Virwani K and
Giacometti E U 2015 Experimental demonstration
and tolerancing of a large-scale neural network
(165,000 Synapses) using phase-change memory as
the synaptic weight element /EEE Transactions on
Electron Devices 62 3498-507

Gao L, Wang I-T, Chen P-Y, Vrudhula S, Seo J-s,
Cao Y, Hou T-H and Yu S 2015 Fully parallel
write/read in resistive synaptic array for accelerating
on-chip learning Nanotechnology 26 455204
Agarwal S, Quach T-T, Parekh O, Hsia A H,
DeBenedictis E P, James C D, Marinella M J and
Aimone J B 2015 Energy scaling advantages of
resistive memory crossbar based computation and its
application to sparse coding Frontiers in
neuroscience 9 484

Agarwal S, Plimpton S J, Hughart D R, Hsia A H,
Richter I, Cox J A, James C D and Marinella M J
2016 Resistive memory device requirements for a
neural algorithm accelerator 2016 International Joint
Conference on Neural Networks (IJCNN) 929-38
Dodge R K, Ottogalli F, Buda E and Ferraro M 2006
Phase change memory bits reset through a series of
pulses of increasing amplitude. U.S. Patent No.
7,099,180.

Park S, Sheri A, Kim J, Noh J, Jang J, Jeon M, Lee
B, Lee B, Lee B and Hwang H 2013 Neuromorphic
speech systems using advanced ReRAM-based
synapse IEDM Tech Dig 25 1-25.6

Alibart F, Gao L, Hoskins B D and Strukov D B
2012 High precision tuning of state for memristive
devices by adaptable variation-tolerant algorithm
Nanotechnology 23 075201

Yu S, Wu'Y, Jeyasingh R, Kuzum D and Wong H-S
P 2011 An electronic synapse device based on metal
oxide resistive switching memory for neuromorphic
computation /EEE Transactions on Electron Devices
58 2729-37

Goux L, Fantini A, Kar G, Chen Y-Y, Jossart N,
Degraeve R, Clima S, Govoreanu B, Lorenzo G and
Pourtois G 2012 Ultralow sub-500 nA operating
current high-performance TiN Al,O3; HfO, Hf TiN
bipolar RRAM achieved through understanding-
based stack-engineering: IEEE 159-60

Sidler S, Boybat I, Shelby R M, Narayanan P, Jang J,
Fumarola A, Moon K, Leblebici Y, Hwang H and
Burr G W 2016 Large-scale neural networks
implemented with Non-Volatile Memory as the
synaptic weight element: Impact of conductance
response 2016 46th European Solid-State Device
Research Conference (ESSDERC) 440-3

Jha R 2013 Analog and Digital Switching
Characteristics of Transition Metal Oxide Based
Resistive Random Access Memory (ReRAM) Devices



[20]

(21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

[31]

[32]

(33]

Jackson B L, Rajendran B, Corrado G S, Breitwisch [34]
M, Burr G W, Cheek R, Gopalakrishnan K, Raoux S,
Rettner C T and Padilla A 2013 Nanoscale electronic
synapses using phase change devices ACM Journal
on Emerging Technologies in Computing Systems
(JETC)9 12 [35]
Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder
P and Lu W 2010 Nanoscale memristor device as
synapse in neuromorphic systems Nano letters 10
1297-301

Wang Z, Yin M, Zhang T, Cai Y, Wang Y, Yang Y
and Huang R 2016 Engineering incremental resistive
switching in TaOx based memristors for brain-
inspired computing Nanoscale 8 14015-22

Prezioso M, Merrikh-Bayat F, Hoskins B, Adam G,
Likharev K K and Strukov D B 2015 Training and
operation of an integrated neuromorphic network
based on metal-oxide memristors Nature 521 61-4
Mickel P R, Lohn A J, Choi B J, Yang J J, Zhang M-
X, Marinella M J, James C D and Williams R S 2013
A physical model of switching dynamics in tantalum
oxide memristive devices Applied Physics Letters
102 223502

Wenhao C, Runchen F, Mehmet B B, Weijie Y,
Yago G-V, Hugh J B and Michael N K 2016 A
CMOS-compatible electronic synapse device based
on Cu/SiO»/W programmable metallization cells
Nanotechnology 27 255202

Oblea A S, Timilsina A, Moore D and Campbell K A
2010 Silver chalcogenide based memristor devices
The 2010 International Joint Conference on Neural
Networks (IJCNN) 1-3

Stevens J E, Lohn A J, Decker S A, Doyle B L,
Mickel P R and Marinella M J 2014 Reactive
sputtering of substoichiometric Ta,O for resistive
memory applications Journal of Vacuum Science &
Technology A: Vacuum, Surfaces, and Films 32
021501

O'Dwyer J J 1973 The theory of electrical conduction
and breakdown in solid dielectrics Oxford: Clarendon
Press

Mickel P R, Lohn A J, James C D and Marinella M J
2014 Isothermal switching and detailed filament
evolution in memristive systems Advanced Materials
26 4486-90

Jeong Y, Kim S and Lu W D 2015 Utilizing multiple
state variables to improve the dynamic range of
analog switching in a memristor Applied Physics
Letters 107 173105

Lohn A J, Mickel P R and Marinella M J 2014
Modeling of filamentary resistive memory by
concentric cylinders with variable conductivity
Applied Physics Letters 105 183511

Agarwal S 2017 CrossSim http.//cross-
sim.sandia.gov

LeCun Y, Cortes C and Burges C J 1998 The MNIST
database of handwritten digits.

Fuller E J, Gabaly F E, Léonard F, Agarwal S,
Plimpton S J, Jacobs-Gedrim R B, James C D,
Marinella M J and Talin A A 2017 Li-Ion Synaptic
Transistor for Low Power Analog Computing
Advanced Materials 29 1604310-n/a

Fuller E J, Gabaly F E, Léonard F, Agarwal S,
Plimpton S J, Jacobs-Gedrim R B, James C D,
Marinella M J and Talin A A 2017 Li-Ion Synaptic
Transistor for Low Power Analog Computing
Advanced Materials 29 1604310



