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Abstract— Resistive memory (ReRAM) shows promise for use 
as an analog synapse element in energy-efficient neural network 
algorithm accelerators. A particularly important application is 
the training of neural networks, as this is the most 
computationally-intensive procedure in using a neural algorithm. 
However, training a network with analog ReRAM synapses can 
significantly reduce the accuracy at the algorithm level. In order 
to assess this degradation, analog properties of ReRAM devices 
were measured and hand-written digit recognition accuracy was 
modeled for the training using backpropagation. Bipolar 
filamentary devices utilizing three material systems were 
measured and compared: one oxygen vacancy system, Ta-TaOx, 
and two conducting metallization systems, Cu-SiO2, and 
Ag/chalcogenide. Analog properties and conductance ranges of 
the devices are optimized by measuring the response to varying 
voltage pulse characteristics. Key analog device properties which 
degrade the accuracy are update linearity and write noise. Write 
noise may improve as a function of device manufacturing 
maturity, but write nonlinearity appears relatively consistent 
among the different device material systems and is found to be 
the most significant factor affecting accuracy. This suggests that 
new materials and/or fundamentally different resistive switching 
mechanisms may be required to improve device linearity and 
achieve higher algorithm training accuracy.
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I. INTRODUCTION 

A special purpose neural algorithm accelerator based on 
resistive memory weights shows the potential to achieve orders 

of magnitude gain in energy efficiency over advanced CMOS-
ASIC accelerators and traditional CPU and GPU hardware [1-
3]. Several large scale neuromorphic hardware accelerators 
have been implemented recently, including TrueNorth [4], 
SpiNNaker [5], Caviar [6], and FACETs [7]. Efforts to 
capitalize on the energy advantages of incorporating resistive 
or phase change memory into a fully parallel synaptic array or 
dot product engine are ongoing [8-10]. The energy scaling 
advantages of a fully parallel synaptic array would be achieved 
not only by storing data in resistive memory, but also from 
performing computation in resistive memory, rather than 
transferring between a cache and execution unit. For instance, a 
vector matrix multiply (VMM), one of the most 
computationally intensive operations in neuromorphic 
algorithms, can be electronically calculated on a crossbar in a 
single operation as shown in Figure 1.

Through Kirchkoff’s laws, the applied voltages, , are 

multiplied by the conductances to give 

currents .  Computation on a crossbar array 
allows the entire vector matrix multiply to be completed in 
parallel, as compared to the many serial operations necessary 
that would be needed to access a standard SRAM cache array. 
In addition to a parallel read, the crossbar can be updated in 
parallel by the outer product of two vectors by simultaneously 
applying pulses to the rows and columns, accelerating all the 
key matrix operations required for a neural network 
algorithm[11].
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Figure 1: an electronic vector matrix multiply may be implemented on a 
crossbar given resistors with programmable weights. By applying bias to 
the left side of the crossbar, Kirkoff’s laws give the sum of the weights in 
the column of the crossbar multiplied by the applied voltage amplitude.

Figure 2: Standard I/V characterizations of TaO
x
/Ta devices. (a) shows the pre-forming I/V characteristics of the TiN/TaO

x
/Ta/TiN stack, 

which is nonohmic and asymmetric owing to the nonequal Shottkey barriers at the Ta and TiN interfaces. (b) shows the soft breakdown process 
known as electroforming when a bias of up to 4 volts is applied to the top electrode of the device. (c) The device can be RESET to a high 
resistance state after electroforming using negative bias, or SET to a low resistance state by applying positive bias.

The resistive memory device requirements for 
implementing an electronic vector matrix multiply on a 
crossbar depend on attributes including conductance range, 
write variability, write linearity, and read noise [12]. It is 
possible to linearize a device with a nonlinear response and 
reduce or eliminate write variability by applying pulses of 
varying amplitudes/pulse widths depending on the present 
device resistance [13-16]. This strategy necessitates addressing 
individual resistive memory elements, reading their 
conductance, and applying an update based on that resistance. 
Unfortunately, this eliminates the parallelism benefits of 
analog computation [11, 10] as each device is serially written. 
Consequently, we need devices with multiple resistance states 
accessible via symmetric voltage pulses of constant magnitude 
(blind updates). The programming schemes implemented in 
this work have been limited to approaches that are energy/time 
efficient on a very large scale neuromorphic architecture with 
crossbar arrays as large as 1000 x 1000 nodes[12].

Many different material systems and device architectures 
have been previously studied for resistive memory-based 
neuromorphic computing and binary memory applications [17-
23]. Oxygen vacancy transport-based and metal conductive 

bridge-based devices have shown promise, andhere a particular 
device in each category is examined for their respective neural 
network synapse performance. In particular, we will examine a 
CMOS-compatible TaOx-Ta device which operates under a 
vacancy modulated conductive oxygen filament mechanism 
[24], a Cu-SiO2 heterostructure device where Cu filamentary 
diffusion into the SiO2 layer modulates the conductivity of the 
device [25], and a commercially available chalcogenide device 
[26]. However, the different architectures, electrode designs, 
and device geometries limit the comparison to a discussion of 
the performance of a fully fabricated device, rather than 
material system. The neural network synapse performance of 
these devices is compared using our neural network algorithm 
simulator called CrossSim (http://cross-sim.sandia.gov).

II. EXPERIMENTAL DETAILS

TaOx based devices were fabricated in Sandia’s CMOS 
production MESAFab. The TiN-TaOx-Ta-TiN switching stack 
is deposited using reactive sputtering, using a feedback 
technique described in [27] . These devices consist of a TiN-
TaOx-Ta-TiN stack in a radio frequency ground signal ground 
electrode and standard crossbar configurations. The reduced 
TaOx layer was 10 nm thick and the Ta layer was 50 nm thick, 
and the active region had 1.0 µm X 1.0 µm lateral dimensions. 

All measurements were made on a Cascade Microtech 
manual probe station with an Agilent B1500A Semiconductor 
Parameter Analyzer mainframe equipped with a B1530 
Waveform Generator Fast Measurement Unit. GGB Industries 
Picoprobe model 40A-GS-250 were employed for ground 
signal probe configurations. Pulse waveforms were captured on 
an Agilent CX3300 Device Current Waveform Analyzer. 

Analog operation of ReRAM requires precise control of 
voltage pulse timing. Hence, we used short voltage pulses to 
characterize analog behavior. It should be noted that standard 
static current-voltage (I-V) sweeps on a Semiconductor 
Parameter Analyzer (SPA) are not controlled in time. The SPA 
spends an arbitrary amount of time sampling at each voltage 
level while attempting to reduce the noise of the current 
measurement. This measurement is designed to extract the DC 
parameters of a MOSFET, and is not sufficient to fully 
characterize the dynamic analog properties of ReRAM. 

In order to conduct high speed pulsed operations which are 



equivalent to what will be implemented on a digital controller 
designed for a neural network algorithm accelerator, a probe 
station test setup was developed which can achieve 10 ns rise 
times during read and write. To achieve high frequency pulsed 
operation on a probe station, RF waveguide electrodes, and 
ground-signal type probes were employed to maintain pulse 
fidelity at the device. To measure the analog response of a 
resistive memory device, the following programming scheme 
was used. A short write pulse with nominal 10 ns rise/fall times 
and 10 ns pulse width, with an amplitude of +1 V (partial SET 
operation) or -1 V (partial RESET operation) is applied. 
Following each write pulse is a read pulse of 1 ms rise/fall 
times, 1 ms pulse width, and +100 mV amplitude. Current is 
read during the middle of this pulse and conductivity is 
extracted using Ohm’s law. The total cycle time is therefore 
longer than 3 ms, ensuring that there is more than adequate 
time for thermal effects to dissipate between write pulses. The 
dissipation of heat from this system may be on the order of 
nanoseconds, however, so this extended cycle time could be 
significantly reduced if required.

III. CHARACTERIZATION OF ANALOG DEVICE PROPERTIES 

The schematic of the TaOx-Ta device used in this study is 
shown in the inset of Figure 2(a). A low voltage I-V sweep of 
the device indicates nonohmic electrical contacts due to the 
uneven Schottky barriers on the TiN and Ta sides of the TaOx

layer as shown in Figure 2(a). The conventional method for 
switching a bipolar resistive memory device starts with 
applying a positive bias sweep to the side of the device with 
the tantalum active electrode. This bias attracts negatively 
charged oxygen vacancies towards the Ta metal. At sufficiently 
high bias, the TaOx layer goes through a soft breakdown 
process[28] known as forming, in which the resistance of the 
layer is reduced by many orders of magnitude as is shown in 
Figure 2(b) where the device was swept from 0-4 V with a 50 
µA compliance. Following the forming step, a negative bias 
applied to the top electrode may raise the resistance of the 
TaOx layer in a process known as RESET and a positive bias 
decreases the resistance of the layer in a process known as 
SET. The classic memristor pinched hysteresis loop is evident 
in the SET and RESET processes shown in Figure 2(c).

SET RESET

0 500 1000

3.0x10-4

4.0x10-4

5.0x10-4

6.0x10-4

C
o

n
d

u
c

ta
n

c
e

 (
S

)

1000 1500 2000

3.0x10-4

4.0x10-4

5.0x10-4

6.0x10
-4

C
o

n
d

u
c
ta

n
c
e
 (

S
)

(d) (e) (f)

(a) (b) (c)SET RESET

Figure 3: Fast pulsing setup and SET-RESET results. (a) The fast pulsing setup uses an Keysight B1530A module with Resistance Source Units (RSU)s to 
apply fast pulses and perform pulsed current voltage measurements. Using a ground signal configuration it is possible to achieve write pulses  with pulse 
widths on the order of 10 ns. (b) shows the applied SET pulses, which are nominally 1 V amplitude, 10 ns pulse width and 10 nanosecond edge time. (c) 
shows the applied RESET pulses, which are nominally -1 V amplitude, 10 ns pulse width and 10 nanosecond edge time. (d) shows the analog device 
operation scheme, where a short, ±1 V amplitude write pulse is followed by a long + 100 mV read pulse. Current is measured during the read pulse, to 
observe the change in conductance caused by the write pulse. (e) Application of 1,000 positive SET pulses results in a gradual increase in device 
conductance. (f) Application of 1,000 negative RESET pulses results in a gradual increase in device conductance. 



An analog programming scheme using nanosecond pulses 
on the TaOx-Ta devices is shown in Figure 3(d). A ±1 V write 
pulse with pulsewidth in the nanosecond time scale is applied 
followed by a 100 mV read pulse. This cycle is repeated 1000 
times for a full SET or RESET operation. The change in 
conductance on repeated pulsing is shown in Figure 3(e) and 
3(f) for 10 ns pulses, indicating a gradual change of device 

conductance under repetition of SET and RESET write pulses, 
indicating many analog resistance states may be achieved in 
these devices. However, the response of the devices to repeated 
pulsing is nonlinear and asymmetric, a characteristic that will 
negatively impact neural algorithm performance accuracy. 3(b) 
and 3(c) show the measured write pulses, indicating a 140 mV 
overshoot for SET pulses and a -180 mV overshoot for RESET 

Figure 5: (a) Ultrafast pulses (10 ns or 100 ns) prevent TaOx/Ta device temperature from fully reaching the steady state temperature. The lower temperature 
results in a smaller diameter filament, with less permanent vacancies. (b) Longer voltage pulses allow for the thermal buildup to reach a steady state, the 
higher temperature results in greater ion mobility allowing the filament radius to increase and more permanent vacancies to form, explaining the observed
increase in conductivity in both the LRS and HRS state with longer pulses.



pulses, the measured rise times/fall times and amplitude are 

also shown.

Repeated cycling under varying pulse widths is shown in 
Figure 4. For the first 100 cycles (pulses 1-20,000) a 10 ns 
write pulse width was used, for the second 100 cycles (pulses 
20,001-40,000) a write pulse width of 100 ns was used, and for 
the third 100 cycles (pulses 40,001-60,000) a 1 µs write pulse 
width was used. Low cycling is variability is observed, 
especially for 10 ns pulse widths, but some conductance drift is 
observed for 100 ns and 1 µs pulse widths. A large jump in 
conductance range is observed with increasing pulse widths. 

This conductance range shift is attributed to a widening of 
the cylindrical filament, or change in the filament conductivity 
due to greater depletion of oxygen and the formation of 
permanent vacancy locations as shown in Figure 5[24, 29]. 
Interestingly, this increase in conductivity occurs during longer 
pulses, but not during a pulse train with an interval between 
each pulse with the same total energy as the longer pulse. 
Therefore, the conductivity change effect observed here cannot 
be a function of total electrical energy through the device. This 
effect can be a result of the device temperature not reaching a 
steady state during ultra-fast (10 ns or 100 ns) pulsing, and the 
duty cycle is sufficiently low as allow for thermal relaxation. 

Jeong et al. found the time to reach steady state temperature 
was ~500 ns for a similar device [30]. Since the pulse timings 

used in Figure 4 are below the thermal time constant, and the 
duty cycle is longer than the thermal time constant, the 
conductance effect may be ascribed to the effect shown in 
Figure 5.

To further examine the effects of changing pulse width, 
individual cycles were examined as shown in Figure 6.  Figure 
6(a) shows that the conductivity range increases with 
increasing pulse width. Lowering the conductance is important 
for reducing the required programming energy and enabling 
the parallel programming of large device arrays.  Figure 6(b) 
shows that shorter pulses have a larger Gon/Goff ratio. To 
examine linearity as a function of pulse width, the conductance 
data from Figure 6(c) was normalized to have the same Gmax

and Gmin values. This shows that the 10 and 100 ns pulses have 
nearly identical nonlinearities.  The 1 µs pulses have a more 
linear reset write nonlinearity where the conductance drop is 
not as abrupt.  This could be due to a change in the switching 
mechanism at high conductance from changing the length of a 
filament to changing the thickness or number of filaments [32].

IV. MODELING BASELINE TANTULUM OXIDE RERAM CELLS IN 

AN ANALOG NEURAL TRAINING ACCELERATOR

Figure 6: Effect of pulse width and edge time on analog TaOx/Ta device performance. (a) SET-RESET analog operation of device using pulses with 10 ns, 
100 ns and 1 us pulse widths and edge times. The conductance range is shown to increase with pulse width and edge time. (b) The conductance change in 
percent on the vertical axis of this graph is taken by diving the conductance values in the first plot by the minimum conductance value. The conductance 
change increases for shorter pulse widths and edge times. (c) Normalized conductance change in percentage showing an insignificant difference in linearity 
with changing pulse width and edge time.



In this architecture, the ReRAM devices perform key 
kernels of common algorithms in parallel on an analog 
crossbar, as described above (Figure 1) [9]. While significant 
latency and energy efficiency gains are possible with the 
ReRAM accelerator, the analog operation has a lower accuracy 
than when executed with a standard double-precision floating 
point computing system. To quantify this accuracy trade-off, 
we have developed a CrossSim code suite simulate 
(http://cross-sim.sandia.gov) executing a neural training 
algorithm with imperfect devices [12, 33]. Specifically, an 
MNIST dataset was trained on a network with one hidden 
layer, of dimensions (784x300x10) [34]. This training set is 
composed of 60,000 28x28 pixel images of the handwritten 

single digit numbers “0” through “9”.  When using a standard 
double-precision CPU or GPU to train, accuracy of 98% is 
possible. In order to simulate the response of a device in a 
neuromorphic algorithm, we create of a lookup table which 
contains probabilistic change in conductance at a given 

conductance ( was extracted from the cycling data for 
a given pulse width. This data is illustrated graphically in the 
cumulative distribution function (CDF) graphs in Figure 7.  
These plots are used to predict how a device will respond to an 
applied pulse as described in the supplementary information of 
Ref [35].

Figure 7: Cumulative distribution function (CDF) with repeated cycling on TaOx/Ta device. Data from repeated cycling is collected in a cumulative 
distribution function lookup table for input into CrossSim. Color maps of CDF indicate given a current conductance state, the probability that the next update 
will increase conductance by a given value.

Figure 8: CrossSim Training results on the MNIST data set for the TaOx/Ta device. The CDF lookup table are in input into a simulation of learning hardware 
training on the MNIST data set. The example network used has a single hidden layer and training as based on backpropagation of error algorithm. Training 
accuracies in the 70-80 % range were observed with 10 ns and 100 ns preforming slightly better than training using 1 µs pulses.



The color indicates the probability that ΔG is less than or equal 
to the value on the y-axis for a given conductance on the x-
axis. Figure 8 illustrates the results of training using the device 
data in CrossSim on the MNIST, UCI Small images, and File 
Types dataset. Results are given in Figure 8. Training 
accuracies in Figure 8 are taken from the highest accuracy 
during 40 training epochs where each epoch is one forward 
pass and one backward pass of all training examples. 

V. COMPARISON BETWEEN MULTIPLE DEVICES

An overarching goal of this work is to determine the 
optimal ReRAM cells to use in a neural network algorithm 
accelerator. Hence, we have assessed both our baseline TaOx-
Ta ReRAM devices against both SiO2-Cu conducting bridge 
and chalcogenide resistive switching devices. Before 
discussing the difference between devices, it should be noted 
that the baseline TaOx-Ta devices are fabricated in Sandia’s 
production fabrication facility, whereas the SiO2-Cu and 
chalcogenide devices were fabricated in an academic research 
environment. Therefore, the differences we observe may 
attributed to manufacturing process optimization in addition to 
fundamental materials differences. 

In Figure 9, the TaOx-Ta cycling data is compared against 
bipolar chalcogenide devices and SiO2-Cu conductive bridge 
devices. Each device material and structure tested was unique, 
and could not support 10 ns pulse widths. Hence, the amplitude 
of the 100 ns seconds pulses was selected to be the minimum 
for which a consistent conductance change in the correct 
conductance change direction was observed for SET and 
RESET. The minimum pulse amplitude was selected as higher 
amplitudes were found to negatively impact endurance, and the 
device must survive a minimum of 20,000 pulses to complete 
this test. For the chalcogenide device SET was +0.8 V and -
0.8V for RESET. For the SiO2-Cu device the SET voltage was 

+1.4 V and RESET was -1.6 V. For the TaOx-Ta device the 
dataset was the same as used in the remainder of this work: 
SET voltage was +1 V and RESET was -1 V.

The Ag/chalcogenide and SiO2-Cu CBRAM devices 
showed significant cycle-to-cycle variation in conductance 
ranges (Figure 9) which affected the accuracy considerably as 
illustrated in Figure 10. The device electrodes geometries are 
significantly different: the TaOx-Ta devices have RF ground 
signal electrodes, the SiO2-Cu devices are in a crossbar, and the 
Ag/chalcogenide devices are individually packaged devices. 
These electrode configurations can significantly change the 
shape and peak amplitude of the voltage pulse that each device 
receives, having a large effect on image recognition accuracy 
after training.

As shown in Figure 10(a) the TaOx-Ta devices trained to 
the highest accuracy while the chalcogenide device obtained 
the lowest accuracy.  In order to investigate the cause of this,
we show the accuracy that results from using data from only 
the last 34 cycles in Figure 10(b).  Using fewer cycles reduces 
the noise as the data is more uniform in a smaller range.  
Interestingly, this actually made the SiO2-Cu and chalcogenide 
devices perform worse.  This can be attributed to the average 
write nonlinearity being worse in the smaller cycle range.

Additional insight into the impact of write noise vs. write 
nonlinearity is gained by separately studying these effects. The 
CrossSim system allows us to deactivate each model 
individually. The effects on accuracy due to the individual 
elements for each device type are plotted in Figure 11. The 
“linearized” curves assume that updates are performed serially 
and are calibrated based on the starting conductance. In this 
case, change in conductance is constant with starting 
conductance. This ensures the average update is correct and 
only write noise is present.  The “no noise” curves assume that 

Figure 9. 100 ns PW cycling data for SiO
2
-Cu conductive bridge devices, TaO

x 
filamentary devices, and bipolar chalcogenide devices. Gray regions indicate 

area trimmed out (cycles 1 to 66) to create a reduced dataset for CrossSim, full cycling is extracted from all 100 cycles. The graphs on the right are an 
expanded view of a few cycles.



the updates are nonlinear but have no write noise added in the 
model.

In Figure 11, we see that for all the devices, eliminating the 
write nonlinearity greatly improves the accuracy, while 

eliminating the write noise has a smaller impact.  In the case of 
the chalcogenide device, the write noise is great enough that 
eliminating it has an impact significantly improves the 
accuracy. However, the TaOx-Ta devices have sufficiently low 
write noise that that nonlinearity dominates. As mentioned 
previously, the TaOx-Ta devices have the most mature 
manufacturing processes. Hence, if each device has a very 
mature manufacturing process, it is reasonable to include that 
nonlinearity would still limit each of these to accuracy levels 
similar to the maximum possible for the Ta-TaOx baseline 
devices. This is consistent with the findings of Burr et al for 
Phase Change RAM (PCRAM) devices that were fabricated 
commercially[9]. Hence, we are exploring devices which 
operate by other physical mechanisms (nonfilamentary 
switching) such as the lithium ion synaptic transistor for analog 
computation (LISTA) device[36]. 

VI. CONCLUSION

We have presented a method of measuring and modeling 
the accuracy for a network using analog ReRAM conductance 
as synaptic weight elements. Analog behavior of bipolar 
filamentary resistive switching devices based on three material 
systems was measured, and accuracy was modeled using 
CrossSim. The TaOx-Ta ReRAM devices demonstrate the best 
algorithm accuracy after training compared to the Cu-SiO2 and 
Ag/chalcogenide and CBRAM. Further examination of the 
source of error shows that the accuracy degradation in the 
CBRAM devices is due to write noise. The TaOx ReRAM cell 
has the lowest write stochasticity, which is likely due to the 
more mature manufacturing process. All three devices show 
significant write nonlinearity, which is inherent in a thermal-
feedback based switching mechanism of ReRAM and 
CBRAM. This suggests that resistive switches based on a 
thermal feedback mechanism may have a fundamental 
accuracy limitation due to the highly nonlinear dependence of 
state change on current state. In the particular case of training 
the MNIST dataset with the backpropagation algorithm, the 
limit is consistently in the mid-eightieth percentile.  This is 
consistent with the findings of Burr et al for phase change 
memory [9]. Hence, physical resistance change mechanisms 
not based on thermal-feedback (inherent in filamentary 
systems) may be required in order to achieve high training 
accuracies. 
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