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Introduction
Recent work at Sandia National Laboratories has included photonic processes into a multi-dimensional,
fully kinetic low-temperature plasma tool1. This method relies on an approach that discretely models
photons as particles in the simulation domain2. This specific implementation allows for the simulation
of emission spectra from a non-equilibrium excited state density distribution generated by electrical
discharge and capture effects that are not easily modelled with other approaches, such as self-
absorption. Time-resolved emission spectra from a pulsed, parallel plate helium discharge was
captured experimentally and compared against a one-dimensional simulated emission spectrum under
similar conditions (p = 75 torr). The results demonstrate the transient, non-equilibrium behaviour of
the plasma even under uniform field conditions and show good agreement between simulated and
experimental behaviour.
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• Constructed a 1D discharge system in
helium gas at a pressure of 75 torr.
Electrodes are 1” in diameter. A mercury
UV lamp was used to illuminate the
electrodes.

• Voltage is measured with a resistive
divider and V-dot probe. Current is
measured with a differential configuration
of Pearson probes.

• An optical fiber couples emission from the
plasma to a spectrograph and fast-gated
ICCD.

• A pressure of 75 torr was used as the
discharge imaged using fast-gated visible
imaging indicated a more 1D-like
discharge than at a pressureof 30 torr.

Variation	in	simulated	conditions
• Experimental jitter requires that timing of spectra comparisons between simulation

and experiment be controlled through comparison of discharge currents.
• It has been found that variation in a number of parameters affects the simulated

discharge current.
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• A 1D simulation was run with a
voltage input boundary condition
from the measured experimental
waveform.

• Use a discrete photon
implementation that discretely
tracks photons in the simulation
domain. Emission spectra is
generated through collection of
photons in the domain.

• Secondary processes include
photoemission and ion-induced
secondary emission from the
cathode.
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• Helium background gas at a pressure of 75
torr. Cross sections are available in
literature3.
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• Current best-fit parameters are found with a seed electron density of 1016 m-3

within 1 mm of the cathode, 𝛾see = 0.01, and 𝛾ph = 0.1
• Currently investigating the effect of other spatial variations of the initial electron

density.
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Experimental	and	simulated	current	and	voltage	
waveforms,	grey	indicates	the	experimental	

camera	gate
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• Using the best fit parameters for
the current, simulated emission
spectra was generated at the same
time that an experimental spectra
was captured.

• Emission spectra was compared at
approximately t = ~30 ns as this
was when the best agreement
between simulated and
experimental current was
obtained.

• Experimental and simulated
spectra agree well for the
wavelength range between 400
nm and 600 nm.

• The 31P à 21S transition @ ~501
nm is only accurately reprodced by
including self-absorption for the
ground state 31P transition @
~53.7 nm.

• Also shown is the calculation
assuming an equilibrium
distribution of excited states.
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