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e Overview of fracture mechanics based
assessment

 Representative fatigue and fracture data
measured in hydrogen

 Example life calculations based on idealized
cracks
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Fracture mechanics-based assessment of
fatigue and fracture hydrogen pipelines
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ASME B31.12 describes rules for hydrogen pipelines with
reference to ASME BPVC Section VI, Division 3, Article KD-10
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Crack growth through ‘the thickness of the
pipeline driven by hoop stress ‘ Td

+ Initial flaw grows dueto | >
pressure cycle Ia a— t

° DriVing force is ™ Initial flaw

characterized by AK a = depth of crack
AK = AP x fla,t) t = wall thickness
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Fracture mechanics parameters must be

measured in relevant hydrogen environments

Fatigue crack growth

Characterized by da/dN = f(AK) A

Typical fatigue crack growth 2
methodology described in ASTM E647

Fracture resistance
Characterized by K,c or in hydrogen K,

Elastic-plastic methods are generally needed
(ASTM E1820), K, is calculated from these methods

CSA CHMC1 describes requirements for mechanical testing in
high-pressure gaseous hydrogen environments, referencing
standard fatigue and fracture methods (e.g., ASTM)
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Fracture mechanics measurements can be made

In gaseous hydrogen ©
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" Low strength steels tend

: - [ u
to show very similar
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fatigue crack growth rates in gaseous hydrogen
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* A wide variety of
pipeline steels display
nominally the same
fatigue response in
high-pressure gaseous
hydrogen

* The effect of pressure

on fatigue crack growth
rates is modest for high-
pressure hydrogen
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Low pressure hydrogen can have sigmficant

NS

effects on fatigue crack growth rates
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;C:; ¢« Sub-atmospheric pressure of
i(e . hydrogen (<0.1MPa) can have
L substantial effect on fatigue

crack growth rates for carbon
steels

* The effect of pressure on
fatigue is generally within the
scatter for pressure greater
than about 2 MPa

Low partial pressure of hydrogen
has nominally same effect as
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o |pure hydrogen on pipeline steels

Data from : Technical Reference on Hydrogen
Compatibility of Materials, Sandia, 2008
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Fracture resistance in gaseous hydrogen
depends on pressure (unlike fatigue)
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"Consider a typical “high-pressure” pipeline

Material: X70 OD =762 mm
N e 19 = 380 MPa t =159 mm
. YS = 500 MPa P, =7MPa
P, =4 MPa

Semi-elliptical crack

J thickness ()
N\

a/t = crack depth | ‘
a/2c = depth to length ratio

A

natural crack shape: a/2c = 1/2
ASME crack shape: a/2¢ = 1/3

10
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" Stress intensity associated with semi-
elliptical crack in “high-pressure” pipeline

11

Hoop stress at P,,,, = 162 MPa
stress ratio: hoop/TS = 28%

~ Minimum K4
(per ASME B31.12)

a/2c = 1/3

a/2c = 1/2

Driving force on semi-elliptical

crack:
K, . <40 MPam!? | |

Typical pipeline material fracture

resistance: EO
K ;> 75 MPa m'/? (C-

Fracture resistance of pipeline
steels in H2 is greater than driving
force on semi-elliptical cracks
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""Fatigue crack growth relationships for
pipeline materials in gaseous hydrogen
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" Predicted lifetime of pipeline with growing
fatigue cracks Iin hydrogen

Time (years) — 2 cycles/day
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* Pressure cycles between
4 & 7 MPa
« Constant crack shape (a/2c¢)
« Large initial defects
« Fatigue crack growth rates in
pure H2 (at higher pressure)

Using:  _ a +(a’a dN)a=ai AN
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10,000 20,000 30,000 40,000 50,000

Number of cycles

* 10,000s of cycles are needed to
extend the crack significantly

« At 2 cycles per day, decades are
needed to advance the crack
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.Summary '
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Fatigue crack rates of pipeline steels are independent
of hydrogen partial pressure to first order

— H2-NG mixtures have same effect as pure hydrogen

Fracture resistance, on the other hand, is sensitive to
pressure — but remains relatively high at high pressure

For conditions of typical pipeline operating with large

daily pressure swings (P,,.x = 7 MPa; P,,;, = 4 MPa):

— Large defects (30-40% wall thickness) show only modest
fatigue-induced extension on time scale of decade

— Stress intensity factor for through wall cracks can be
less than fracture resistance measured in hydrogen

* Hydrogen does not induce rupture of pipeline
— Details, of course, depend on specifics of geometr



