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Introduction

� ACME is an earth system model intended for scientific research and
also regional prediction (temperature extremes, precipitation, etc).

� Focus is on the water cycle, biogeomchemistry, and the cryosphere.
� Goal: produce a high-resolution earth system model running at 5

SYPD on DOE next-gen computers.
� ACME-HOMME is the atmospheric component of the ACME project.
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Why non-hydrostatic?
� The ACME model is the first Earth system model with variable

resolution in all components.
� Variable resolution allows for regional refinement down into

the nonhydrostatic regime.
� Allows for accurate regional climate modeling and cloud

resolving simulations for process studies.
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Modeling choices

� Nonhydrostatic models must have w as a prognostic variable
Dw/Dt 6= 0.

� We also add geopotential φ = gz as a prognostic variable.
� We use a scaled potential temperature density Θ = c∗p

∂π
∂s θ

rather than the real temperature T since Dθ/Dt ≡ 0.

� Exner pressure: T = θ
(
p
p0

)κ
= θΠ

� Supports hydrostatic or nonhydrostatic simluation runs.
� Uses HOMME operators (2D mimetic-grad, curl, etc)
� This results in a formulation quite similar to that in (Laprise

(1992)) and used in the GEM4.1 nonhydrostatic model.
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Theta-NH model



∂u

∂t
+ (∇s × u + 2Ω)× u +

1

2
∇su2 + ṡ

∂u

∂s
+

c∗pθ(∇sΠ−
∂Π

∂κ
∇sκ) +

(
∂p

∂s
/
∂π

∂s

)
∇sφ = 0

∂w
∂t + u · ∇sw+ ṡ∂w∂s + g− g

(
∂p
∂s /

∂π
∂s

)
= 0

∂φ
∂t + u · ∇sφ+ ṡ∂φ∂s − gw = 0

∂Θ
∂t +∇s · (Θu) + ∂

∂s(Θṡ) = 0

∂
∂t

(
∂π
∂s

)
+∇s · (πsu) + ∂

∂s(πsṡ) = 0

ρ = −∂π∂s /
∂φ
∂s
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Hamiltonian structure

The energy conserved (in the continuum) is given by

H =

∫
A

∫
s

1

2
πsu

2 +
1

2
πsw

2︸ ︷︷ ︸
kinetic energy

+ΘΠ+ φsp+ ptopφtop︸ ︷︷ ︸
internal energy

+ πsφ︸︷︷︸
potential energy

dA ds

In a mass or pressure based vertical coordinate s in
non-hydrostatic mode this energy is actually the Hamiltonian and
we can express

q̇ = J(q)
δH

δq
, q = (uT ,w,φ,Θ,πs)

T

where J is skew-symmetric operator. Skew-symmetry (but not
conservation) is lost in hydrostastic mode.
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Discrete energy non-conservation

� Homme operators are defined in 2 dimensions and our
discretization gives us horizontal and vertical discrete
integration by parts.

� Can show: energy is conserved if

∂π

∂s
w
∂w

∂t
−
w2

2
∇·

(
∂π

∂s
u

)
+

(
g− g

(
∂p

∂s
/
∂π

∂s

))
w = 0

Compare to:
∂w

∂t
+ u · ∇sw+ ṡ

∂w

∂s
+ g− g

(
∂p

∂s
/
∂π

∂s

)
= 0.

� Using 3D vector invariant form, discrete integration by parts is
sufficient for energy conservation Dubos, T. and Tort, M.
(2014).
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Theta-NH model (Hydrostatic mode)

Hydrostatic approximation implies
(
∂p
∂s /

∂π
∂s

)
≡ 1{

∂w
∂t + u · ∇sw+ ṡ∂w∂s + g− g

(
∂p
∂s /

∂π
∂s

)
= 0

∂φ
∂t + u · ∇sφ+ ṡ∂φ∂s − gw = 0

dw/dt ≡ 0, dφ/dt ≡ g · constant

Number of non-trivial prognostic equations decreases by two and
discrete energy is conserved.
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Energy diagnostics

� Due to dissipation and vertical remap energy will never be
conserved exactly by the model.

1

2
w2∇·

(
u
∂π

∂s

)
+
∂π

∂s
wu · ∇w 6= 0

� To prevent spurious growth/decay the energy gained/lost is
tracked and added back as heat.

� All errors including time-truncation become internal energy in
the model.
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Acoustic wave time-step restriction

{
∂w
∂t + u · ∇sw+ ṡ∂w∂s + g− g

(
∂p
∂s /

∂π
∂s

)
= 0

∂φ
∂t + u · ∇sφ+ ṡ∂φ∂s − gw = 0

� For the JW Baroclinic test case (Jablonowski, C. and
Williamson, D. (2006)) the maximum usable step size drops
from around ∆t = 600 seconds in the hydrostatic model to
∆t = 2 seconds in the non-hydrostatic model.

� The time-step restriction is a result of the non-hydrostatic
system supporting vertically propagating acoustic waves and
the vertical scale being much smaller than the horizontal scale.

August 31, 2017 10



HEVI splitting
Horizontally explicit vertically implicit splitting:

∂u

∂t
+ (∇s × u + 2Ω)× u +

1

2
∇su2 + ṡ

∂u

∂s
+

c∗pθ(∇sΠ−
∂Π

∂κ
∇sκ) +

(
∂p

∂s
/
∂π

∂s

)
∇sφ = 0

∂w
∂t + u · ∇sw+ ṡ∂w∂s + g− g

(
∂p
∂s /

∂π
∂s

)
= 0

∂φ
∂t + u · ∇sφ+ ṡ∂φ∂s−gw = 0

∂Θ
∂t +∇s · (Θu) + ∂

∂s(Θṡ) = 0

∂
∂t

(
∂π
∂s

)
+∇s · (πsu) + ∂

∂s(πsṡ) = 0

ρ = −∂π∂s /
∂φ
∂s
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DCMIP Test cases

� DCMIP (Dynamical Core Model Intercomparison Project) 2012
established new non-hydrostatic test cases for atmospheric
dycores.

� If interested: check out the Test Case Document by Ullrich et
al on the DCMIP project website.

� Compare 3 models: PREQX (old HOMME dycore), THETA-H
(theta model in hydrostatic mode), and THETA-NH (theta
model in non-hydrostatic mode.

� Make use of ”small planets” where non-hydrostatic effects are
more apparent.
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DCMIP 2-0

Figure: Atmosphere at rest, non-rotating plaet, Schaer-like mountain (Girard, C. et al. (2002)), horizontal velocity at

the equator after 6 days with 1
◦

, 30 vertical levels. PREQX (t. left), THETA-H (t. right), THETA-NA (bottom).
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DCMIP 2-1

Figure: Temperature perturbation after 2 hours for flow over a Schaer-like mountain without wind shear at the

equator, 1.5
◦

horizontal grid, 60 vertical levels, small planet x500. PREQX (t. left), THETA-H (t. right), THETA-NH (bottom)
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DCMIP 2-2

Figure: Temperature perturbation after 2 hours for flow over a Schaer-like mountain with wind shear at the equator,

1.5
◦

horizontal grid, 60 vertical levels, small planet x500. PREQX (t. left), THETA-H (t. right), THETA-NH (bottom)
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DCMIP 4 Baroclinic instability
Figure: Surface pressure at 1 degree. PREQX (t. left), THETA-H (t. right), THETA-NH (b. left), THETA-NH small

planet x1000 (b. right)
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Fin

Questions?
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