SAND2017-9583C

Evaluating Production Load Balancing
Functions for Adaptive Mesh Schemes
using Mini-Applications

Courtenay T. Vaughan and Simon D. Hammond

Application Performance Team
Center for Computing Research
Sandia National Laboratories
Albuquerque
New Mexico, USA

Email: {ctvaugh, sdhammo} @sandia.gov

Abstract—TFinite difference and finite volume based application
codes can be used to explore a broad range of physical phenom-
ena in science and engineering. Many of these codes incorporate
Adaptive Mesh Refinement (AMR) to steer computation to
the critical parts of a physical simulation, enabling increased
numerical accuracy of the solution while reducing memory
consumption. However, mesh adaptivity comes at the cost of
increased runtime and code complexity. In order to explore
the design space offered by new computing environments, we
have developed a mini-application called miniAMR. MiniAMR’s
implementation of adaptive mesh refinment is representative
of that in CTH, a heavily used and trusted production shock
hydrodynamics code. One issue we see with CTH is an imbalance
between the computational weight of the blocks during complex
simulation. In this paper, we modify miniAMR to have com-
putational imbalances and introduce a new weight-based load
balancing scheme. To evaluate the efficiency of the new balancer
across computing architectures, we benchmark miniAMR on five
generations of high-performance multi- and many-core processor.

Index Terms—High performance computing; adaptive mesh
refinement; scientific applications; parallel architectures; perfor-
mance evaluation.

I. INTRODUCTION

High-performance computational-engineering is littered with
a long history of finite difference and finite volume methods
being used to study complex physical phenomena. In its
simplest form, the algorithms are applied to a static grid.
The resolution of the grid must be sufficiently fine to capture
the phenomena being studied anywhere in the domain. For
complex problems which require extremely detailed analysis,
the fineness of the mesh is so demanding that the memory
requirements of a universally equivalent level of refinement
become too high.

As illustrated in Figure 1, incorporating Adaptive Mesh
Refinement (AMR [5], [6]) instead allows for only parts
of the mesh to be highly refined, while other sections can
remain much coarser. The effect is a focus of attention on the

most critical regions of a simulated mesh, enabling increased
numerical accuracy of the solution while significantly reducing
memory requirements. Adaptivity, however, comes at the cost
of increased application complexity, and runtime behavior
becomes strongly tied to the particular problem or geometries
being examined. As future machines become are expected to
become larger into the Exascale-era, and the potential of the
systems to execute larger problems, the topic of how best to
employ refinement, and balance the appropriate dynamically
changing computation is of particular interest.

In order to explore the design space of adaptive mesh-based
applications, we have developed a proxy application called
miniAMR. MiniAMR is a standalone code designed for the
exploration of some important performance issues prevalent in
finite difference or volume codes that utilize adaptive meshes.
It is free of constraints of any specific physical behavior,
with refinement driven by potentially multiple objects moving
through the domain, and is purposefully not intended to be
representative of the computation found in a complex scientific
application. This provides a simplistic setting in which to
quickly experiment and analyze the fundamental components
of adaptive-mesh algorithms.

In this paper, we specifically focus on an investigation of
load balancing cost functions that can be used in CTH -
the parent shock hydro-dynamics code, on which miniAMR

Fig. 1. Adapting Mesh as Shock Front Passes Through a Domain

is based. Our first investigate uses a very cheap method to
balance refined blocks across MPI ranks based on ensuring
the number of blocks per MPI rank is approximately equal.
We compare this to a more sophisticated function which
attempts to balance blocks across the MPI domain using a cost
function associated with each block’s expected computational
work. As a basis for our benchmarking, we utilize five
generations of processor used in our high-performance
computing deployments.

The contributions of this work are the following:

o Breakdown of Functions in Adaptive Mesh-based
Applications - we utilize the miniAMR application to
analyze the runtime contribution of the various func-
tions associated with refinement and load-balancing in
adaptive-mesh applications;

o Comparison of Block-Count-based and Expected
Computational Work-based Load Balancing Schemes
- we compare two approaches to load-balancing with
varying overheads and effect on runtime performance.
We conclude that the work-based balancing (as opposed
to block-count-based) improves the performance of some
parts of the application but degrades performance in
others such that its use in the parent CTH hydro-code
is unlikely to provide substantial benefit. In so doing,
we demonstrate a real-world practical use of a mini-
application in evaluating design choices for complex
scientific codes;

o Benchmarking of Multiple Generations of High-
Performance Multi-/Many-Core Processors - we
compare the runtime performance of our miniAMR,
adaptive-mesh mini-application on five generations of
processor showing the gains in performance that recent
hardware generations have provided.

The remainder of this work is laid out as follows: we start the
paper with a brief evaluation of related work in Section I-A.
A short description of CTH, the parent shock hydro-code of
miniAMR is presented in Section II. Section III provides an
overview of miniAMR. We present a case study of using
miniAMR to evaluate load-balancing strategies in Section IV.
Finally, we conclude the paper in Section V.

A. Related work

AMR was first introduced by Berger et.al. [5] [6]. Since then,
several libraries have been developed including BoxLib [3],
Chombo [7], SAMRALI [15], and others, to allow code devel-
opers to more easily develop adaptive mesh applications.

MiniAMR is available from the Mantevo project suite of
mini-applications [13] — a suite of open-source implemen-
tations that span important classes of algorithms in high-
performance computing. The project has recently transitioned
to the Github source code hosting platform to enable a much
broader level of community interaction.

CloverLeaf [10], [12] is a Mantevo miniapp that includes
meaningful physics, solves the compressible Euler equations
on a two dimensional Cartesian grid, using an explicit, second-
order accurate method. CleverLeaf [2] adds a patch based
AMR scheme to CloverLeaf using the SAMRALI toolkit.

Performance of SAGE AMR hydro-code from Los Alamos
is modeled in [16] reflecting the importance of adaptive mesh
schemes across a variety of domains and leading HPC centers.

MiniAMR is, in many ways, simpler than existing bench-
marks, in keeping with the Mantevo goal of providing a
tractable means for modifying the code, including swapping in
new communication, refinement, and load-balancing strategies.
The work presented in this paper is an example of its use in
a practical setting.

II. THE CTH SHOCK-HYDRODYNAMICS CODE

The application that lead to the development of miniAMR is
CTH [17], [14], [1]. The CTH application is a multi-material,
large deformation, strong shock wave, solid mechanics code
developed and maintained at Sandia National Laboratories.
CTH has models for multi-phase, elastic viscoplastic, porous
and explosive materials, using second-order accurate numeri-
cal methods to reduce dispersion and dissipation and produce
accurate, efficient results.

MiniAMR was developed to study CTH when it is run in
adaptive-mesh mode. The AMR scheme employed by CTH
utilizes an octree based scheme, where each processor has
a number of small blocks, each of which comprises a few
hundreds cells. As the calculation progresses, the number and
placement of these blocks in the calculation can change. Each
blocks has to communicate with its neighboring blocks in the
mesh, so each MPI rank in the computation ends up perform-
ing communication within the rank (to neighboring blocks on
the same rank) as well as to some number of neighboring
ranks, which can evolve as the simulation progresses.

In [19], we compared miniAMR to CTH and showed that
the communication for exchanging block boundary informa-
tion is similar between CTH and miniAMR. This includes the
length and number of messages in addition to the number of
communication partners that each rank has. These communi-
cation patterns are extremely similar and the minor differences
explained. The communication patterns for the refinement step
showed differences which were attributable to the differing
way the refinement is performed, but that is a small portion
of the total run time. Futhermore, the proportion of time spent
in computation and communication are similar between the
codes.

For the purposes of this paper, we continue to use the
“sphere hits block” problem, illustrated in Figure 2. In this
problem we perform a hydro-dynamics calculation using two
materials and a boundary exchange of 32 variables. The figure
is colored by pressure, with red being areas of high pressure
and green being areas of low pressure. While this problem
is heavily simplified from the production use of CTH, its
execution utilizes many of the routines which are important
for our investigation.

Fig. 2. CTH Sphere and Block Impact Simulation. Simulated time progresses
from top to bottom.

A. Motivation

The “sphere hits block” problem was run with CTH in
AMR mode, where the sphere and shock wave are the more
refined areas of the calculation. Even with such a simple
calculation, there is significant load imbalance in portions of
the calculation. If we look at the three convection routines,

100

Min. Time m—
Avg. Time m—
Max. Time s

Time (Seconds)

32 256 2048
MPI Ranks

Fig. 3. Time Spent in Convection Routines in CTH

which collectively account for 20% to 25% of the calculation
times of a typical simulation (shown in Figure 3), we see that
the spread between the minimum and maximum time spent
in the convection routines on different ranks increases as the
number of ranks increase. The rest of the compute time in CTH
is spread out over several routines with none taking more than
5% of the total time.

III. THE MINIAMR MINI-APPLICATION

MiniAMR is a mini-application that we developed to look at
the complexities of three dimensional adaptive-mesh refine-
ment using an octree-based scheme. The computation is made
up of a number of blocks, each of which has the same number
of cells in each dimension. To refine the mesh in a given
area, a block is replaced by eight blocks which have their cell
size halved in each Cartesian dimension. Neighboring blocks
differ by at most one level of refinement with interpolation
being used to exchange data across a refinement boundary.
The computation performed at each grid-point of a block is a
seven point stencil, where the result for a cell is the arithmetic
average of its value added to each of its six neighbors.
Reflective boundary conditions are applied to the physical
boundary of the global domain. Thus a constant sum across
each variable can be computed for correctness. MiniAMR
allows for this to be periodically checked during execution
if optionally enabled by the user. After computation is done
on the cells in all of the blocks local to an MPI rank, the ghost
cells on each block are updated from its neighboring blocks.
Refinement is driven by geometric shapes moving across
the domain. While this is a simplification over genuine runs
of a code like CTH, it is sufficient to capture much of the
characteristic behavior. As each shape moves through the mesh
and, optionally, changes size, the boundary or volume can be
used to define which blocks are refined. These can be used to
model physical structures in the problem, such as modeling a
shock-wave with an expanding sphere. During the refinement
step, blocks are refined or recombined as needed. Finally a
load-balancing operation is performed to ensure that the blocks
are evenly distributed throughout the MPI ranks. Throughout
this step, all of the bookkeeping needed to keep the block
connectivity and communication data structures is updated.

We refer the reader to a more detailed description of
miniAMR in [19].

A. Modification to Analyze Load Balancing

In order to experiment with load balancing, we have made
modifications to the baseline miniAMR implementation. In
order to create an imbalance within the calculation, the stencil
calculation is changed so that the computation is repeated
for each variable. The number of repetitions increases as
the block becomes progressively more refined (i.e. the most
refined blocks execute the most repetitions and therefore take
the longest to execute). As it is written, the same calculation is
done on each block for each variable. The correlates with our
high-level mapping to methods used within CTH. The areas of
interest are refined and those areas are the ones that likely have
more things going on, such as cells with additional materials
and conditions that require more calculations or additional
checks. For the machines that we worked with, blocks with
5 levels of refinement took over twice as long to calculate as
blocks without refinement.

For load-balancing, we use Recursive Coordinate Bisection
(RCB) [4]. For the baseline miniAMR simulations, this pro-
cess consists of a number of steps where a set of blocks
is divided into equal sized sets and assigned to a group of
processors. We term this a balance-by-count approach to load
balancing our AMR domain.

We have added a second load-balancing approach which
we term a balance-by-weight method. Here, we assign each
block a weight based on the refinement level that reflects the
computational time for that block. Then, for each step in the
algorithm, a set of blocks is divided into sets of equal weight.

IV. CASE STUDY: ANALYZING LOAD BALANCING
APPROACHES USING MINIAMR

The modifications to miniAMR force refined blocks take
longer to compute and modify the load balancing to balance
based on the computational weight of the blocks. In this
short case study, we compare the performance of these two
approaches in the context of assessing whether a move to
balance-by-weight load balancing will provide a performance
improvement to CTH. Our benchmarking is performed on
several machines. The first machine is Chama, an Cray/Appro
TLCC-2 [18] cluster with dual-socket 8-core, 2.6Ghz, Intel
Sandy Bridge processors, connected by an Infiniband intercon-
nect. The second machine is Volta, a Cray XC30 with Intel Ivy
Bridge processors and a Cray Aries DragonFly interconnect.
Each node has two 12-core Ivy Bridge processors running
at 2.4 GHz. The third machine is Serrano, a Penguin NNSA
CTS-1 commodity cluster with Broadwell processors and an
Intel Omni-Path 1st generation interconnect. Each node had
two 18-core Broadwell processors running at 2.1 GHz. The
fourth machine used for benchmarking, is Trinity, a Cray
XC40 machine with Cray Aries DragonFly interconnect [20],
[11]. With this machine, we have the option of running either
in the Haswell partition (“HSW”), where each node has dual-
socket 16-core Intel Haswell nodes running at 2.3 GHz, or in

Machine Ranks | Balance-by- | Balance-by-
Count Weight
Chama (SNB) 256 25238 25241
Volta (IVB) 288 22216 22215
Volta (IVB) 1080 29266 29317
Serrano (BDW) 288 21099 21114
Trinity HSW 256 26618 26578
Trinity HSW 2048 33558 33530
Trinity KNL 256 8427 8451
Trinity KNL 4096 8189 8182
TABLE I

MINIAMR TIMES IN SECONDS FOR LOAD BALANCING SCHEMES

the Knights Landing (“KNL”) partition, where each node has
a Intel Knight’s Landing Xeon Phi 7250 processor with 68
cores available. Clock rate for the KNL is 1.4GHz. The runs
use KNL nodes configured in the quadrant-flat memory modes
where both high-bandwidth and slower capacity memory are
available for allocations. We utilize the Intel 16.0 compiler
on all runs as this was the baseline production compiler in
the computing environment at the time the benchmarking runs
were performed.

We run miniAMR with the “sphere hits block™ problem on
these platforms using each of the load balancing approaches.
The resulting benchmarked runtimes are shown in Table 1.

The only results to show improvement using the balance-by-
weight scheme are those for the Trinity-Haswell partition (with
a small difference of approximately 0.2%). The results for all
other machines show a less than 0.2% decrease in performance
for the new load balancing approach. Most of these results are
in the order of the performance variation that we see from run-
to-run variation and do not show significant improvement.

A. Comparison of Architectures

The results in Table I reflect our experiences with a broader
range of codes on the machines listed (not just for adaptive
mesh applications) — that subsequent generations of multi-
core Xeon processor are providing similar performance for the
same number of MPI ranks but that we require gradually fewer
and fewer nodes to maintain a fixed runtime. For example,
the 256 rank run on the Chama Sandy Bridge-based machine
requires 16 nodes (since each node provides two sockets of
8 cores). Trinity Haswell however, provides a similar runtime
for 256 ranks (only 5% slower) but requires only 8 nodes.
This represents a roughly 2X per-die performance increase.
The “tock” variants of each processor family (the Ivy Bridge
and Broadwell), provide non-power of two cores so we have
rounded these up to utilize full nodes to prevent skewing of
our results when analyzing the average and maximum times
of the runs — the effect is that these runs use slightly fewer
nodes than each of their previous generations. The ability to
maintain such a strong cadence of performance improvement
has been of real utility to HPC centers like Sandia but the
future of this pace of change is likely to begin to slow in future
designs, motivating the analysis of threading and alternative
programming models. We do not present benchmark results

Machine Ranks Avg Max Time

Imbalance | Imbalance Diff
Chama (SNB) 256 0.002 0.031 0.017
Volta (IVB) 288 0.002 0.050 0.023
Volta (IVB) 1080 0.002 0.071 0.030
Serrano (BDW) 288 0.002 0.050 0.035
Trinity HSW 256 0.002 0.032 0.039
Trinity HSW 2048 0.002 0.041 0.056
Trinity KNL 256 0.008 0.138 0.091
Trinity KNL 4096 0.014 0.227 0.193

TABLE II

VARIANCE SEEN IN STANDARD (BALANCE-BY-COUNT) MINIAMR

for some of these alternatives models here, but we plan to use
miniAMR as basis for future publications in this theme.

B. Performance Analysis

To explain the observed runtimes, we start by running with
miniAMR as it is normally run on the platforms to establish
a baseline of how much variance should be expected during
execution. The results for these runs are presented in Table II.

The results show that the amount of variance in time
spent executing the the block calculation step as well as the
calculated imbalance in the load seen on each run. The time
and imbalance numbers are calculated as the maximum time
minus the minimum time divided by the arithmetic mean time.
For each of the machines shown the miniAMR runs perform
5 levels of refinement except for Trinity KNL, where 4 levels
of refinement is used to keep the number of blocks within the
smaller memory capacity per node. The lower maximum level
of refinement on KNL creates the roughly 3X lower runtime
shown in Table I. The maximum imbalance is larger than
expected given the average since this calculation starts out
with a small region of the calculation being refined and the
refined area grows as the calculation (shock-wave) advances
through the mesh. For sanity-checking we ran an additional
small set of runs with a different simulation configuration in
which the number of blocks at each level of refinement stays
fairly constant and that resulted in a maximum imbalance of
0.001 and an average of 0.0004. Our observation is that the
load balancer gives a fairly equal number of blocks to each
processor during these simulations and most of the timings
vary by less than 6% with the exception being the KNL runs
with up to an almost 20% difference.

Table III shows the potential distribution of weights if we
use a balance-by-count balancer but record the weights of
the distributed blocks — i.e. we show the load imbalance that
is potentially present in the code in the presence of blocks
which take different times to compute but we are using the
baseline balancer. The observation that there is a considerable
difference across the MPI ranks in these results, implies that
this is an area for further investigation. The imbalance in the
number of blocks that the MPI ranks have is the same as
Table II since that is the load balancer that was used.

In Table IV we show results for the balance-by-weight
load balancer when applied to the same problem used for the

Machine Ranks Avg Max Time

Weight Diff | Weight Diff Diff
Chama (SNB) 256 0.074 0.589 0.113
Volta (IVB) 288 0.085 0.656 0.128
Volta (IVB) 1080 0.143 0.672 0.290
Serrano (BDW) 288 0.082 0.632 0.139
Trinity HSW 256 0.075 0.590 0.160
Trinity HSW 2048 0.148 0.596 0.424
Trinity KNL 256 0.104 0.635 0.201
Trinity KNL 4096 0.167 0.724 0.642

TABLE III

VARIANCE SEEN IN MINIAMR WITH UNBALANCED CALCULATIONS,
BALANCING PERFORMED USING A BALANCE-BY-COUNT SCHEME

Machine Ranks Avg Max Time

Weight Diff | Weight Diff | Diff
Chama (SNB) 256 0.003 0.071 0.009
Volta (IVB) 288 0.004 0.083 0.011
Volta (IVB) 1080 0.005 0.108 0.026
Serrano (BDW) 288 0.003 0.084 0.027
Trinity HSW 256 0.003 0.078 0.058
Trinity HSW 2048 0.005 0.102 0.089
Trinity KNL 256 0.017 0.348 0.037
Trinity KNL 4096 0.038 0.695 0.192

TABLE IV

VARIANCE SEEN IN MINTAMR WITH UNBALANCED CALCULATIONS,
BALANCING PERFORMED USING A BALANCE-BY-WEIGHT SCHEME

results in Table III. These timings show that the distribution of
weights is significantly reduced by using a balance-by-weight
scheme and that the variation/timing differences between the
MPI ranks is also reduced when compared to a balance-by-
count approach.

However, Table V shows the imbalance in the number of
blocks that each rank has when the blocks are balanced by
weight. The number of blocks on each rank varies more
than with load balancing by the number of blocks per rank.
Given the nature of the RCB algorithm, the number and total
volume of messages exchanged does not vary much between
the two load-balancing schemes. The time difference in the
interblock communication routines between the ranks that take
the longest and those that take the shortest also decreases with
load balancing by weight.

In Table VI we show the effect of changing the load balancer
with weighted blocks. In all cases, the time to solution when
load balancing by weight is larger than the time for load
balancing by number of blocks, as an expensive traversal of
the blocks present on each node must be performed (versus
a tally of the count of blocks on each node). An example
breakdown the timings from runs on Trinity-Haswell are
shown in Table VII. Additionally, the number of blocks moved
per rank is larger in the balance-by-weight approach. However,
since the time for load balancing is about half of the total time
for mesh refinement and the time for mesh refinement is less
than one percent of the total time, the time difference makes
negligible difference in the overall run time of the code.

Machine Ranks Avg. Max
Imbalance | Imbalance
Chama (SNB) 256 0.095 1.151
Volta (IVB) 288 0.116 1.467
Volta (IVB) 1080 0.232 1.506
Serrano (BDW) 288 0.111 1.373
Trinity HSW 256 0.096 1.155
Trinity HSW 2048 0.243 1.211
Trinity KNL 256 0.140 0.990
Trinity KNL 4096 0.287 1.275
TABLE V

NUMBER OF BLOCKS IMBALANCE IN MINIAMR

Bal. by Count Bal. by Weight
Machine Ranks | Blocks Time Blocks Time

Moved Moved
Chama (SNB) 256 24650 31.49 24775 37.36
Volta (IVB) 288 25215 48.15 25377 49.13
Volta (IVB) 1080 37844 54.60 38226 58.19
Serrano (BDW) 288 25215 23.92 25349 25.07
Trinity HSW 256 24650 27.56 24775 28.26
Trinity HSW 2048 41909 75.41 42033 79.13
Trinity KNL 256 4718 11.00 4771 11.53
Trinity KNL 4096 8164 39.94 8275 46.63

TABLE VI

LOAD BALANCING EFFECTS

V. SUMMARY AND FUTURE PLANS

Verified and trusted production application codes are typically
large in size, complex in their coding and embody decades
worth of gradual refinement and extension to improve accuracy
and performance. CTH is one such code. It is written in
complex Fortran, extends to hundreds of thousands of lines of
code, has third party dependencies and has been refined over
years to provide Sandia and the NNSA with an extremely high-
performance, accurate code base. Moreover, CTH has been the
subject of extensive verification and validation activities both
at Sandia and in third party environments. Casual modification
of such a code is therefore, quite an endeavor and one which
implies extensive cost, not least because of the requirement to
revalidate the numerical results. For this purpose, the concept
of mini-applications, pioneered in the Mantevo suite, were
developed to provide a cheaper, easier to modify code base
that permitted very flexible experimentation. MiniAMR, which
is part of the Mantevo suite, is designed specifically for this
purpose — to provide a lightweight proxy for the complex
CTH application in which future design experimentation can
be performed.

In this paper, we utilized miniAMR to investigate potential
future alternative load-balancing strategies for CTH when run
in adaptive mesh mode. The complex calculations of CTH
imply some degree of load imbalance and this study was
designed to investigate whether a balance-by-weight approach
may provide a superior execution time through decreased
cross-MPI-rank imbalance.

As a baseline we compared our potentially new approach
to the standard, balance-by-count method in which blocks

Routine Bal. by Count | Bal. by Weight

Block Calculation 14106.70 14030.20

Communication 18530.20 18526.10

Grid Summation 780.48 828.30

Refinement 140.41 145.43
TABLE VII

BREAKDOWN OF ROUTINES ON TRINITY-HASWELL FOR MINIAMR USING
BOTH BALANCING SCHEMES

were spread across ranks to ensure a roughly even distribution
purely by block count per rank. The results suggest that, while
we can provide a better load balancing of the calculation
portion of the code, the results overall runtime of the code
does not significantly improve because the constituent parts
of the execution time remain largely unmodified. In particular,
the interblock communication routines are complex enough to
keep the total runtime of the code similar regardless of the
balancing approach used.

The case study outlined in this paper is deceptively simple
but behind it lies an important consideration — that the use
of a mini-application in the context of modeling a genuinely
complex production code, has saved developer time and effort.
We have used our mini-application to evaluate potential alter-
native designs and found that although improves can be found
in some areas, the general outcome will be marginal or useful
in production. The result is a concrete, practical example of
where a mini-application has been used to save the NNSA
program valuable developer time and funds.

Future plans for miniAMR include an implementation of
an MPI-OpenMP hybrid scheme (which is in progress and
showing strong initial results), a task parallel implementation
in which block calculations may be performed by a large
collection of fine-grained tasks, and, the incorporation of other
load balancing schemes, such as those found in the high-
performance Zoltan [8], [9] partitioning library.

ACKNOWLEDGMENTS

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology and Engineer-
ing Solutions of Sandia LLC, a wholly owned subsidiary of
Honeywell International Inc. for the U.S. Department of Ener-
gys National Nuclear Security Administration under contract
DE-NA0003525.

We are grateful to the Sandia Advanced Architecture
Testbed team and production computing system admins for
their support in environment configuration and time on the
machines used for our experiments and benchmarking.

REFERENCES

[1] A Development Plan for a Massively Parallel Implementation of the
Hydrocode CTH. Technical Report SAND90-0589, Sandia National
Laboratories, July 1990.

[2] D.A. Beckingsale, O.FJ. Perks, W.P. Gaudin, J.A. Herdman, and S.A.
Jarvis. Optimisation of Patch Distribution Strategies for AMR Applica-
tions. Lecture Notes in Computer Science, 7587:210-223, 2013.

[3] J. Bell et al. BoxLib Users Guide. Technical report, Lawrence Berkeley
National Laboratory, 2012.

[4]

[5]
[6]

[7]

[8]

[9]

[10]

(1]

[12]

M.J. Berger and S.H. Bokhari. A Partitioning Strategy for Nonuniform
Problems on Multiprocessors. IEEE Trans. Comput., 36:570-580, May
1987.

M.J. Berger and P. Colella. Local Adaptive Mesh Refinement for Shock
Hydrodynamics. Journal of Computational Physics, 82(1):64-84, 1989.
M.J. Berger and J. Oliger. Adaptive Mesh Refinement for Hyperbolic
Partial Differential Equations . Journal of Computational Physics,
53(3):484 — 512, 1984.

P. Colella, D. T. Graves, J. N. Johnson, H. S. Johansen, N. D. Keen, T. J.
Ligocki, D. F. Martin, P. W. Mccorquodale, D. Modiano, P. O. Schwartz,
T. D. Sternberg, and B. Van Straalen. Chombo Software Package for
AMR Applications Design Document. Technical report, 2003.

K. Devine, B. Hendrickson, E. Boman, M. St.John, and C. Vaughan.
Zoltan: A Dynamic Load-Balancing Library for Parallel Applications;
User’s Guide. Technical Report SAND99-1377, Sandia National Labo-
ratories, 1999.

Karen Devine, Erik Boman, Robert Heaphy, Bruce Hendrickson, and
Courtenay Vaughan. Zoltan Data Management Service for Parallel
Dynamic Applications. Computing in Science & Engineering, 4(2):90—
97, 2002.

W.P. Gaudin, A. Mallinson, O.F.J. Perks, J.A. Herdman, D.A. Beck-
ingsale, J. Levesque, M. Boulton, S. McIntosh-Smith, and S.A. Jarvis.
Optimising Hydrodynamics Applications for the Cray XC30 with the
Application Tool Suite. In Proc. 56th Cray User Group Meeting, 2014.
K Scott Hemmert, Michael W Glass, Simon D Hammond, Rob Hoekstra,
Mahesh Rajan, Shawn Dawson, Manuel Vigil, Daryl Grunau, James
Lujan, David Morton, et al. Trinity: Architecture and Early Experience.
Cray Users Group, pages 2008-2010, 2016.

JA Herdman, WP Gaudin, Simon MclIntosh-Smith, Michael Boulton,
David A Beckingsale, AC Mallinson, and Stephen A Jarvis. Accelerating
Hydrocodes with OpenACC, OpenCL and CUDA. In High Performance
Computing, Networking, Storage and Analysis (SCC), 2012 SC Compan-
ion:, pages 465-471. IEEE, 2012.

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

M.A. Heroux, D.W. Doerfler, P.S. Crozier, JM. Willenbring, H.C.
Edwards, A. Williams, M. Rajan, E.R. Keiter, H.K. Thornquist, and
R.W. Numrich. Improving Performance via Mini-applications. Techni-
cal Report SAND2009-5574, Sandia National Laboratories, September
2009.

E.S. Hertel, Jr., R. L. Bell, M. G. Elrick, A. V. Farnsworth, G. 1.
Kerley, J. M. Mcglaun, S. V. Petney, S. A. Silling, P. A. Taylor, and
L. Yarrington. CTH: A Software Family for Multi-Dimensional Shock
Physics Analysis. In Proceedings, 19th International Symposium on
Shock Waves, pages 377-382, 1993.

R.D Hornung and S.R. Kohn. Managing Application Complexity in the
SAMRALI Object-Oriented Framework. Concurrency and Computation:
Practice and Experience, 14(5):347-368, 2002.

Darren J Kerbyson, Henry J Alme, Adolfy Hoisie, Fabrizio Petrini,
Harvey J Wasserman, and Mike Gittings. Predictive Performance and
Scalability Modeling of a Large-scale Application. In Proceedings of the
2001 ACM/IEEE conference on Supercomputing, pages 37-37. ACM,
2001.

J Michael McGlaun, SL Thompson, and MG Elrick. CTH: a Three-
Dimensional Shock Wave Physics Code. International Journal of Impact
Engineering, 10(1-4):351-360, 1990.

Mahesh Rajan, DW Doerfler, Paul T Lin, Simon D Hammond, Richard F
Barrett, and Courtenay T Vaughan. Unprecedented Scalability and
Performance of the new NNSA Tri-Lab Linux Capacity Cluster 2. In
High Performance Computing, Networking, Storage and Analysis (SCC),
2012 SC Companion:, pages 417-425. IEEE, 2012.

C.T. Vaughan and R.F. Barrett. Enabling Tractable Exploration of
the Performance of Adaptive Mesh Refinement. In Workshop on
Representative Applications at IEEE Cluster, 2015.

CT Vaughan, DC Dinge, PT Lin, KH Pierson, SD Hammond, J Cook,
CR Trott, AM Agelastos, DM Pase, RE Benner, et al. Early Experiences
with Trinity - The First Advanced Technology Platform for the ASC
Program. Proc. of the Cray User Group (CUG), 2016, 2016.

