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Sandia has a rich heritage in Additive Manufacturing

LIGA 
“Hurricane” spring

MEMS SUMMIT™*
micro gear assembly

Spray Forming
rocket nozzle

FastCast*
prototype test unit

LENS®*
fireset housing

* Sandia licensed/commercialized technology

energetic 
materials

RoboCast*
ceramic parts

Direct Write
conformal electronics
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Additive manufacturing offers rapid 
production of custom, geometrically 
complex parts

How do we rapidly qualify the materials 
produced by additive manufacturing?
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The holy grail of ‘born qualified’: model-
informed process monitoring and control

Courtesy of Josh SugarSlide 4



5

How conventional materials are qualified…

J. Rubadue, Path to Inclusion of Static Design Properties in the ‘… ‘(MMPDS) Handbook for Technology Exchange at Penn State, 11/5/13 - Battelle



The Slack Chain Concept:
Rapid Sequential Tensile Testing for Large
Statistical Datasets

100 m

Boyce, Experimental Mechanics, 2010Slide 6
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Weibull Fit to 1,008 Test Repeats
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Can we apply principles of rapid, streamlined
mechanical testing to additive manufacturing?
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Sequential concept for additive manufacturing
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Laser Powder Bed Fusion (L-PBF)
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(aka Selective Laser Melting)

Key process variables:
* Powder feedstock
* Laser power
* Raster speed
* Hatch & layer spacing



AM offers opportunities to print 
extensive mechanical test coupons
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Starting simple: ‘cooling fin design’
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Streamline the testing process

1. Adopt self-aligning ‘drop-in’ grips

2.  Measure strain with non-contact “live” digital image correlation

3.  Maximize software automation to 
reduce burden on operator
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100 tensile tests in 4 hours…
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A comparison of 2 major 
commercial vendors

Vendor 1 Vendor 2

Alloy: PH17-4 H900 (preciptation hardenable martensitic stainless steel)

ConceptLaser Mlab 3D Systems ProX300
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Comparing 100 tests from 3 sources
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3-Parameter Weibull Fits to Distributions

Yield Strength, MPa

What is the origin of different properties???
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a) Vendor 1

b) Vendor 2

c) Wrought

5
0

0
μ

m

Effect #1: Surface roughness

Cross-sectional area inferred 
from digital micrometer
measurements 
(measurement method was 
biased by the highest 
asperity)
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Effect #2: Phase content

Nb carbides
Retained austenite!

Vendor 1 Vendor 2

Wrought

Lath Martensite

In collaboration with Jeff RodelasSlide 19



Why Austenite in Vendor 2 material???
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Why such large differences in ductility?

100 m

Shear Lip
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How consistent are 8 separate builds of the 
same ‘cooling fin’  from the same vendor?

(960 tensile bars!)
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Distributions from 8 nominally identical
cooling fins (Vendor 1) 

Why such poor ductility in one build???

945 tensile tests: 8 batches of ~120 tests

Anomalously
poor ductility
in build“6”



How do we fix this?

→ Understand and control the sources of flaw forma�on

Laser/plume interactions, raytracing
Plasma fluid mechanics
Radiation heat transfer
Laser energy adsorption
Thermal expansion
Non-equilibrium vapor pressure
Evaporation with latent heat
Pressure-temperature relations
T-dependent heat capacity
Incompressible fluid dynamics
Convective/conductive heat transfer
Capillary forces
Marangoni forces
Hydrodynamic mixing
Multicomponent liquid-solid diffusion
Solidification macrosegregation
Solidification shrinkage
CTE thermal contraction
Thermomechanical residual stress
Solid-state diffusion
Anisotropic crystallization
Solid-state phase transformation

Mario Martinez

incoming laser

raster speed
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Summary…

High-throughput measurements of additively
manufactured materials provides a rapid method 
for screening performance anomalies and 
diagnosing sources of poor reliability.

Eventually, we would like to screen using in-
process monitoring/control.  Rapid materials 
characterization will enable the development of 
needed process-structure-property correlations.
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Future work…
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Alloy 304LAlloy 304L

How does sample thickness affect defect 
populations and resulting property distributions?



What is the origin of different properties?

manufacturing.llnl.gov

“Experimodelment” !
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8 Families of AM Processes (ASTM F2794)

Graphic created by Hybrid Manufacturing Technologies based on ASTM F2794 definitionsSlide 29



What is the origin of different properties?
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Ultimate goal:
Predict solidification microstructure

Kurz, W. and Fisher, D. J., Fundamentals of Solidification, Chapter 4: Solidification Microstructure, Trans Tech Publications (Enfield, NH, 1998)
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Rodgers, Madsion, and Tikare, JOM, 2016
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XZ Plane
YZ Plane

YZ Plane

experiment

simulation

Comparison with 
3.8 kW EBSD results

XY Plane

Capturing complex solidification 
microstructure

Jonathan Madison, Theron Rodgers, Veena Tikare



The conventional materials science cycle is 
not commensurate with the speed of AM

Process material

Send out for chemical analysis (2 weeks)

Metallographic prep (6 weeks)

X-ray phase analysis (4 weeks)

Machine test coupons (10 weeks)

Perform material tests (6 weeks)

Analyze data & feedback (4 weeks)

Typical
multi-month
feedback
cycle
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An Aspirational Goal: 
Can we reduce materials science evaluation 

from months to hours?

(design-build-test loop in a day?)

ActionsActions Show Layer(s)Show Layer(s)

Part

Robot

Preview

Begin

Import Part File

Scan Part

Export to CSV

Auto Points

Chem Sample

Mech Sample

Thermal Sample

Electric Sample

Robot

Tool

Path Plan

Geometry Diff

Chem Layer

Mech Layer

Thermal Layer

Electric Layer

Geometric metrology probe

Surface roughness probe

Mechanical properties probe

Compositional probe

Phase probe

Thermal probe

Electrical probe

Tribology probe

Resonance probe

…

Properties ‘Alinstante’
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