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Fatigue makes
cowards of us all.»‘;
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Nanocrystalline Alloys: Impervious to Fatigue Failure?
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4-28-1988 After 89.090 flight cycles on a 737-200, mtal fatigue lets the top go in flight.




Fatigue in Aviation
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“...Changes in properties which can occurin a
metallic material due to the repeated
application of stresses or strains, although
usually this term applies specially to those
changes which lead to cracking or failure...”

General Principles for Fatigue Testing of Metals, International
Organization for Standardization, Geneva, 1964. o s pactin found 8 crack i 3 WIBRE S
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Corrosion
Fatigue

Brittle fracture
Overload

High temperature corrosion
SCC/Corrosion fatigue/HE
Creep
Wear/abrasion/erosion

[SJ Findlay and ND Harrison, “Why Aircraft Fail”, Materials Today, 2002]




Background Concepts: Fatigue Life

BN 1 Crack Initiation
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Fatigue Life in Engineering Alloys ()
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Nanocrystalline metals have excellent strength...
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...what about their fatigue resistance???




Is the fatigue mechanism suppressed in nanocrystalline
metals?

extrusion

intrusion

Spm

Ma and Laird, 1989

A billion nanocrystalline grains would
fit inside a single microcrystalline grain
of a traditional structural alloy.

Does the fatigue mechanism change
for such small grain sizes?




Three Nanocrystalline Ni-Based Alloys )
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Electrodeposited nanocrystalline metal is 7 i
l/thographlcally patterned for fatigue testing
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Superior Fatigue Resistance in Nanocrystalline Alloys (i) &=
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Endurance limit plateaus at average grain size ~70 nm! ) =,
(max grain size ~400 nm)
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The impressive high-cycle fatigue resistance =) s,
is likely due to suppressed crack initiation...

Crack growth resistance is worse than coarse-grained Ni, as expected
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Unusual initiation zone S
in nanocrystalline Ni-Fe Alloy
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A cross-section through the ‘blocky’ zone reveals 7
Very large subsurface grains

. i Iy x ¥ - Pl - el < - % Tl N - iy ™

= Fatigue-induced coarsened zone at room temperature!

= Coarsened zone only forms locally (abnormal grain growth) in regions of
maximum stress, prior to crack initiation 18



Fatigue-induced abnormal grain growth 7
occurs at the site of crack initiation in all 3 alloys...




Crystal orientation of the abnormally large grains () e,

Boyce and Padilla, Metall. And Mater. Trans. A, 2011



The crystalline orientation of the large grains
maximizes slip defg

Isometric View

Thompson
Tetrahedron
for grain C
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We posulate that in nanocrystalline
metals (d , < ~70 nm), the fatigue process
induces grain growth as a precursor to
gross slip and eventual crack initiation

1. Were these few large grains formed during
deposition, not fatigue loading?

2. Does the large grains facilitate cracking, or do
the high stresses at the crack drive grain
growth?

3. If the grains grow during fatigue, how many
cycles does it take? [what are the kinetics of
grain growth]

Can we observe fatigue-driven grain

evolution directlx using in-situ technigues?



X-rays, Diffraction, & Synchrotrons
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Proof of Concept... Interrogate Broken Fatigue )
Sample with Known Grain Growth Region,
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The crux of the problem: needle-in-a-haystack:
the onset of abnormal grain growth s
has an imperceptible effect on the average grain size
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What happens in diffraction when ] s
One grain is large and the rest are small?

Reciprocal
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Preliminary Observation: A ‘spike’ in the Debye ring. 7

_ss00. (P) , [ +-60

5 _ I /-3

© 8000+ ' - observed |
— mean

—

50 100 150 200 250 300 350

beem siep =

How do we know these spikes are truly statistically
significant anomalies and not just noise?




Confirmation: the intensity spike occurs in the known ) i

grain growth location and nowhere else
(b) Sample 13f-A 100 um (200) ring
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We’ve identified 1 large grain in a sea of 10° small grains. The large

grain occupies ~0.00001% of the interrogation volume, and is
identified with a statistical confidence >> 99.9999998% (6G).

-— | I




Now.... Can we observe active grain
growth during a fatigue test?




the needle-in-a-haystack challenge...
Rapidly detecting 1 abnormal grain in 10*?

2mm >~
\/ Z

The gage section contains
~1 x10%2 grains

A 100x100 um x-ray spot interrogates
A ~1 x10° grains

A 10 um notch localizes the peak stress to
<<1 x107 grains

x-ray beam




Piezo-actuated thin film fatigue tester for the synchrotron

Load Cell
X-ray Beam

o)

Actuator

Elastic stress concentration factor:
K=2.8

Cone of
diffracti




Fractography and FIB cross-section
confirm grain growth at the source of crack initiation

A nagging question: were these
large grains caused by deposition
or sample preparation, not
fatigue?



Detecting the onset of grain growth during fatigue () reima

Looking at a 20° arc of the (111) diffraction ring...

fracture @ 62,984 cycles 25l [!‘
> ‘ I
3.05 gé) w
3,06 P |
< , g =7 1
O3.07 . ::;: — [ |
3.08 g
' g
3.09 =
1 pM V%MN\“W\/ Wy
3.10 : : :
245 250 255 260 245 250 255 260 265

Chi [deg] Chi [deg]




After x-ray detection, the abnormally large grains are

Sandia
confirmed by FIB dissection + precess:on electron diffraction )
(a):Tensilesdirgction
Thompson
Tetrahedron

mode-I crack
growth direction



Can we interrupt a fatigue test at the onset of =
Abnormal grain growth? o
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Interrupting based on fatigue testing. ()
Laboratories
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Kinetics of evolution... leading up
to fatigue-crack initiation
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Can we watch fatigue-induced grain growth
directly in an electron microscope?




In-Situ Fatigue in the TEM is not a slam-dunk...

Hysi

tron Crp.

Hysitron PI195 In Situ Nanoindentation TEM Holder
*  Sub nanometer displacement resolution I
* Quantitative force information with uN resolution
=  Concurrent real-time imaging by TEM
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Push-to-Pull Tension Sandia

« Hysitron “Push-to-Pull” devices

o Microfabricated Si test frame
o Cu film (75 nm) floated onto device, then FIB milled

ifz| WD |mag | det mode‘ HFW ‘ﬂlt‘ —200 ym ——————
“3% |51 mm |500 x|ETD| SE |512 ym [0 °

= Nearly pure tension, uniform cross sectional area, stable load frame
= Fragile, sensitive to shape of edges, issues with magnetic materials

o2



Watching fatigue-induced grain evolution directly....

Sandia
m National
Laboratories

In situ
dynamic loading

I HYSITRON”

Bufford, Stauffer, Mook, Asif, Boyce, & Hattar, Nano Letters, 2016



Evolution during in-situ High Cycle Fatigue....

Difference Image

First ever high-cycle fatigue experiment in a TEM!
>300,000 cycles in ~20 minutes!




Evolution during in-situ High Cycle Fatigue.... @ Socia

-------

Loading Direction

What causes these few grains to grow so quickly at room temperature?

Hypothesis: a few grain boundary types have a distinct mobility advantage




Mechanisms of antithermal grain boundary motion

1. In-plane rotation about a fixed
atom on a common (111) plane

Sandia
m National _

Laboratories
3. Rotation between two
misoriented (111) pla

common (111)
plane LA

The mechanisms for anti-thermal boundary motion involve a coordinated
shuffling or rotation about a common plane, typically (111). Because of the

apparent coordinated motion, it bears similarity to a martensitic/military motion
rather than a diffusive motion.

O’Brien and Foiles, J. Mater. Sci, 2016



Some rare boundaries are triggered by dislocations
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Some rare boundaries are triggered by dislocations )
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pileup An example of dislocation absorption,
l \ - | .
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One last thought: Can we stabilize the grain boundaries ) i,
thermodynamically???

Increasing solute

Free Energy
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Recap...

Nanocrystalline metals offer
outstanding strength, and enhanced
fatigue resistance

Nanocrystalline grains grow under
fatigue loading and these larger grains
cause crack initiation, limiting fatigue
enhancement.
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Backup...
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Ehe New JJork Times

Pentagon Orders F-35 Jets Grounded

An inspection found a crack in a turbine blade in the engine of one of the planes

By CHRISTOPHER DREW

lished Februar

The Pentagon said on Friday that it had grounded all of its stealthy K3 Facesook

new F-35 fighter jets after an inspection found a crack in a turbine W TWITTER

blade in the engine of one of the planes. 5§ GOOGLE+

The Pentagon office that runs the program said the crack in the turbine blade jvas
discovered on Tuesday in a routine inspection. The crack occurred on a test plane at
Edwards Air Force Base in California. The blade is being shipped to a plant in Connecticut,
where the engine manufacturer, Pratt & Whitney, will inspect it and look for the problem’s




Summary ) M

—— wf

1. A new x-ray diffraction modality allows the observation of dynamic abnormal grain
growth during fatigue testing.

2. This new technique may also be relevant to:
* detecting other abnormal grain growth events such as Goss grains in electrical steels
* detecting the onset of recrystallization




Polychromatic Microdiffraction (Advanced Light Source) () &,

Nanocrystalline
region (no
grain growth)

Grain Growth
Region
(only 4 um away!)




