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Abstract—Unlike general purpose computer architectures that
are comprised of complex processor cores and sequential com-
putation, the brain is innately parallel and contains highly
complex connections between computational units (neurons). Key
to the architecture of the brain is a functionality enabled by
the combined effect of spiking communication and sparse con-
nectivity with unique variable efficacies and temporal latencies.
Utilizing these neuroscience principles, we have developed the
Spiking Temporal Processing Unit (STPU) architecture which is
well-suited for areas such as pattern recognition and natural
language processing. In this paper, we formally describe the
STPU, implement the STPU on a field programmable gate array,
and show measured performance data.

I. INTRODUCTION

Neural-inspired and neuromorphic computing systems have
been developed to address data-driven computing challenges,
such as pattern matching, largely due to the fact that such
problems can not be addressed with explicit numerical pro-
gramming [1]. In addition, there is a growing consensus that
neural approaches will provide significant advantages in power
consumption [2]-[4]. This increased interest in neuromorphic
computing as a potential source of post-Moore’s Law tech-
nologies has led to a number of proposed neural architectures
that achieve performance benefits against conventional tech-
nologies [1].

There are an increasing number of spike-based neuromor-
phic platforms, but each has had to enforce an independent
set of design choices that deviates from the original neural
inspiration. One obvious difference from the brain is the lack
of on-chip learning, which has increasingly become a focus of
technology development [5]. However, two additional aspects
of neurobiological systems have continued to be a challenge
for efficient hardware implementations that are arguably just
as impactful. First, biological neural circuits have a high
degree of interconnectivity that is difficult to replicate in
two-dimensional hardware. Cortical neurons in mammalian
systems often receive over 10 synaptic inputs, which stands
in stark contrast to most hardware platforms that are either
limited to or are only efficient at a fan-in of around 10? inputs.
Second, biological neural circuits use spike timing, including
axonal and dendritic delays, to communicate information [6],
[7]. Computationally realizing biological learning processes,
ranging from the synaptic (e.g., spike-timing dependent plas-

ticity [8]) to the structural (e.g., adult neurogenesis [7]),
requires more complex temporal representations than most
neuromorphic hardware currently supports.

Increasingly, there are spiking neural algorithms (SNAs) that
take advantage of relative timing differences and utilize more
biologically realistic fan-in and fan-out. One of the first spiking
machine learning algorithms, the liquid state machine (LSM),
relies on exponential-decay synapses that temporally expand
the influence of one neuron on another, thus stabilizing the
computation [9]. More recently, we have proposed a number
of SNAs that utilize spike timing to perform increasingly
complex numerical operations such as cross-correlations and
optimization [10], [11].

Analogous to the fact that there is no single classifier
suitable for all classification tasks [12], there is no single
architecture that is optimal for every possible computational
task. We recently reported on the design of the Spiking
Temporal Processing Unit (STPU) architecture and used a
simulation tool to assess the capability of this architecture
to process speech data [13]. Here, we formally describe and
demonstrate the STPU architecture for implementing SNAs
in a field programmable gate array (FPGA) with associated
performance measurements such as joules per synaptic event
and synaptic events per second.

In Section II we detail the STPU architecture and provide
a formal description of the neuron model. In Section III we
define the programming interface and in Section IV we report
on the FPGA implementation of the STPU architecture with
power and computation measurements.

II. STPU ARCHITECTURE
A. Motivation

In neurobiological systems, each neuron has its own local
memory in the form of synaptic connectivity which defines
its functionality. The functionality of the larger ensemble of
neurons is defined by the combined effect of the specific sparse
connectivity, the efficacy of the connectivity, and the latencies
imposed by the locality of connections [14], [15].

Aside from a few notable exceptions such as within the
retina, one of the differentiating characteristics of neurobiolog-
ical systems from artificial neural networks used in machine
learning is that neurons communicate using action potentials or



“spikes”. A spike represents information in the time domain;
the time at which a spike occurs contains the critical informa-
tion while the amplitude of the spike contains no information.
In a digital system, a spike event can be represented by a single
bit. This presents substantial advantages in energy efficiency
for large parallel systems because, at a minimum, only a single
bit needs to be communicated for each spike. This poten-
tial advantage of spiking has motivated a number of neural
computing architectures such as IBM’s TrueNorth [16] and
University of Manchester’s SpiNNaker processor [17]. These
architectures and others have leveraged sparse spike-based
communication to achieve low energy pattern recognition [4]
as well as improved scalability and performance speed-up [18].

While spiking is mostly an agreed upon representation by
those interested in low-power hardware, the neuromorphic
computing community has focused primarily on how best to
implement spiking [19] and communicate spikes at realistic
scales [20]. However, it is unclear whether biophysically re-
alistic spiking mechanisms [21], [22] provide a computational
advantage over simple discrete spiking models [4], [18]. Our
architectural approach leverages a simple and discrete neural
model that prioritizes the temporal (precise spike timings and
delays) and spatial (robust, generic connectivity) complexity
observed within spiking neural systems.

B. Architecture Overview

The STPU is a scalable and highly parallel spike-based
neuromorphic architecture with a core processing unit that
supports high fidelity spike timing dynamics. The core design
principle of the STPU is to support fast and efficient movement
of information for computing Spiking Neural Networks. The
STPU is very flexible to specifications of neuron connectivity
and synaptic delay.

Several algorithms exist which could leverage the STPU’s
flexibility. A temporal-coded SNA was developed to com-
pute the argument of the maximum cross-correlations [10]—
a computation closely related to the concept of matched fil-
ters. Specifically, the temporal-coded algorithm uses graduated
synaptic delays, which utilizes the temporal capabilities of
the STPU. We previously simulated an LSM for spoken digit
recognition [13] and examined different algorithms for training
the readout neurons, various liquid topologies and different
firing thresholds for the LIF neurons. While using arbitrarily
complex synaptic response functions to model synaptic decay,
greater than 90% classification accuracy was achieved using
both support vector machines and linear discriminant analysis.
Additionally, the STPU was used to provide support for
fundamental neural-inspired spiking algorithms for simple op-
timization [11]. Utilizing the STPU’s temporal characteristics,
each of these algorithms use some form of temporal coding.

The architectural flow of the STPU is depicted in Figure 1.
The Spike Transfer Structure (STS) is responsible for routing
spikes through the network structure, managing external input
data, performing all synaptic computations and executing the
program instructions. Recurrent spike routing is supported by
the Output Spike Consolidator (OSC).
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Fig. 1. The Spiking Temporal Processing Unit architectural flow: synaptic

information for each neuron is stored in a large off chip memory known
as the Synapse Memory. The Neuronal Processing Units interface to the
Synapse Memory through the Spike Transfer Structure. Spikes generated in the
Neuronal Processing Units are routed to the Spike Transfer Structure through
the Output Spike Consolidator.

The Neuronal Processing Units (NPUs) draw two key inspi-
rations from neuroscience: the leaky integrate and fire (LIF)
neuron model to facilitate spike generation and a dendritic
arbor model to facilitate delayed spike delivery. The LIF
model [23] is a simple neuron model that captures several
core features of biological neurons. This model accumulates
input stimuli received by the neuron. If this accumulated state
crosses a defined firing threshold the neuron will “fire”. A
neuron’s fire event transmits a spike to all of the neurons it
connects to and resets its accumulated state to a predefined rest
state. If the neuron does not fire, the accumulated state from
past input stimuli will slowly decrease in an effort to return the
accumulated state value back to the resting state. In summary,
the neuron performs a leaky integration of input stimuli and
if the value of the integrator crosses its firing threshold, the
neuron will spike resulting in an integrator reset.

The LIF model is common practice in spiking neural
networks, but the dendritic arbor model is often overlooked.
The dendritic arbor model defines one aspect of the time delays
associated with each post synaptic connection to a neuron.
To account for this timing characteristic, each STPU neuron
incorporates a temporal buffer. The temporal buffer allows
for pre-synaptic neurons to make weighted connections with
associated delays. The behavioral dynamics of the temporal
buffer can be likened to that of a shift register. Values in
the temporal buffer are shifted from top to bottom, where
only the bottom value is shifted into the integrator of the
LIF neuron. In this sense, the temporal buffer of a single
neuron is similar to a compartment and cable model [23] in
which the inputs must propagate through the temporal buffer
to reach the soma rather than instantaneously arriving at the
integrator. The temporal buffer allows for the delayed arrival of



input spike information from other neurons. This is analogous
to the notion that synaptic connections within a neuron’s
dendritic arbor are not uniformly equidistant from the soma.
Rather, some connections are shorter than others and affect
the post-synaptic neuron sooner than those that are further
away. The temporal buffer of each LIF neuron provides the
innate ability to perform temporal processing and implement
complex synaptic response functions [13].

In many respects, neuromorphic computing architectures
are still tied to conventional computing paradigms for
data input. This notion is represented in Figure 1 by the
Server/Application block. The network configuration informa-
tion is written to the Synapse Memory (SM) via a Direct
Memory Access (DMA) controller. The application supplies
the STPU with instructions and external data it may need for
computation through a high speed data bus and provides a
means to receive any output spike information from the NPUs.

The following sections will provide in depth coverage of the
STPU architecture by detailing the SM, the STS, the NPUs,
and the OSC.

C. Synapse Memory

The SM is responsible for holding all the synaptic informa-
tion necessary to perform each synaptic calculation for every
spike event. The information stored in this memory includes
the pre-synaptic neuron designator, the synaptic weight, the
post-synaptic neuron designator, and the synaptic delay asso-
ciated with the connection. The organization of the SM is done
in a way that optimizes access of the data and its respective
storage allocation.

The SM allows the STPU to support a fully connected
network of neurons and allows for a unique synaptic weight
and delay specification for every connection. It also allows
any neuron to make multiple connections to a downstream
neuron with different weights and time delays. Additionally,
the SM can be updated at any point during execution through
the DMA controller allowing for adjustments to the neuronal
connectivity, synaptic weights, and synaptic delays on the fly.

D. Spike Transfer Structure

The STS’s data flow is depicted in Figure 2. The OSC
delivers to the STS all spikes generated in the previous
time step. These internally routed spikes carry with them
the neuron that spiked and the relative spike-time so that
any synaptic delays applied to the spike event are applied
relative to the time the spike occurred. This notion is critical
in applying accurate spike timing dynamics independent of
clock frequency. External input data is delivered to the STS
from the server-side application and can be in the form of
spikes or real-valued input. Because external input data is not
generated relative to any spike timing event internal to the
STPU, they carry a different temporal parameter known as the
temporal shift. This allows external input data to have relative
time delays associated to them and not be required to affect
the system at the exact time the input data is applied.
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Fig. 2. Spike Transfer Structure: the core engine of the Spiking Temporal
Processing Unit architecture responsible for receiving all input data (internal
spike data, external input data, and execution instructions), performing all
synaptic calculations for the network, and routing the information to the
Neuronal Processing Units. The Spike Transfer Structure directly interfaces
with the instruction and input data from the server-side application, the Output
Spike Consolidator, Synapse Memory, and Neuronal Processing Units.

Access to the SM is performed over a high speed and highly
parallel data communication interface. The STS uses the pre-
synaptic neuron information from the input data to calculate
where in memory the synapse information is stored. The STS
fetches the synapse information needed to perform all synaptic
calculations which includes the synaptic weight, the temporal
offset and the post-synaptic neuron. These calculations are
performed in parallel where the number of parallel compu-
tation paths is dependent on the size of the parallel data bus
to the SM. The first calculation performed is the input potential
induced by the spike or external input. The synaptic weight
is multiplied by the input value to produce the input potential
that will affect the post-synaptic neuron (in the case of a spike,
the input value is one). The second calculation performed
is the spike delivery delay which determines where in the
temporal buffer of the post-synaptic neuron the calculated
input potential will be placed. The STS uses the temporal
information from the input data by adding it to the temporal
offset value from the SM to produce the exact location in
the temporal buffer to place the input potential of the post-
synaptic neuron. This location cannot be larger than the
physical number of temporal buffer indexes. Mathematical
formulation of these computational details will be covered in
the next section (Section II-E).

The STS delivers to the NPUs the post-synaptic neuron to
target, the location in the temporal buffer and the potential
induced by the input (input potential) into the post-synaptic
neuron.

E. Neuronal Processing Unit

The NPUs contain all the computational dynamics of the
LIF neuron model, the dendritic arbor model, and a small set
of configurable parameters for each neuron. The STPU has
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Fig. 3. Neuronal Processing Units: post-synaptic neuron information from
the Spike Transfer Structure identifies which neuron to target for a temporal
buffer update. The temporal location data identifies where in the temporal
buffer to place the input potential data. The input potential is inserted into the
temporal buffer by adding it to the current value in the temporal buffer at the
designated temporal location. This effectively superimposes spike information
that will arrive to the neuron at the same time so that no spike information
is lost.

configurable parameters per neuron for the firing threshold,
the minimum neuron potential, and the leakage value used
to compute leak. A limited set of parameters was chosen to
maximize neuron count by reducing computational logic and
parameter storage.

The STPU assigns subsets of neurons of equal size to each
parallel computation path from the STS. For simplicity, only
a single computation path is depicted in Figure 3. All the
STPU neurons operate on a synchronous clock. One neural
computation cycle involves the following operations. First,
all temporal buffers are updated with the information from
the STS. Then, the bottom value of the temporal buffer is
added into the accumulator. The neurons then check their
accumulator values against their respective firing thresholds.
If the accumulator value (neuron potential) is below the firing
threshold the accumulator value will have a multiplicative leak
operation performed on it. If the accumulator value is equal to
or greater than the firing threshold then the neuron will spike
and reset the accumulator to its resting state. Each neuron that
spikes will package its neuron designator value and the time
that the neuron spiked and deliver this information to the OSC.
We refer to this process as one LIF operation (LIFop) which is
composed of the update, shift, integrate, check, and spike/reset
or leak sub-operations.

More formally we define the neuron computation cycle
through Figure 4. Let D be the number of registers in the
temporal buffer and N be the number of neurons in the STPU
system. Let R be a D x N matrix where each column in R
represents the temporal buffer for neuron j and is indexed
by Ry, with d € {0,---,D — 1}. Synaptic connection

weights from input neuron k to destination neuron j at the
d" index of R; is denoted as Wy ;. Therefore, W is a
D x N x N rank-3 tensor. Internally recurrent spikes are
denoted by the output vector O and external input data is
denoted by the input vector E. The integration register of the
5™ neuron is denoted by A;, where A is an N x 1 vector
of integration registers. The leak function performed on the
integration register is denoted as A(A;). Note that R and
A are intermediary states for the temporal buffer and the
integration register, where R defines the temporal buffer
after an update of the temporal buffer and prior to a shift
and integrate operation, and A defines the integration register
after the shift and integration but prior to the threshold check
and leak sub-operations. Equations 1, 2 and 3 below define
the computation model of the STPU neuron.

SYNAPTIC INPUT UPDATE
Raj(t) = Ra;(t) + > in(t)Wak(t) (1)
k

TEMPORAL INTEGRATION
Rg,;(t+1)= RJH,J'(t)
Rp 1 (t+1)=0 2)
Aj = Aj(t) + Ro;(t)
where d € {0,--- ,D — 2}.

THRESHOLD, FIRE, RESET

A'(t+1)* A(AJ) ifAj<Tj
/ 0 if A; >T; —SPIKE  (3)

A(4;) = A;(1 =)

where A;(0) = 0. Note that A;(¢ + 1) is the value of the in-
tegration register after a complete LIFop has been performed,
T} is the threshold to fire value of the jth neuron, and ) is the
leakage value.

FE. Output Spike Consolidator

Spike routing is a necessary function in all neuromorphic
architectures. TrueNorth implemented their own routing dy-
namics for on chip and off chip spike routing [16] while
others use address event representation (AER). There is also
hierarchical address event representation (HiAER) which is a
multiscale tree-based extension of single-bus AER that offers
scalable throughput without restrictions on spatial range [24].
The STPU implements a simplified hierarchical spike routing
mechanism termed the OSC. An example of a three-stage OSC
is illustrated in Figure 5.

Stage one is directly coupled to a subset of the neurons
of the system. For efficiency each stage one consolidator
is allocated the same number of neurons. The stage one
consolidators operate in parallel with each other compactly
placing any spike data from its associated neurons into an
output buffer. These output buffers are serviced by the stage
two consolidation node. In this illustration only a pair of



Fig. 4. Neuron computation model: the output spikes vector (O) are combined
with external input data vector (F) to form an input data vector (I) that is
applied to the rank-3 tensor (W) which defines the connection parameters
for synaptic weight and delay. The resulting computation of I X W (I is
iteratively multiplied with the 2D matrices formed by the k** dimension of
W) is added element-wise with the existing values of R. Which is then
accumulated column-wise to produce A. Elements of A are checked against
the threshold to fire to produce the output vector (O).

stage two consolidation nodes are depicted each servicing
eight stage one consolidation nodes. Each stage two node
operates in parallel taking data from the stage one output
buffers and compactly placing it into a single stage two output
buffer. These output buffers are serviced by the stage three
consolidation node.

The stage three consolidation node operates in much the
same way as the stage two nodes by servicing each stage two
output buffer and compactly placing the spike information into
a final stage three output buffer. This final buffer is serviced
by the STS to pull data in and complete the computation loop
of the STPU. All consolidation stages work with pipelined
efficiencies so that as soon as data arrives into a buffer the
downstream stage will begin consolidating it into its own
output buffer.

It is important to note that Figure 5 is an implementation
example. The STPU architecture supports any number of
staged consolidation nodes and any number of consolidation
nodes attached to downstream nodes. Increasing the number
of stages or number of nodes attached per stage will increase
parallelization and performance at the cost of hardware re-
sources.

G. STPU Computation Modes

The STPU supports two modes of computation: stream-
ing mode and wave mode. Streaming mode supports tightly
coupled recurrent networks and high frequency input data
and output data. In streaming mode, every LIFop requires all
generated spikes to be routed to the STS before the next LIFop
is performed and can accept input data into the STS before
each LIFop begins.

In contrast to streaming mode, wave mode is a more efficient
form of computation for some algorithms. In wave mode one
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Fig. 5. Three-stage Output Spike Consolidator: the Output Spike Consolidator
is a series of staged buffers that efficiently routes all the spike information
resulting form a LIFop from the Neuronal Processing Units to the Spike
Transfer Structure in a highly parallel way. The design choice of the Output
Spike Consolidator plays a critical role in the placement of neurons in the
underlying hardware medium. Neurons are tightly coupled to their respective
stage one output buffers to reduce routing complexity and routing distance.

computation step is defined to be D LIFops. This forces the
STPU to block I/O while computations on the temporal buffer
are performed. All spikes are stored in a small local memory
of D bits for each neuron. After the computation step is com-
pleted, all spikes generated are released to the OSC with their
relative time of spike. The STS uses this relative spike time
information to appropriately place the spike information into
the temporal buffer of the post synaptic neuron; this preserves
accurate timing for all spikes and increases computational
throughput.

III. SOFTWARE API

A crucial part of any architecture is the software stack that
supports programming. A typical software stack for a von
Neumann machine includes at least: 1) an operating system
to abstract the hardware, manage resources and schedule code
execution, 2) a loader to read object files into memory and
start program execution, 3) a compiler to turn source code
into object code, and 4) source files to specify procedures in
a language that is both human and machine readable.

Neuromorphic platforms also need a software stack to run
applications. For example, IBM’s TrueNorth comes with the
Corelet Programming Environment. Sandia National Labs has
developed a general purpose software stack called “Neurons
to Algorithms” (N2A) [25], which can run a network specifi-
cation on a range of platforms with minimal changes.

A. Neurons To Algorithms

The N2A software stack compiles a neural system de-
scription into object code for a given device, loads it, and
manages input and output. The specifics are determined by
back end modules, just as traditional compilers have back
ends to output object code for various architectures. N2A
represents neural components as bundles of equations and
associated parameters. Each bundle is called a “part”. Because



everything is in the form of “name=value” pairs, parts are data,
not code in the traditional sense. The language is declarative,
not procedural. This makes it easy for one part to inherit
from another and extend it. Parts may also include other parts,
assembling them into large hierarchical models.

We observe that most physically-realized neuromorphic
platforms (e.g SpiNNaker [17], TrueNorth [4], Brain-
ScaleS [18], Neurogrid [26], and Darwin [27]) implement
some form of LIF neuron combined with spike-based com-
munication, where spikes may have some delay and add some
amount of activation to the receiving neuron. This abstraction
(LIF neurons + spike events) is thus a common language
for programming these devices. The STPU also uses this
abstraction, with fine-grained support for spike timing.

N2A supports network design for the STPU via a library
LIF part and an event predicate. The LIF neurons are described
in traditional neuroscience terms, using electrical units such
as Volts, Amps, Siemens, and Farads. By expressing neuron
configurations in a target-agnostic form, the same model can
run across a wide range of platforms. At present, N2A supports
several software simulators along with the STPU. Support for
TrueNorth and SpiNNaker may become available in future
releases.

The STPU back end translates each neuron configuration
into the units used by the device, and makes calls to a user-
space library to send the parameters onto the FPGA. The
back end processes the connections between neurons and
packs them into Synapse Memory Lists. Not all neurons get
loaded onto the STPU. Some are necessary for reading input
files and/or receiving output spikes. An entire neural network
can be set up for pre- and post-processing of spikes flowing
through the STPU. The back end transparently recognizes
these and allocates them on the CPU side.

IV. HARDWARE IMPLEMENTATION

The architecture of the STPU was implemented in an
FPGA.The current implementation exists on a Nallatech 385A.
The 385A is a Low Profile 8-lane PCI-Express (PCle) 3.0
card with an Intel®Arria®10 GX 1150 FPGA!. The FPGA
on the 385A is connected to two banks of DDR3L SDRAM?.
Each bank is 72 bits wide with 4 GB of memory operating
at 2133 MT/s. This 8 GB of memory serves as the SM
of the STPU. Using 8 bits per parallel computation path in
the STS, this instantiation of the STPU has a total of 16
parallel computations paths—8 on each memory bank. The
Aria®product line was specifically chosen for their patented
memory logic array block (MLAB). The MLAB is a general-
purpose dual-port memory SRAM array. We utilize this special
memory for the temporal buffer.

Utilizing the Nallatech 385’s fabric logic and auto-place and
route tools, we have currently instantiated 2048 neurons with a
temporal buffer size of 32. This instantiation utilizes 4 GB of
the SM with 18 bits for each synaptic weight, 6 bits for each

'FPGA part number: 10AX115N3F40E2SG in a F1517 package
2DDR3L part number: MT41K512M8RG-093:N (Micron)
30ne neuron in the system is utilized to start the spiking of the network.
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Fig. 6. (a) Eleven trials are conducted on fully connected networks in which
the total synaptic event count is constant, but the neuron count in the system
is reduced by a factor of two for each trial. The LIFop count is increased
by a factor of four for each trial to maintain a constant synaptic event count.
Every neuron spikes on every LIFop. All trials were executed ten times and
error bars are plotted. (b) The neuron count is kept constant at 2047 and the
probability of a neuron connecting to each other neuron is reduced by a factor
of two each trial®. Eleven trials are conducted in which the synaptic event
count is constant, but the synapse count is approximately reduced by a factor
of two for each trial. Every neuron spikes on every LIFop. All trials were
executed ten times and error bars are plotted.

synaptic delay, and 8 bits to define the post-synaptic neuron.
Technically, 11 bits would be needed to define each of the
2048 possible post-synaptic neurons, but due to hierarchical
organization of the SM those 3 additional bits and the pre-
synaptic neuron information are encoded in the SM address
bits.

A. Power Measurements

Power data was collected using a 2048 neuron instantiation
of the STPU. A PCle riser cable was modified to expose the
power rails of the PCle connector. A Keysight N6705B DC
Power Analyzer was used with a N6785A Source/Measure
Unit in line with the power rail of the PCle connector to
measure current and voltage simultaneously. Only the dynamic
power was considered for this analysis so that only the power
consumption of the execution of the network dynamics is
considered and not the overhead of the entire Nallatech 385A.
The Nallatech 385A had a static power of approximately 25W.
However, it was noted that the static and dynamic power varied
significantly between builds of the FPGA code, a characteristic
of the random nature of the place and route tool.

Three experiments were conducted to collect data for com-
putation of the average dynamic power, energy per synaptic
event, synaptic events per second, and seconds per LIFop
(Figures 6 and 7). In Experiment 1 (Figure 6a), the dynamic
power decreases as the neuron count falls, with an anomaly
when transitioning from 32 to 16 neurons and an average
dynamic power of 392mW. The nJ per synaptic event remained
relatively stable for neuron counts between 2047 and 32 with
a minimum of 20.8nJ per synaptic event at 128 neurons. For
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Fig. 7. The neuron count and the connection probability are varied and the synaptic event count is allowed to float. (a) nJ per synaptic event increases as neuron
count decreases and connection sparsity increases. (b) dynamic power decreases as neuron count decreases and remains stable over connection probability. (c)
synaptic events per second decreases as neuron count decreases and connection sparsity increases. (d) seconds per LIFop decrease with diminishing returns

as neuron count decreases and connection sparsity increases.

neuron counts below 32 the nJ per synaptic event increases
non-linearly. A similar trend is present for synaptic events
per second. We report a peak throughput in Experiment
1 of 17.95 million events per second. The reason for the
divergence of performance in low neuron count is attributed
to the diminishing returns in the seconds per LIFop. In a
fully connected topology the synapse count is reduced by a
factor of 4 when the neuron count is reduced by a factor of 2.
This presents a drastic reduction in the synaptic calculations
performed for each LIFop. However, every neuron is spiking
every LIFop. Therefore, the routing time becomes the major
factor in the total time to complete one LIFop. Experiment 1
reports a Ims LIFop time for 128 neurons.

The second experiment maintained a constant neuron count
while the connectivity between neurons was varied (Fig-
ure 6b). Because Experiment 2 maintains a consistently high
spike density and only reduces the number of synapses by a
factor of 2, the effects of the LIFop timing are more definable.
Even though the synapse count is reduced by a factor of 2
with each trial, the seconds per LIFop is not reduced by the
same factor. As a result the nJ per synaptic event (min of
26.5n)) steadily increases and the synaptic events per second
throughput (max of 17.94 x 10°%) slowly decreases. Again,
we see a generally decreasing trend in dynamic power as the
number of synapses decreases. However, in this experiment the
dynamic power remains stable until the connection probability
reaches 3.13%, and then begins to decrease. The average
dynamic power in Experiment 2 was 456mW.

The third experiment (Figure 7) shows that there is a

diminishing return on the time savings for a single LIFop as
the amount of computation per LIFop decreases (Figure 7d).
This timing effect is the major factor in why the nJ per synaptic
event increases and the synaptic events per second decreases
along similar trends in Figure 7a and 7c. The dynamic power
in Figure 7b indicates that the major factor in decreasing the
power is a reduction in neuron count.

Based on the work of [28] we can place the STPU archi-
tecture performance in the context of related neuromorphic
computing platforms. In regards to energy per event the
STPU reported 21nJ in contrast to Neurogrid (100pJ), Brain-
SaleS (100pJ), TrueNorth (25pJ), and SpiNNaker (10nJ). For
dynamic power the STPU reported an average dynamic power
across all trials of 424mW in contrast to Neurogrid (150mW),
BrainSaleS(1.3W), TrueNorth (72mW), and SpiNNaker (1W).
An important distinction is that the STPU performance data
was collected on an experimental FPGA implementation while
the other neuromorphic computing systems are optimized
ASIC designs.

V. CONCLUSION

The STPU is designed as a biologically-inspired spiking
neural network architecture. The architecture is based on
three fundamental neuroscience principles: the significance
of neuronal connectivity, the efficacy of the connectivity,
and the temporal latency imposed by the connectivity. While
other neuromorphic hardware platforms provide some limited
capabilities for configuring the relative timing within neural
algorithms, the STPU architecture centers around the integra-



tion of spike-timing and information processing in SNAs by
providing direct hardware support to efficiently utilize spike
delays [10], [11]. The innate temporal processing capabilities
of the architecture allow for delayed arrival of spikes with high
fidelity, providing a flexible platform for transforming dynamic
temporal data. These features make this architecture well
suited for SNAs such as liquid state machines [13]. We have
implemented the STPU architecture on an FPGA platform and
measured performance metrics related to power and execution
speed. In terms of power efficiency and throughput, the STPU
performs optimally with large and densely connected networks
while naturally executing faster for smaller sparsely connected
networks. The STPU was developed to implement SNAs that
utilize temporal domain representations, as we believe that the
timing dynamics of SNAs will play a critical role in future
neuromorphic applications.
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