

*Some Comments on the Future of
Uncertainty Quantification Research*

H. Najm

Sandia National Laboratories, Livermore, CA

Quarterly DARPA Review Telecon
Aug 16-18, 2017

Broad and Increasing Interest in UQ

- Continuing increase in interest in UQ
 - internationally
 - across disciplines
- Why?
 - Customers:
 - Promise of improved understanding of models/predictions
 - Model validation
 - Making sense of conflicting data/models
 - Practitioners:
 - Range of applied math and statistics challenges
 - Theory, Modeling, algorithms, and software challenges
 - Interesting multidisciplinary work across:
 - applied math, statistics, information theory, data science
 - Availability of funding!

Interesting UQ Research Directions – 1

- Dimensionality reduction
 - Sparse regression, smoothness, low-rank tensor methods
 - Basis adaptation, active subspace
 - Model reduction, low dimensional manifolds
 - Data/Likelihood-informed subspaces
- Sampling for forward UQ and surrogates
 - Adaptive sparse quadrature, optimal regression, QMC, etc
 - Computational strategies for neighbor samples – borrow strength
 - Adaptive surrogate constructions
- Mesh error
 - Probabilistic numerics
 - Mesh error modeling
 - Multilevel methods
- Model complexity
 - Model error in hierarchical models
 - Multifidelity methods
 - Inference on models, model selection
 - Likelihoods with chaotic dynamics

Interesting UQ Research Directions – 2

“Data Science” and statistics

- Machine learning – logistic regression
- Significant advances made over past decade involve
 - Convolutional neural networks
 - Deep neural networks
 - Large training data sizes

Result in training that learns not only best-fit NN weights but also best-choice of features of the data for high prediction success rate

Opportunities for UQ – ML two-way coupling

- UQ \Rightarrow ML :
 - Bayesian training of neural network models – posterior on weights
 - Bayesian model selection on network models
 - Bayesian classification with NNs
- ML \Rightarrow UQ :
 - Stochastic optimization strategies used in NN training, useful for UQ
 - Data+model-based methods for low-D manifold discovery
 - Identify features in model dynamics that control emergent behavior
 - Correlation vs causality analysis

Optimization under uncertainty

- Derivative free optimization
 - Black box models
 - Noisy objectives/constraints aside from uncertainty
 - Smooth/well-behaved integral Qols from deterministic simulations can be noisy due to finite-sized spatiotemporal averages
- MLMF strategies
- Rare event estimation

Stochastic Galerkin – Intrusive methods

- Governing equations – well-posedness, physical constraints
- Numerical methods – stability, convergence, consistency
- Automatic code generation – similar to automatic differentiation